DbtuxTree.cpp
上传用户:romrleung
上传日期:2022-05-23
资源大小:18897k
文件大小:20k
- /* Copyright (C) 2003 MySQL AB
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
- #define DBTUX_TREE_CPP
- #include "Dbtux.hpp"
- /*
- * Add entry. Handle the case when there is room for one more. This
- * is the common case given slack in nodes.
- */
- void
- Dbtux::treeAdd(Frag& frag, TreePos treePos, TreeEnt ent)
- {
- TreeHead& tree = frag.m_tree;
- NodeHandle node(frag);
- if (treePos.m_loc != NullTupLoc) {
- // non-empty tree
- jam();
- selectNode(node, treePos.m_loc);
- unsigned pos = treePos.m_pos;
- if (node.getOccup() < tree.m_maxOccup) {
- // node has room
- jam();
- nodePushUp(node, pos, ent, RNIL);
- return;
- }
- treeAddFull(frag, node, pos, ent);
- return;
- }
- jam();
- insertNode(node);
- nodePushUp(node, 0, ent, RNIL);
- node.setSide(2);
- tree.m_root = node.m_loc;
- }
- /*
- * Add entry when node is full. Handle the case when there is g.l.b
- * node in left subtree with room for one more. It will receive the min
- * entry of this node. The min entry could be the entry to add.
- */
- void
- Dbtux::treeAddFull(Frag& frag, NodeHandle lubNode, unsigned pos, TreeEnt ent)
- {
- TreeHead& tree = frag.m_tree;
- TupLoc loc = lubNode.getLink(0);
- if (loc != NullTupLoc) {
- // find g.l.b node
- NodeHandle glbNode(frag);
- do {
- jam();
- selectNode(glbNode, loc);
- loc = glbNode.getLink(1);
- } while (loc != NullTupLoc);
- if (glbNode.getOccup() < tree.m_maxOccup) {
- // g.l.b node has room
- jam();
- Uint32 scanList = RNIL;
- if (pos != 0) {
- jam();
- // add the new entry and return min entry
- nodePushDown(lubNode, pos - 1, ent, scanList);
- }
- // g.l.b node receives min entry from l.u.b node
- nodePushUp(glbNode, glbNode.getOccup(), ent, scanList);
- return;
- }
- treeAddNode(frag, lubNode, pos, ent, glbNode, 1);
- return;
- }
- treeAddNode(frag, lubNode, pos, ent, lubNode, 0);
- }
- /*
- * Add entry when there is no g.l.b node in left subtree or the g.l.b
- * node is full. We must add a new left or right child node which
- * becomes the new g.l.b node.
- */
- void
- Dbtux::treeAddNode(Frag& frag, NodeHandle lubNode, unsigned pos, TreeEnt ent, NodeHandle parentNode, unsigned i)
- {
- NodeHandle glbNode(frag);
- insertNode(glbNode);
- // connect parent and child
- parentNode.setLink(i, glbNode.m_loc);
- glbNode.setLink(2, parentNode.m_loc);
- glbNode.setSide(i);
- Uint32 scanList = RNIL;
- if (pos != 0) {
- jam();
- // add the new entry and return min entry
- nodePushDown(lubNode, pos - 1, ent, scanList);
- }
- // g.l.b node receives min entry from l.u.b node
- nodePushUp(glbNode, 0, ent, scanList);
- // re-balance the tree
- treeAddRebalance(frag, parentNode, i);
- }
- /*
- * Re-balance tree after adding a node. The process starts with the
- * parent of the added node.
- */
- void
- Dbtux::treeAddRebalance(Frag& frag, NodeHandle node, unsigned i)
- {
- while (true) {
- // height of subtree i has increased by 1
- int j = (i == 0 ? -1 : +1);
- int b = node.getBalance();
- if (b == 0) {
- // perfectly balanced
- jam();
- node.setBalance(j);
- // height change propagates up
- } else if (b == -j) {
- // height of shorter subtree increased
- jam();
- node.setBalance(0);
- // height of tree did not change - done
- break;
- } else if (b == j) {
- // height of longer subtree increased
- jam();
- NodeHandle childNode(frag);
- selectNode(childNode, node.getLink(i));
- int b2 = childNode.getBalance();
- if (b2 == b) {
- jam();
- treeRotateSingle(frag, node, i);
- } else if (b2 == -b) {
- jam();
- treeRotateDouble(frag, node, i);
- } else {
- // height of subtree increased so it cannot be perfectly balanced
- ndbrequire(false);
- }
- // height of tree did not increase - done
- break;
- } else {
- ndbrequire(false);
- }
- TupLoc parentLoc = node.getLink(2);
- if (parentLoc == NullTupLoc) {
- jam();
- // root node - done
- break;
- }
- i = node.getSide();
- selectNode(node, parentLoc);
- }
- }
- /*
- * Remove entry. Optimize for nodes with slack. Handle the case when
- * there is no underflow i.e. occupancy remains at least minOccup. For
- * interior nodes this is a requirement. For others it means that we do
- * not need to consider merge of semi-leaf and leaf.
