kd_tree.cpp
上传用户:chinafayin
上传日期:2022-04-05
资源大小:153k
文件大小:15k
- //----------------------------------------------------------------------
- // File: kd_tree.cpp
- // Programmer: Sunil Arya and David Mount
- // Description: Basic methods for kd-trees.
- // Last modified: 01/04/05 (Version 1.0)
- //----------------------------------------------------------------------
- // Copyright (c) 1997-2005 University of Maryland and Sunil Arya and
- // David Mount. All Rights Reserved.
- //
- // This software and related documentation is part of the Approximate
- // Nearest Neighbor Library (ANN). This software is provided under
- // the provisions of the Lesser GNU Public License (LGPL). See the
- // file ../ReadMe.txt for further information.
- //
- // The University of Maryland (U.M.) and the authors make no
- // representations about the suitability or fitness of this software for
- // any purpose. It is provided "as is" without express or implied
- // warranty.
- //----------------------------------------------------------------------
- // History:
- // Revision 0.1 03/04/98
- // Initial release
- // Revision 1.0 04/01/05
- // Increased aspect ratio bound (ANN_AR_TOOBIG) from 100 to 1000.
- // Fixed leaf counts to count trivial leaves.
- // Added optional pa, pi arguments to Skeleton kd_tree constructor
- // for use in load constructor.
- // Added annClose() to eliminate KD_TRIVIAL memory leak.
- //----------------------------------------------------------------------
- #include "kd_tree.h" // kd-tree declarations
- #include "kd_split.h" // kd-tree splitting rules
- #include "kd_util.h" // kd-tree utilities
- #include "../ANNperf.h" // performance evaluation
- //----------------------------------------------------------------------
- // Global data
- //
- // For some splitting rules, especially with small bucket sizes,
- // it is possible to generate a large number of empty leaf nodes.
- // To save storage we allocate a single trivial leaf node which
- // contains no points. For messy coding reasons it is convenient
- // to have it reference a trivial point index.
- //
- // KD_TRIVIAL is allocated when the first kd-tree is created. It
- // must *never* deallocated (since it may be shared by more than
- // one tree).
- //----------------------------------------------------------------------
- static int IDX_TRIVIAL[] = {0}; // trivial point index
- ANNkd_leaf *KD_TRIVIAL = NULL; // trivial leaf node
- //----------------------------------------------------------------------
- // Printing the kd-tree
- // These routines print a kd-tree in reverse inorder (high then
- // root then low). (This is so that if you look at the output
- // from the right side it appear from left to right in standard
- // inorder.) When outputting leaves we output only the point
- // indices rather than the point coordinates. There is an option
- // to print the point coordinates separately.
- //
- // The tree printing routine calls the printing routines on the
- // individual nodes of the tree, passing in the level or depth
- // in the tree. The level in the tree is used to print indentation
- // for readability.
- //----------------------------------------------------------------------
- void ANNkd_split::print( // print splitting node
- int level, // depth of node in tree
- ostream &out) // output stream
- {
- child[ANN_HI]->print(level+1, out); // print high child
- out << " ";
- for (int i = 0; i < level; i++) // print indentation
- out << "..";
- out << "Split cd=" << cut_dim << " cv=" << cut_val;
- out << " lbnd=" << cd_bnds[ANN_LO];
- out << " hbnd=" << cd_bnds[ANN_HI];
- out << "n";
- child[ANN_LO]->print(level+1, out); // print low child
- }
- void ANNkd_leaf::print( // print leaf node
- int level, // depth of node in tree
- ostream &out) // output stream
- {
- out << " ";
- for (int i = 0; i < level; i++) // print indentation
- out << "..";
- if (this == KD_TRIVIAL) { // canonical trivial leaf node
- out << "Leaf (trivial)n";
- }
- else{
- out << "Leaf n=" << n_pts << " <";
- for (int j = 0; j < n_pts; j++) {
- out << bkt[j];
- if (j < n_pts-1) out << ",";
- }
- out << ">n";
- }
- }
- void ANNkd_tree::Print( // print entire tree
- ANNbool with_pts, // print points as well?
