kd_split.cpp
上传用户:chinafayin
上传日期:2022-04-05
资源大小:153k
文件大小:16k
- //----------------------------------------------------------------------
- // File: kd_split.cpp
- // Programmer: Sunil Arya and David Mount
- // Description: Methods for splitting kd-trees
- // Last modified: 01/04/05 (Version 1.0)
- //----------------------------------------------------------------------
- // Copyright (c) 1997-2005 University of Maryland and Sunil Arya and
- // David Mount. All Rights Reserved.
- //
- // This software and related documentation is part of the Approximate
- // Nearest Neighbor Library (ANN). This software is provided under
- // the provisions of the Lesser GNU Public License (LGPL). See the
- // file ../ReadMe.txt for further information.
- //
- // The University of Maryland (U.M.) and the authors make no
- // representations about the suitability or fitness of this software for
- // any purpose. It is provided "as is" without express or implied
- // warranty.
- //----------------------------------------------------------------------
- // History:
- // Revision 0.1 03/04/98
- // Initial release
- // Revision 1.0 04/01/05
- //----------------------------------------------------------------------
- #include "kd_tree.h" // kd-tree definitions
- #include "kd_util.h" // kd-tree utilities
- #include "kd_split.h" // splitting functions
- //----------------------------------------------------------------------
- // Constants
- //----------------------------------------------------------------------
- const double ERR = 0.001; // a small value
- const double FS_ASPECT_RATIO = 3.0; // maximum allowed aspect ratio
- // in fair split. Must be >= 2.
- //----------------------------------------------------------------------
- // kd_split - Bentley's standard splitting routine for kd-trees
- // Find the dimension of the greatest spread, and split
- // just before the median point along this dimension.
- //----------------------------------------------------------------------
- void kd_split(
- ANNpointArray pa, // point array (permuted on return)
- ANNidxArray pidx, // point indices
- const ANNorthRect &, // bounding rectangle for cell
- int n, // number of points
- int dim, // dimension of space
- int &cut_dim, // cutting dimension (returned)
- ANNcoord &cut_val, // cutting value (returned)
- int &n_lo) // num of points on low side (returned)
- {
- // find dimension of maximum spread
- cut_dim = annMaxSpread(pa, pidx, n, dim);
- n_lo = n/2; // median rank
- // split about median
- annMedianSplit(pa, pidx, n, cut_dim, cut_val, n_lo);
- }
- //----------------------------------------------------------------------
- // midpt_split - midpoint splitting rule for box-decomposition trees
- //
- // This is the simplest splitting rule that guarantees boxes
- // of bounded aspect ratio. It simply cuts the box with the
- // longest side through its midpoint. If there are ties, it
- // selects the dimension with the maximum point spread.
- //
- // WARNING: This routine (while simple) doesn't seem to work
- // well in practice in high dimensions, because it tends to
- // generate a large number of trivial and/or unbalanced splits.
- // Either kd_split(), sl_midpt_split(), or fair_split() are
- // recommended, instead.
- //----------------------------------------------------------------------
- void midpt_split(
- ANNpointArray pa, // point array
- ANNidxArray pidx, // point indices (permuted on return)
- const ANNorthRect &bnds, // bounding rectangle for cell
- int n, // number of points
- int dim, // dimension of space
- int &cut_dim, // cutting dimension (returned)
- ANNcoord &cut_val, // cutting value (returned)
- int &n_lo) // num of points on low side (returned)
- {
- int d;
- ANNcoord max_length = bnds.hi[0] - bnds.lo[0];
- for (d = 1; d < dim; d++) { // find length of longest box side
- ANNcoord length = bnds.hi[d] - bnds.lo[d];
- if (length > max_length) {
- max_length = length;
- }
- }
- ANNcoord max_spread = -1; // find long side with most spread
- for (d = 0; d < dim; d++) {
- // is it among longest?
- if (double(bnds.hi[d] - bnds.lo[d]) >= (1-ERR)*max_length) {
- // compute its spread
- ANNcoord spr = annSpread(pa, pidx, n, d);
- if (spr > max_spread) { // is it max so far?
- max_spread = spr;
- cut_dim = d;
- }
- }
- }
- // split along cut_dim at midpoint
- cut_val = (bnds.lo[cut_dim] + bnds.hi[cut_dim]) / 2;
- // permute points accordingly
- int br1, br2;
- annPlaneSplit(pa, pidx, n, cut_dim, cut_val, br1, br2);
- //------------------------------------------------------------------
- // On return: pa[0..br1-1] < cut_val
- // pa[br1..br2-1] == cut_val
- // pa[br2..n-1] > cut_val
- //
- // We can set n_lo to any value in the range [br1..br2].