- */
- void
- Dbtux::treeRemove(Frag& frag, TreePos treePos)
- {
- TreeHead& tree = frag.m_tree;
- unsigned pos = treePos.m_pos;
- NodeHandle node(frag);
- selectNode(node, treePos.m_loc);
- TreeEnt ent;
- if (node.getOccup() > tree.m_minOccup) {
- // no underflow in any node type
- jam();
- nodePopDown(node, pos, ent, 0);
- return;
- }
- if (node.getChilds() == 2) {
- // underflow in interior node
- jam();
- treeRemoveInner(frag, node, pos);
- return;
- }
- // remove entry in semi/leaf
- nodePopDown(node, pos, ent, 0);
- if (node.getLink(0) != NullTupLoc) {
- jam();
- treeRemoveSemi(frag, node, 0);
- return;
- }
- if (node.getLink(1) != NullTupLoc) {
- jam();
- treeRemoveSemi(frag, node, 1);
- return;
- }
- treeRemoveLeaf(frag, node);
- }
- /*
- * Remove entry when interior node underflows. There is g.l.b node in
- * left subtree to borrow an entry from. The max entry of the g.l.b
- * node becomes the min entry of this node.
- */
- void
- Dbtux::treeRemoveInner(Frag& frag, NodeHandle lubNode, unsigned pos)
- {
- TreeHead& tree = frag.m_tree;
- TreeEnt ent;
- // find g.l.b node
- NodeHandle glbNode(frag);
- TupLoc loc = lubNode.getLink(0);
- do {
- jam();
- selectNode(glbNode, loc);
- loc = glbNode.getLink(1);
- } while (loc != NullTupLoc);
- // borrow max entry from semi/leaf
- Uint32 scanList = RNIL;
- nodePopDown(glbNode, glbNode.getOccup() - 1, ent, &scanList);
- nodePopUp(lubNode, pos, ent, scanList);
- if (glbNode.getLink(0) != NullTupLoc) {
- jam();
- treeRemoveSemi(frag, glbNode, 0);
- return;
- }
- treeRemoveLeaf(frag, glbNode);
- }
- /*
- * Handle semi-leaf after removing an entry. Move entries from leaf to
- * semi-leaf to bring semi-leaf occupancy above minOccup, if possible.
- * The leaf may become empty.
- */
- void
- Dbtux::treeRemoveSemi(Frag& frag, NodeHandle semiNode, unsigned i)
- {
- TreeHead& tree = frag.m_tree;
- ndbrequire(semiNode.getChilds() < 2);
- TupLoc leafLoc = semiNode.getLink(i);
- NodeHandle leafNode(frag);
- selectNode(leafNode, leafLoc);
- if (semiNode.getOccup() < tree.m_minOccup) {
- jam();
- unsigned cnt = min(leafNode.getOccup(), tree.m_minOccup - semiNode.getOccup());
- nodeSlide(semiNode, leafNode, cnt, i);
- if (leafNode.getOccup() == 0) {
- // remove empty leaf
- jam();
- treeRemoveNode(frag, leafNode);
- }
- }
- }
- /*
- * Handle leaf after removing an entry. If parent is semi-leaf, move
- * entries to it as in the semi-leaf case. If parent is interior node,
- * do nothing.