- ostream &out) // output stream
- {
- out << "ANN Version " << ANNversion << "n";
- if (with_pts) { // print point coordinates
- out << " Points:n";
- for (int i = 0; i < n_pts; i++) {
- out << "t" << i << ": ";
- annPrintPt(pts[i], dim, out);
- out << "n";
- }
- }
- if (root == NULL) // empty tree?
- out << " Null tree.n";
- else {
- root->print(0, out); // invoke printing at root
- }
- }
- //----------------------------------------------------------------------
- // kd_tree statistics (for performance evaluation)
- // This routine compute various statistics information for
- // a kd-tree. It is used by the implementors for performance
- // evaluation of the data structure.
- //----------------------------------------------------------------------
- #define MAX(a,b) ((a) > (b) ? (a) : (b))
- void ANNkdStats::merge(const ANNkdStats &st) // merge stats from child
- {
- n_lf += st.n_lf; n_tl += st.n_tl;
- n_spl += st.n_spl; n_shr += st.n_shr;
- depth = MAX(depth, st.depth);
- sum_ar += st.sum_ar;
- }
- //----------------------------------------------------------------------
- // Update statistics for nodes
- //----------------------------------------------------------------------
- const double ANN_AR_TOOBIG = 1000; // too big an aspect ratio
- void ANNkd_leaf::getStats( // get subtree statistics
- int dim, // dimension of space
- ANNkdStats &st, // stats (modified)
- ANNorthRect &bnd_box) // bounding box
- {
- st.reset();
- st.n_lf = 1; // count this leaf
- if (this == KD_TRIVIAL) st.n_tl = 1; // count trivial leaf
- double ar = annAspectRatio(dim, bnd_box); // aspect ratio of leaf
- // incr sum (ignore outliers)
- st.sum_ar += float(ar < ANN_AR_TOOBIG ? ar : ANN_AR_TOOBIG);
- }
- void ANNkd_split::getStats( // get subtree statistics
- int dim, // dimension of space
- ANNkdStats &st, // stats (modified)
- ANNorthRect &bnd_box) // bounding box
- {
- ANNkdStats ch_stats; // stats for children
- // get stats for low child
- ANNcoord hv = bnd_box.hi[cut_dim]; // save box bounds
- bnd_box.hi[cut_dim] = cut_val; // upper bound for low child
- ch_stats.reset(); // reset
- child[ANN_LO]->getStats(dim, ch_stats, bnd_box);
- st.merge(ch_stats); // merge them
- bnd_box.hi[cut_dim] = hv; // restore bound
- // get stats for high child
- ANNcoord lv = bnd_box.lo[cut_dim]; // save box bounds
- bnd_box.lo[cut_dim] = cut_val; // lower bound for high child
- ch_stats.reset(); // reset
- child[ANN_HI]->getStats(dim, ch_stats, bnd_box);
- st.merge(ch_stats); // merge them
- bnd_box.lo[cut_dim] = lv; // restore bound
- st.depth++; // increment depth
- st.n_spl++; // increment number of splits
- }
- //----------------------------------------------------------------------
- // getStats
- // Collects a number of statistics related to kd_tree or
- // bd_tree.
- //----------------------------------------------------------------------
- void ANNkd_tree::getStats( // get tree statistics
- ANNkdStats &st) // stats (modified)
- {
- st.reset(dim, n_pts, bkt_size); // reset stats
- // create bounding box
- ANNorthRect bnd_box(dim, bnd_box_lo, bnd_box_hi);
- if (root != NULL) { // if nonempty tree
- root->getStats(dim, st, bnd_box); // get statistics
- st.avg_ar = st.sum_ar / st.n_lf; // average leaf asp ratio
- }
- }
- //----------------------------------------------------------------------
- // kd_tree destructor
- // The destructor just frees the various elements that were
- // allocated in the construction process.