- // We choose split so that points are most evenly divided.
- //------------------------------------------------------------------
- if (br1 > n/2) n_lo = br1;
- else if (br2 < n/2) n_lo = br2;
- else n_lo = n/2;
- }
- //----------------------------------------------------------------------
- // sl_midpt_split - sliding midpoint splitting rule
- //
- // This is a modification of midpt_split, which has the nonsensical
- // name "sliding midpoint". The idea is that we try to use the
- // midpoint rule, by bisecting the longest side. If there are
- // ties, the dimension with the maximum spread is selected. If,
- // however, the midpoint split produces a trivial split (no points
- // on one side of the splitting plane) then we slide the splitting
- // (maintaining its orientation) until it produces a nontrivial
- // split. For example, if the splitting plane is along the x-axis,
- // and all the data points have x-coordinate less than the x-bisector,
- // then the split is taken along the maximum x-coordinate of the
- // data points.
- //
- // Intuitively, this rule cannot generate trivial splits, and
- // hence avoids midpt_split's tendency to produce trees with
- // a very large number of nodes.
- //
- //----------------------------------------------------------------------
- void sl_midpt_split(
- ANNpointArray pa, // point array
- ANNidxArray pidx, // point indices (permuted on return)
- const ANNorthRect &bnds, // bounding rectangle for cell
- int n, // number of points
- int dim, // dimension of space
- int &cut_dim, // cutting dimension (returned)
- ANNcoord &cut_val, // cutting value (returned)
- int &n_lo) // num of points on low side (returned)
- {
- int d;
- ANNcoord max_length = bnds.hi[0] - bnds.lo[0];
- for (d = 1; d < dim; d++) { // find length of longest box side
- ANNcoord length = bnds.hi[d] - bnds.lo[d];
- if (length > max_length) {
- max_length = length;
- }
- }
- ANNcoord max_spread = -1; // find long side with most spread
- for (d = 0; d < dim; d++) {
- // is it among longest?
- if ((bnds.hi[d] - bnds.lo[d]) >= (1-ERR)*max_length) {
- // compute its spread
- ANNcoord spr = annSpread(pa, pidx, n, d);
- if (spr > max_spread) { // is it max so far?
- max_spread = spr;
- cut_dim = d;
- }
- }
- }
- // ideal split at midpoint
- ANNcoord ideal_cut_val = (bnds.lo[cut_dim] + bnds.hi[cut_dim])/2;
- ANNcoord min, max;
- annMinMax(pa, pidx, n, cut_dim, min, max); // find min/max coordinates
- if (ideal_cut_val < min) // slide to min or max as needed
- cut_val = min;
- else if (ideal_cut_val > max)
- cut_val = max;
- else
- cut_val = ideal_cut_val;
- // permute points accordingly
- int br1, br2;
- annPlaneSplit(pa, pidx, n, cut_dim, cut_val, br1, br2);
- //------------------------------------------------------------------
- // On return: pa[0..br1-1] < cut_val
- // pa[br1..br2-1] == cut_val
- // pa[br2..n-1] > cut_val
- //
- // We can set n_lo to any value in the range [br1..br2] to satisfy
- // the exit conditions of the procedure.
- //
- // if ideal_cut_val < min (implying br2 >= 1),
- // then we select n_lo = 1 (so there is one point on left) and
- // if ideal_cut_val > max (implying br1 <= n-1),
- // then we select n_lo = n-1 (so there is one point on right).
- // Otherwise, we select n_lo as close to n/2 as possible within
- // [br1..br2].
- //------------------------------------------------------------------
- if (ideal_cut_val < min) n_lo = 1;
- else if (ideal_cut_val > max) n_lo = n-1;
- else if (br1 > n/2) n_lo = br1;
- else if (br2 < n/2) n_lo = br2;
- else n_lo = n/2;
- }
- //----------------------------------------------------------------------
- // fair_split - fair-split splitting rule
- //
- // This is a compromise between the kd-tree splitting rule (which
- // always splits data points at their median) and the midpoint
- // splitting rule (which always splits a box through its center.