- */
- void
- Dbtux::treeRemoveLeaf(Frag& frag, NodeHandle leafNode)
- {
- TreeHead& tree = frag.m_tree;
- TupLoc parentLoc = leafNode.getLink(2);
- if (parentLoc != NullTupLoc) {
- jam();
- NodeHandle parentNode(frag);
- selectNode(parentNode, parentLoc);
- unsigned i = leafNode.getSide();
- if (parentNode.getLink(1 - i) == NullTupLoc) {
- // parent is semi-leaf
- jam();
- if (parentNode.getOccup() < tree.m_minOccup) {
- jam();
- unsigned cnt = min(leafNode.getOccup(), tree.m_minOccup - parentNode.getOccup());
- nodeSlide(parentNode, leafNode, cnt, i);
- }
- }
- }
- if (leafNode.getOccup() == 0) {
- jam();
- // remove empty leaf
- treeRemoveNode(frag, leafNode);
- }
- }
- /*
- * Remove empty leaf.
- */
- void
- Dbtux::treeRemoveNode(Frag& frag, NodeHandle leafNode)
- {
- TreeHead& tree = frag.m_tree;
- ndbrequire(leafNode.getChilds() == 0);
- TupLoc parentLoc = leafNode.getLink(2);
- unsigned i = leafNode.getSide();
- deleteNode(leafNode);
- if (parentLoc != NullTupLoc) {
- jam();
- NodeHandle parentNode(frag);
- selectNode(parentNode, parentLoc);
- parentNode.setLink(i, NullTupLoc);
- // re-balance the tree
- treeRemoveRebalance(frag, parentNode, i);
- return;
- }
- // tree is now empty
- tree.m_root = NullTupLoc;
- }
- /*
- * Re-balance tree after removing a node. The process starts with the
- * parent of the removed node.
- */
- void
- Dbtux::treeRemoveRebalance(Frag& frag, NodeHandle node, unsigned i)
- {
- while (true) {
- // height of subtree i has decreased by 1
- int j = (i == 0 ? -1 : +1);
- int b = node.getBalance();
- if (b == 0) {
- // perfectly balanced
- jam();
- node.setBalance(-j);
- // height of tree did not change - done
- return;
- } else if (b == j) {
- // height of longer subtree has decreased
- jam();
- node.setBalance(0);
- // height change propagates up
- } else if (b == -j) {
- // height of shorter subtree has decreased
- jam();
- // child on the other side
- NodeHandle childNode(frag);
- selectNode(childNode, node.getLink(1 - i));
- int b2 = childNode.getBalance();
- if (b2 == b) {
- jam();
- treeRotateSingle(frag, node, 1 - i);
- // height of tree decreased and propagates up
- } else if (b2 == -b) {
- jam();
- treeRotateDouble(frag, node, 1 - i);
- // height of tree decreased and propagates up
- } else {
- jam();
- treeRotateSingle(frag, node, 1 - i);
- // height of tree did not change - done
- return;
- }
- } else {
- ndbrequire(false);
- }
- TupLoc parentLoc = node.getLink(2);
- if (parentLoc == NullTupLoc) {
- jam();
- // root node - done
- return;
- }
- i = node.getSide();
- selectNode(node, parentLoc);
- }
- }
- /*
- * Single rotation about node 5. One of LL (i=0) or RR (i=1).
- *
- * 0 0
- * | |
- * 5 ==> 3
- * / /
- * 3 6 2 5
- * / / /
- * 2 4 1 4 6
- * /
- * 1
- *
- * In this change 5,3 and 2 must always be there. 0, 1, 2, 4 and 6 are
- * all optional. If 4 are there it changes side.
- */
- void
- Dbtux::treeRotateSingle(Frag& frag, NodeHandle& node, unsigned i)
- {
- ndbrequire(i <= 1);
- /*
- 5 is the old top node that have been unbalanced due to an insert or
- delete. The balance is still the old balance before the update.
- Verify that bal5 is 1 if RR rotate and -1 if LL rotate.
- */
- NodeHandle node5 = node;
- const TupLoc loc5 = node5.m_loc;
- const int bal5 = node5.getBalance();
- const int side5 = node5.getSide();
- ndbrequire(bal5 + (1 - i) == i);
- /*
- 3 is the new root of this part of the tree which is to swap place with
- node 5. For an insert to cause this it must have the same balance as 5.
- For deletes it can have the balance 0.
- */
- TupLoc loc3 = node5.getLink(i);
- NodeHandle node3(frag);
- selectNode(node3, loc3);
- const int bal3 = node3.getBalance();
- /*
- 2 must always be there but is not changed. Thus we mereley check that it
- exists.
- */
- ndbrequire(node3.getLink(i) != NullTupLoc);
- /*
- 4 is not necessarily there but if it is there it will move from one
- side of 3 to the other side of 5. For LL it moves from the right side
- to the left side and for RR it moves from the left side to the right
- side. This means that it also changes parent from 3 to 5.