- //----------------------------------------------------------------------
- ANNkd_tree::~ANNkd_tree() // tree destructor
- {
- if (root != NULL) delete root;
- if (pidx != NULL) delete [] pidx;
- if (bnd_box_lo != NULL) annDeallocPt(bnd_box_lo);
- if (bnd_box_hi != NULL) annDeallocPt(bnd_box_hi);
- }
- //----------------------------------------------------------------------
- // This is called with all use of ANN is finished. It eliminates the
- // minor memory leak caused by the allocation of KD_TRIVIAL.
- //----------------------------------------------------------------------
- void annClose() // close use of ANN
- {
- if (KD_TRIVIAL != NULL) {
- delete KD_TRIVIAL;
- KD_TRIVIAL = NULL;
- }
- }
- //----------------------------------------------------------------------
- // kd_tree constructors
- // There is a skeleton kd-tree constructor which sets up a
- // trivial empty tree. The last optional argument allows
- // the routine to be passed a point index array which is
- // assumed to be of the proper size (n). Otherwise, one is
- // allocated and initialized to the identity. Warning: In
- // either case the destructor will deallocate this array.
- //
- // As a kludge, we need to allocate KD_TRIVIAL if one has not
- // already been allocated. (This is because I'm too dumb to
- // figure out how to cause a pointer to be allocated at load
- // time.)
- //----------------------------------------------------------------------
- void ANNkd_tree::SkeletonTree( // construct skeleton tree
- int n, // number of points
- int dd, // dimension
- int bs, // bucket size
- ANNpointArray pa, // point array
- ANNidxArray pi) // point indices
- {
- dim = dd; // initialize basic elements
- n_pts = n;
- bkt_size = bs;
- pts = pa; // initialize points array
- root = NULL; // no associated tree yet
- if (pi == NULL) { // point indices provided?
- pidx = new ANNidx[n]; // no, allocate space for point indices
- for (int i = 0; i < n; i++) {
- pidx[i] = i; // initially identity
- }
- }
- else {
- pidx = pi; // yes, use them
- }
- bnd_box_lo = bnd_box_hi = NULL; // bounding box is nonexistent
- if (KD_TRIVIAL == NULL) // no trivial leaf node yet?
- KD_TRIVIAL = new ANNkd_leaf(0, IDX_TRIVIAL); // allocate it
- }
- ANNkd_tree::ANNkd_tree( // basic constructor
- int n, // number of points
- int dd, // dimension
- int bs) // bucket size
- { SkeletonTree(n, dd, bs); } // construct skeleton tree
- //----------------------------------------------------------------------
- // rkd_tree - recursive procedure to build a kd-tree
- //
- // Builds a kd-tree for points in pa as indexed through the
- // array pidx[0..n-1] (typically a subarray of the array used in
- // the top-level call). This routine permutes the array pidx,
- // but does not alter pa[].
- //
- // The construction is based on a standard algorithm for constructing
- // the kd-tree (see Friedman, Bentley, and Finkel, ``An algorithm for
- // finding best matches in logarithmic expected time,'' ACM Transactions
- // on Mathematical Software, 3(3):209-226, 1977). The procedure
- // operates by a simple divide-and-conquer strategy, which determines
- // an appropriate orthogonal cutting plane (see below), and splits
- // the points. When the number of points falls below the bucket size,
- // we simply store the points in a leaf node's bucket.
- //
- // One of the arguments is a pointer to a splitting routine,
- // whose prototype is:
- //
- // void split(
- // ANNpointArray pa, // complete point array
- // ANNidxArray pidx, // point array (permuted on return)
- // ANNorthRect &bnds, // bounds of current cell
- // int n, // number of points
- // int dim, // dimension of space
- // int &cut_dim, // cutting dimension
- // ANNcoord &cut_val, // cutting value
- // int &n_lo) // no. of points on low side of cut
- //
- // This procedure selects a cutting dimension and cutting value,
- // partitions pa about these values, and returns the number of
- // points on the low side of the cut.
