bitvec.c.svn-base
上传用户:sunhongbo
上传日期:2022-01-25
资源大小:3010k
文件大小:10k
- /*
- ** 2008 February 16
- **
- ** The author disclaims copyright to this source code. In place of
- ** a legal notice, here is a blessing:
- **
- ** May you do good and not evil.
- ** May you find forgiveness for yourself and forgive others.
- ** May you share freely, never taking more than you give.
- **
- *************************************************************************
- ** This file implements an object that represents a fixed-length
- ** bitmap. Bits are numbered starting with 1.
- **
- ** A bitmap is used to record what pages a database file have been
- ** journalled during a transaction. Usually only a few pages are
- ** journalled. So the bitmap is usually sparse and has low cardinality.
- ** But sometimes (for example when during a DROP of a large table) most
- ** or all of the pages get journalled. In those cases, the bitmap becomes
- ** dense. The algorithm needs to handle both cases well.
- **
- ** The size of the bitmap is fixed when the object is created.
- **
- ** All bits are clear when the bitmap is created. Individual bits
- ** may be set or cleared one at a time.
- **
- ** Test operations are about 100 times more common that set operations.
- ** Clear operations are exceedingly rare. There are usually between
- ** 5 and 500 set operations per Bitvec object, though the number of sets can
- ** sometimes grow into tens of thousands or larger. The size of the
- ** Bitvec object is the number of pages in the database file at the
- ** start of a transaction, and is thus usually less than a few thousand,
- ** but can be as large as 2 billion for a really big database.
- **
- ** @(#) $Id: bitvec.c,v 1.4 2008/04/14 01:00:58 drh Exp $
- */
- #include "sqliteInt.h"
- #define BITVEC_SZ 512
- /* Round the union size down to the nearest pointer boundary, since that's how
- ** it will be aligned within the Bitvec struct. */
- #define BITVEC_USIZE (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*))
- #define BITVEC_NCHAR BITVEC_USIZE
- #define BITVEC_NBIT (BITVEC_NCHAR*8)
- #define BITVEC_NINT (BITVEC_USIZE/4)
- #define BITVEC_MXHASH (BITVEC_NINT/2)
- #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
- #define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT)
- /*
- ** A bitmap is an instance of the following structure.
- **
- ** This bitmap records the existance of zero or more bits
- ** with values between 1 and iSize, inclusive.
- **
- ** There are three possible representations of the bitmap.
- ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
- ** bitmap. The least significant bit is bit 1.
- **
- ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
- ** a hash table that will hold up to BITVEC_MXHASH distinct values.
- **
- ** Otherwise, the value i is redirected into one of BITVEC_NPTR
- ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
- ** handles up to iDivisor separate values of i. apSub[0] holds
- ** values between 1 and iDivisor. apSub[1] holds values between
- ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
- ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
- ** to hold deal with values between 1 and iDivisor.
- */
- struct Bitvec {
- u32 iSize; /* Maximum bit index */
- u32 nSet; /* Number of bits that are set */
- u32 iDivisor; /* Number of bits handled by each apSub[] entry */
- union {
- u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */
- u32 aHash[BITVEC_NINT]; /* Hash table representation */
- Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
- } u;
- };
- /*
- ** Create a new bitmap object able to handle bits between 0 and iSize,
- ** inclusive. Return a pointer to the new object. Return NULL if
- ** malloc fails.
- */
- Bitvec *sqlite3BitvecCreate(u32 iSize){
- Bitvec *p;
- assert( sizeof(*p)==BITVEC_SZ );
- p = sqlite3MallocZero( sizeof(*p) );
- if( p ){
- p->iSize = iSize;
- }
- return p;
- }
- /*
- ** Check to see if the i-th bit is set. Return true or false.
- ** If p is NULL (if the bitmap has not been created) or if
- ** i is out of range, then return false.
- */
- int sqlite3BitvecTest(Bitvec *p, u32 i){
- if( p==0 ) return 0;
- if( i>p->iSize || i==0 ) return 0;
- if( p->iSize<=BITVEC_NBIT ){
- i--;
- return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0;
- }
- if( p->iDivisor>0 ){
- u32 bin = (i-1)/p->iDivisor;
- i = (i-1)%p->iDivisor + 1;
- return sqlite3BitvecTest(p->u.apSub[bin], i);
- }else{
- u32 h = BITVEC_HASH(i);
- while( p->u.aHash[h] ){
- if( p->u.aHash[h]==i ) return 1;
- h++;
- if( h>=BITVEC_NINT ) h = 0;
- }
- return 0;
- }
- }
- /*
- ** Set the i-th bit. Return 0 on success and an error code if
- ** anything goes wrong.
- */
- int sqlite3BitvecSet(Bitvec *p, u32 i){
- u32 h;
- assert( p!=0 );
- assert( i>0 );
- assert( i<=p->iSize );
- if( p->iSize<=BITVEC_NBIT ){
- i--;
- p->u.aBitmap[i/8] |= 1 << (i&7);
- return SQLITE_OK;
- }
- if( p->iDivisor ){
- u32 bin = (i-1)/p->iDivisor;
- i = (i-1)%p->iDivisor + 1;
- if( p->u.apSub[bin]==0 ){
- sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 1);
- p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
- sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0);
- if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
- }
- return sqlite3BitvecSet(p->u.apSub[bin], i);
- }
- h = BITVEC_HASH(i);
- while( p->u.aHash[h] ){
- if( p->u.aHash[h]==i ) return SQLITE_OK;
- h++;
- if( h==BITVEC_NINT ) h = 0;
- }
- p->nSet++;
- if( p->nSet>=BITVEC_MXHASH ){
- int j, rc;
- u32 aiValues[BITVEC_NINT];
- memcpy(aiValues, p->u.aHash, sizeof(aiValues));
- memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR);
- p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
- rc = sqlite3BitvecSet(p, i);
- for(j=0; j<BITVEC_NINT; j++){
- if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
- }
- return rc;
- }
- p->u.aHash[h] = i;
- return SQLITE_OK;
- }
- /*
- ** Clear the i-th bit. Return 0 on success and an error code if
- ** anything goes wrong.