- // The goal of this procedure is to achieve both nicely balanced
- // splits, and boxes of bounded aspect ratio.
- //
- // A constant FS_ASPECT_RATIO is defined. Given a box, those sides
- // which can be split so that the ratio of the longest to shortest
- // side does not exceed ASPECT_RATIO are identified. Among these
- // sides, we select the one in which the points have the largest
- // spread. We then split the points in a manner which most evenly
- // distributes the points on either side of the splitting plane,
- // subject to maintaining the bound on the ratio of long to short
- // sides. To determine that the aspect ratio will be preserved,
- // we determine the longest side (other than this side), and
- // determine how narrowly we can cut this side, without causing the
- // aspect ratio bound to be exceeded (small_piece).
- //
- // This procedure is more robust than either kd_split or midpt_split,
- // but is more complicated as well. When point distribution is
- // extremely skewed, this degenerates to midpt_split (actually
- // 1/3 point split), and when the points are most evenly distributed,
- // this degenerates to kd-split.
- //----------------------------------------------------------------------
- void fair_split(
- ANNpointArray pa, // point array
- ANNidxArray pidx, // point indices (permuted on return)
- const ANNorthRect &bnds, // bounding rectangle for cell
- int n, // number of points
- int dim, // dimension of space
- int &cut_dim, // cutting dimension (returned)
- ANNcoord &cut_val, // cutting value (returned)
- int &n_lo) // num of points on low side (returned)
- {
- int d;
- ANNcoord max_length = bnds.hi[0] - bnds.lo[0];
- cut_dim = 0;
- for (d = 1; d < dim; d++) { // find length of longest box side
- ANNcoord length = bnds.hi[d] - bnds.lo[d];
- if (length > max_length) {
- max_length = length;
- cut_dim = d;
- }
- }
- ANNcoord max_spread = 0; // find legal cut with max spread
- cut_dim = 0;
- for (d = 0; d < dim; d++) {
- ANNcoord length = bnds.hi[d] - bnds.lo[d];
- // is this side midpoint splitable
- // without violating aspect ratio?
- if (((double) max_length)*2.0/((double) length) <= FS_ASPECT_RATIO) {
- // compute spread along this dim
- ANNcoord spr = annSpread(pa, pidx, n, d);
- if (spr > max_spread) { // best spread so far
- max_spread = spr;
- cut_dim = d; // this is dimension to cut
- }
- }
- }
- max_length = 0; // find longest side other than cut_dim
- for (d = 0; d < dim; d++) {
- ANNcoord length = bnds.hi[d] - bnds.lo[d];
- if (d != cut_dim && length > max_length)
- max_length = length;
- }
- // consider most extreme splits
- ANNcoord small_piece = max_length / FS_ASPECT_RATIO;
- ANNcoord lo_cut = bnds.lo[cut_dim] + small_piece;// lowest legal cut
- ANNcoord hi_cut = bnds.hi[cut_dim] - small_piece;// highest legal cut
- int br1, br2;
- // is median below lo_cut ?
- if (annSplitBalance(pa, pidx, n, cut_dim, lo_cut) >= 0) {
- cut_val = lo_cut; // cut at lo_cut
- annPlaneSplit(pa, pidx, n, cut_dim, cut_val, br1, br2);
- n_lo = br1;
- }
- // is median above hi_cut?
- else if (annSplitBalance(pa, pidx, n, cut_dim, hi_cut) <= 0) {
- cut_val = hi_cut; // cut at hi_cut
- annPlaneSplit(pa, pidx, n, cut_dim, cut_val, br1, br2);
- n_lo = br2;
- }
- else { // median cut preserves asp ratio
- n_lo = n/2; // split about median
- annMedianSplit(pa, pidx, n, cut_dim, cut_val, n_lo);
- }
- }
- //----------------------------------------------------------------------
- // sl_fair_split - sliding fair split splitting rule
- //
- // Sliding fair split is a splitting rule that combines the
- // strengths of both fair split with sliding midpoint split.
- // Fair split tends to produce balanced splits when the points
- // are roughly uniformly distributed, but it can produce many
- // trivial splits when points are highly clustered. Sliding
- // midpoint never produces trivial splits, and shrinks boxes
- // nicely if points are highly clustered, but it may produce
- // rather unbalanced splits when points are unclustered but not
- // quite uniform.
- //
- // Sliding fair split is based on the theory that there are two
- // types of splits that are "good": balanced splits that produce
- // fat boxes, and unbalanced splits provided the cell with fewer
- // points is fat.