- */
- TupLoc loc4 = node3.getLink(1 - i);
- NodeHandle node4(frag);
- if (loc4 != NullTupLoc) {
- jam();
- selectNode(node4, loc4);
- ndbrequire(node4.getSide() == (1 - i) &&
- node4.getLink(2) == loc3);
- node4.setSide(i);
- node4.setLink(2, loc5);
- }//if
- /*
- Retrieve the address of 5's parent before it is destroyed
- */
- TupLoc loc0 = node5.getLink(2);
- /*
- The next step is to perform the rotation. 3 will inherit 5's parent
- and side. 5 will become a child of 3 on the right side for LL and on
- the left side for RR.
- 5 will get 3 as the parent. It will get 4 as a child and it will be
- on the right side of 3 for LL and left side of 3 for RR.
- The final step of the rotate is to check whether 5 originally had any
- parent. If it had not then 3 is the new root node.
- We will also verify some preconditions for the change to occur.
- 1. 3 must have had 5 as parent before the change.
- 2. 3's side is left for LL and right for RR before change.
- */
- ndbrequire(node3.getLink(2) == loc5);
- ndbrequire(node3.getSide() == i);
- node3.setLink(1 - i, loc5);
- node3.setLink(2, loc0);
- node3.setSide(side5);
- node5.setLink(i, loc4);
- node5.setLink(2, loc3);
- node5.setSide(1 - i);
- if (loc0 != NullTupLoc) {
- jam();
- NodeHandle node0(frag);
- selectNode(node0, loc0);
- node0.setLink(side5, loc3);
- } else {
- jam();
- frag.m_tree.m_root = loc3;
- }//if
- /* The final step of the change is to update the balance of 3 and
- 5 that changed places. There are two cases here. The first case is
- when 3 unbalanced in the same direction by an insert or a delete.
- In this case the changes will make the tree balanced again for both
- 3 and 5.
- The second case only occurs at deletes. In this case 3 starts out
- balanced. In the figure above this could occur if 4 starts out with
- a right node and the rotate is triggered by a delete of 6's only child.
- In this case 5 will change balance but still be unbalanced and 3 will
- be unbalanced in the opposite direction of 5.
- */
- if (bal3 == bal5) {
- jam();
- node3.setBalance(0);
- node5.setBalance(0);
- } else if (bal3 == 0) {
- jam();
- node3.setBalance(-bal5);
- node5.setBalance(bal5);
- } else {
- ndbrequire(false);
- }//if
- /*
- Set node to 3 as return parameter for enabling caller to continue
- traversing the tree.
- */
- node = node3;
- }
- /*
- * Double rotation about node 6. One of LR (i=0) or RL (i=1).
- *
- * 0 0
- * | |
- * 6 ==> 4
- * / /
- * 2 7 2 6
- * / / /
- * 1 4 1 3 5 7
- * /
- * 3 5
- *
- * In this change 6, 2 and 4 must be there, all others are optional.
- * We will start by proving a Lemma.
- * Lemma:
- * The height of the sub-trees 1 and 7 and the maximum height of the
- * threes from 3 and 5 are all the same.
- * Proof:
- * maxheight(3,5) is defined as the maximum height of 3 and 5.
- * If height(7) > maxheight(3,5) then the AVL condition is ok and we
- * don't need to perform a rotation.
- * If height(7) < maxheight(3,5) then the balance of 6 would be at least
- * -3 which cannot happen in an AVL tree even before a rotation.
- * Thus we conclude that height(7) == maxheight(3,5)
- *
- * The next step is to prove that the height of 1 is equal to maxheight(3,5).
- * If height(1) - 1 > maxheight(3,5) then we would have
- * balance in 6 equal to -3 at least which cannot happen in an AVL-tree.
- * If height(1) - 1 = maxheight(3,5) then we should have solved the
- * unbalance with a single rotate and not with a double rotate.
- * If height(1) + 1 = maxheight(3,5) then we would be doing a rotate
- * with node 2 as the root of the rotation.
- * If height(1) + k = maxheight(3,5) where k >= 2 then the tree could not have
- * been an AVL-tree before the insert or delete.
- * Thus we conclude that height(1) = maxheight(3,5)
- *
- * Thus we conclude that height(1) = maxheight(3,5) = height(7).