- */
- void sqlite3BitvecClear(Bitvec *p, u32 i){
- assert( p!=0 );
- assert( i>0 );
- if( p->iSize<=BITVEC_NBIT ){
- i--;
- p->u.aBitmap[i/8] &= ~(1 << (i&7));
- }else if( p->iDivisor ){
- u32 bin = (i-1)/p->iDivisor;
- i = (i-1)%p->iDivisor + 1;
- if( p->u.apSub[bin] ){
- sqlite3BitvecClear(p->u.apSub[bin], i);
- }
- }else{
- int j;
- u32 aiValues[BITVEC_NINT];
- memcpy(aiValues, p->u.aHash, sizeof(aiValues));
- memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT);
- p->nSet = 0;
- for(j=0; j<BITVEC_NINT; j++){
- if( aiValues[j] && aiValues[j]!=i ){
- sqlite3BitvecSet(p, aiValues[j]);
- }
- }
- }
- }
- /*
- ** Destroy a bitmap object. Reclaim all memory used.
- */
- void sqlite3BitvecDestroy(Bitvec *p){
- if( p==0 ) return;
- if( p->iDivisor ){
- int i;
- for(i=0; i<BITVEC_NPTR; i++){
- sqlite3BitvecDestroy(p->u.apSub[i]);
- }
- }
- sqlite3_free(p);
- }
- #ifndef SQLITE_OMIT_BUILTIN_TEST
- /*
- ** Let V[] be an array of unsigned characters sufficient to hold
- ** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
- ** Then the following macros can be used to set, clear, or test
- ** individual bits within V.
- */
- #define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
- #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
- #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
- /*
- ** This routine runs an extensive test of the Bitvec code.
- **
- ** The input is an array of integers that acts as a program
- ** to test the Bitvec. The integers are opcodes followed
- ** by 0, 1, or 3 operands, depending on the opcode. Another
- ** opcode follows immediately after the last operand.
- **
- ** There are 6 opcodes numbered from 0 through 5. 0 is the
- ** "halt" opcode and causes the test to end.
- **
- ** 0 Halt and return the number of errors
- ** 1 N S X Set N bits beginning with S and incrementing by X
- ** 2 N S X Clear N bits beginning with S and incrementing by X
- ** 3 N Set N randomly chosen bits
- ** 4 N Clear N randomly chosen bits
- ** 5 N S X Set N bits from S increment X in array only, not in bitvec
- **
- ** The opcodes 1 through 4 perform set and clear operations are performed
- ** on both a Bitvec object and on a linear array of bits obtained from malloc.
- ** Opcode 5 works on the linear array only, not on the Bitvec.
- ** Opcode 5 is used to deliberately induce a fault in order to
- ** confirm that error detection works.
- **
- ** At the conclusion of the test the linear array is compared
- ** against the Bitvec object. If there are any differences,
- ** an error is returned. If they are the same, zero is returned.
- **
- ** If a memory allocation error occurs, return -1.
- */
- int sqlite3BitvecBuiltinTest(int sz, int *aOp){
- Bitvec *pBitvec = 0;
- unsigned char *pV = 0;
- int rc = -1;
- int i, nx, pc, op;
- /* Allocate the Bitvec to be tested and a linear array of
- ** bits to act as the reference */
- pBitvec = sqlite3BitvecCreate( sz );
- pV = sqlite3_malloc( (sz+7)/8 + 1 );
- if( pBitvec==0 || pV==0 ) goto bitvec_end;
- memset(pV, 0, (sz+7)/8 + 1);
- /* Run the program */
- pc = 0;
- while( (op = aOp[pc])!=0 ){
- switch( op ){
- case 1:
- case 2:
- case 5: {
- nx = 4;
- i = aOp[pc+2] - 1;
- aOp[pc+2] += aOp[pc+3];
- break;
- }
- case 3:
- case 4:
- default: {
- nx = 2;
- sqlite3_randomness(sizeof(i), &i);
- break;
- }
- }
- if( (--aOp[pc+1]) > 0 ) nx = 0;
- pc += nx;
- i = (i & 0x7fffffff)%sz;
- if( (op & 1)!=0 ){
- SETBIT(pV, (i+1));
- if( op!=5 ){
- if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
- }
- }else{
- CLEARBIT(pV, (i+1));
- sqlite3BitvecClear(pBitvec, i+1);
- }
- }
- /* Test to make sure the linear array exactly matches the
- ** Bitvec object. Start with the assumption that they do
- ** match (rc==0). Change rc to non-zero if a discrepancy
- ** is found.
- */
- rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
- + sqlite3BitvecTest(pBitvec, 0);
- for(i=1; i<=sz; i++){
- if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
- rc = i;
- break;
- }
- }
- /* Free allocated structure */
- bitvec_end:
- sqlite3_free(pV);
- sqlite3BitvecDestroy(pBitvec);
- return rc;
- }
- #endif /* SQLITE_OMIT_BUILTIN_TEST */