- //
- // This splitting rule operates by first computing the longest
- // side of the current bounding box. Then it asks which sides
- // could be split (at the midpoint) and still satisfy the aspect
- // ratio bound with respect to this side. Among these, it selects
- // the side with the largest spread (as fair split would). It
- // then considers the most extreme cuts that would be allowed by
- // the aspect ratio bound. This is done by dividing the longest
- // side of the box by the aspect ratio bound. If the median cut
- // lies between these extreme cuts, then we use the median cut.
- // If not, then consider the extreme cut that is closer to the
- // median. If all the points lie to one side of this cut, then
- // we slide the cut until it hits the first point. This may
- // violate the aspect ratio bound, but will never generate empty
- // cells. However the sibling of every such skinny cell is fat,
- // and hence packing arguments still apply.
- //
- //----------------------------------------------------------------------
- void sl_fair_split(
- ANNpointArray pa, // point array
- ANNidxArray pidx, // point indices (permuted on return)
- const ANNorthRect &bnds, // bounding rectangle for cell
- int n, // number of points
- int dim, // dimension of space
- int &cut_dim, // cutting dimension (returned)
- ANNcoord &cut_val, // cutting value (returned)
- int &n_lo) // num of points on low side (returned)
- {
- int d;
- ANNcoord min, max; // min/max coordinates
- int br1, br2; // split break points
- ANNcoord max_length = bnds.hi[0] - bnds.lo[0];
- cut_dim = 0;
- for (d = 1; d < dim; d++) { // find length of longest box side
- ANNcoord length = bnds.hi[d] - bnds.lo[d];
- if (length > max_length) {
- max_length = length;
- cut_dim = d;
- }
- }
- ANNcoord max_spread = 0; // find legal cut with max spread
- cut_dim = 0;
- for (d = 0; d < dim; d++) {
- ANNcoord length = bnds.hi[d] - bnds.lo[d];
- // is this side midpoint splitable
- // without violating aspect ratio?
- if (((double) max_length)*2.0/((double) length) <= FS_ASPECT_RATIO) {
- // compute spread along this dim
- ANNcoord spr = annSpread(pa, pidx, n, d);
- if (spr > max_spread) { // best spread so far
- max_spread = spr;
- cut_dim = d; // this is dimension to cut
- }
- }
- }
- max_length = 0; // find longest side other than cut_dim
- for (d = 0; d < dim; d++) {
- ANNcoord length = bnds.hi[d] - bnds.lo[d];
- if (d != cut_dim && length > max_length)
- max_length = length;
- }
- // consider most extreme splits
- ANNcoord small_piece = max_length / FS_ASPECT_RATIO;
- ANNcoord lo_cut = bnds.lo[cut_dim] + small_piece;// lowest legal cut
- ANNcoord hi_cut = bnds.hi[cut_dim] - small_piece;// highest legal cut
- // find min and max along cut_dim
- annMinMax(pa, pidx, n, cut_dim, min, max);
- // is median below lo_cut?
- if (annSplitBalance(pa, pidx, n, cut_dim, lo_cut) >= 0) {
- if (max > lo_cut) { // are any points above lo_cut?
- cut_val = lo_cut; // cut at lo_cut
- annPlaneSplit(pa, pidx, n, cut_dim, cut_val, br1, br2);
- n_lo = br1; // balance if there are ties
- }
- else { // all points below lo_cut
- cut_val = max; // cut at max value
- annPlaneSplit(pa, pidx, n, cut_dim, cut_val, br1, br2);
- n_lo = n-1;
- }
- }
- // is median above hi_cut?
- else if (annSplitBalance(pa, pidx, n, cut_dim, hi_cut) <= 0) {
- if (min < hi_cut) { // are any points below hi_cut?
- cut_val = hi_cut; // cut at hi_cut
- annPlaneSplit(pa, pidx, n, cut_dim, cut_val, br1, br2);
- n_lo = br2; // balance if there are ties
- }
- else { // all points above hi_cut
- cut_val = min; // cut at min value
- annPlaneSplit(pa, pidx, n, cut_dim, cut_val, br1, br2);
- n_lo = 1;
- }
- }
- else { // median cut is good enough
- n_lo = n/2; // split about median
- annMedianSplit(pa, pidx, n, cut_dim, cut_val, n_lo);
- }
- }