- //----------------------------------------------------------------------
- ANNkd_ptr rkd_tree( // recursive construction of kd-tree
- ANNpointArray pa, // point array
- ANNidxArray pidx, // point indices to store in subtree
- int n, // number of points
- int dim, // dimension of space
- int bsp, // bucket space
- ANNorthRect &bnd_box, // bounding box for current node
- ANNkd_splitter splitter) // splitting routine
- {
- if (n <= bsp) { // n small, make a leaf node
- if (n == 0) // empty leaf node
- return KD_TRIVIAL; // return (canonical) empty leaf
- else // construct the node and return
- return new ANNkd_leaf(n, pidx);
- }
- else { // n large, make a splitting node
- int cd; // cutting dimension
- ANNcoord cv; // cutting value
- int n_lo; // number on low side of cut
- ANNkd_node *lo, *hi; // low and high children
- // invoke splitting procedure
- (*splitter)(pa, pidx, bnd_box, n, dim, cd, cv, n_lo);
- ANNcoord lv = bnd_box.lo[cd]; // save bounds for cutting dimension
- ANNcoord hv = bnd_box.hi[cd];
- bnd_box.hi[cd] = cv; // modify bounds for left subtree
- lo = rkd_tree( // build left subtree
- pa, pidx, n_lo, // ...from pidx[0..n_lo-1]
- dim, bsp, bnd_box, splitter);
- bnd_box.hi[cd] = hv; // restore bounds
- bnd_box.lo[cd] = cv; // modify bounds for right subtree
- hi = rkd_tree( // build right subtree
- pa, pidx + n_lo, n-n_lo,// ...from pidx[n_lo..n-1]
- dim, bsp, bnd_box, splitter);
- bnd_box.lo[cd] = lv; // restore bounds
- // create the splitting node
- ANNkd_split *ptr = new ANNkd_split(cd, cv, lv, hv, lo, hi);
- return ptr; // return pointer to this node
- }
- }
- //----------------------------------------------------------------------
- // kd-tree constructor
- // This is the main constructor for kd-trees given a set of points.
- // It first builds a skeleton tree, then computes the bounding box
- // of the data points, and then invokes rkd_tree() to actually
- // build the tree, passing it the appropriate splitting routine.
- //----------------------------------------------------------------------
- ANNkd_tree::ANNkd_tree( // construct from point array
- ANNpointArray pa, // point array (with at least n pts)
- int n, // number of points
- int dd, // dimension
- int bs, // bucket size
- ANNsplitRule split) // splitting method
- {
- SkeletonTree(n, dd, bs); // set up the basic stuff
- pts = pa; // where the points are
- if (n == 0) return; // no points--no sweat
- ANNorthRect bnd_box(dd); // bounding box for points
- annEnclRect(pa, pidx, n, dd, bnd_box);// construct bounding rectangle
- // copy to tree structure
- bnd_box_lo = annCopyPt(dd, bnd_box.lo);
- bnd_box_hi = annCopyPt(dd, bnd_box.hi);
- switch (split) { // build by rule
- case ANN_KD_STD: // standard kd-splitting rule
- root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, kd_split);
- break;
- case ANN_KD_MIDPT: // midpoint split
- root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, midpt_split);
- break;
- case ANN_KD_FAIR: // fair split
- root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, fair_split);
- break;
- case ANN_KD_SUGGEST: // best (in our opinion)
- case ANN_KD_SL_MIDPT: // sliding midpoint split
- root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, sl_midpt_split);
- break;
- case ANN_KD_SL_FAIR: // sliding fair split
- root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, sl_fair_split);
- break;
- default:
- annError("Illegal splitting method", ANNabort);
- }
- }