- *
- * Observation:
- * The balance of node 4 before the rotation can be any (-1, 0, +1).
- *
- * The following changes are needed:
- * Node 6:
- * 1) Changes parent from 0 -> 4
- * 2) 1 - i link stays the same
- * 3) i side link is derived from 1 - i side link from 4
- * 4) Side is set to 1 - i
- * 5) Balance change:
- * If balance(4) == 0 then balance(6) = 0
- * since height(3) = height(5) = maxheight(3,5) = height(7)
- * If balance(4) == +1 then balance(6) = 0
- * since height(5) = maxheight(3,5) = height(7)
- * If balance(4) == -1 then balance(6) = 1
- * since height(5) + 1 = maxheight(3,5) = height(7)
- *
- * Node 2:
- * 1) Changes parent from 6 -> 4
- * 2) i side link stays the same
- * 3) 1 - i side link is derived from i side link of 4
- * 4) Side is set to i (thus not changed)
- * 5) Balance change:
- * If balance(4) == 0 then balance(2) = 0
- * since height(3) = height(5) = maxheight(3,5) = height(1)
- * If balance(4) == -1 then balance(2) = 0
- * since height(3) = maxheight(3,5) = height(1)
- * If balance(4) == +1 then balance(6) = 1
- * since height(3) + 1 = maxheight(3,5) = height(1)
- *
- * Node 4:
- * 1) Inherits parent from 6
- * 2) i side link is 2
- * 3) 1 - i side link is 6
- * 4) Side is inherited from 6
- * 5) Balance(4) = 0 independent of previous balance
- * Proof:
- * If height(1) = 0 then only 2, 4 and 6 are involved and then it is
- * trivially true.
- * If height(1) >= 1 then we are sure that 1 and 7 exist with the same
- * height and that if 3 and 5 exist they are of the same height as 1 and
- * 7 and thus we know that 4 is balanced since newheight(2) = newheight(6).
- *
- * If Node 3 exists:
- * 1) Change parent from 4 to 2
- * 2) Change side from i to 1 - i
- *
- * If Node 5 exists:
- * 1) Change parent from 4 to 6
- * 2) Change side from 1 - i to i
- *
- * If Node 0 exists:
- * 1) previous link to 6 is replaced by link to 4 on proper side
- *
- * Node 1 and 7 needs no changes at all.
- *
- * Some additional requires are that balance(2) = - balance(6) = -1/+1 since
- * otherwise we would do a single rotate.
- *
- * The balance(6) is -1 if i == 0 and 1 if i == 1
- *
- */
- void
- Dbtux::treeRotateDouble(Frag& frag, NodeHandle& node, unsigned i)
- {
- TreeHead& tree = frag.m_tree;
- // old top node
- NodeHandle node6 = node;
- const TupLoc loc6 = node6.m_loc;
- // the un-updated balance
- const int bal6 = node6.getBalance();
- const unsigned side6 = node6.getSide();
- // level 1
- TupLoc loc2 = node6.getLink(i);
- NodeHandle node2(frag);
- selectNode(node2, loc2);
- const int bal2 = node2.getBalance();
- // level 2
- TupLoc loc4 = node2.getLink(1 - i);
- NodeHandle node4(frag);
- selectNode(node4, loc4);
- const int bal4 = node4.getBalance();
- ndbrequire(i <= 1);
- ndbrequire(bal6 + (1 - i) == i);
- ndbrequire(bal2 == -bal6);
- ndbrequire(node2.getLink(2) == loc6);
- ndbrequire(node2.getSide() == i);
- ndbrequire(node4.getLink(2) == loc2);
- // level 3
- TupLoc loc3 = node4.getLink(i);
- TupLoc loc5 = node4.getLink(1 - i);
- // fill up leaf before it becomes internal
- if (loc3 == NullTupLoc && loc5 == NullTupLoc) {
- jam();
- if (node4.getOccup() < tree.m_minOccup) {
- jam();
- unsigned cnt = tree.m_minOccup - node4.getOccup();
- ndbrequire(cnt < node2.getOccup());
- nodeSlide(node4, node2, cnt, i);
- ndbrequire(node4.getOccup() >= tree.m_minOccup);
- ndbrequire(node2.getOccup() != 0);
- }
- } else {
- if (loc3 != NullTupLoc) {
- jam();
- NodeHandle node3(frag);
- selectNode(node3, loc3);
- node3.setLink(2, loc2);
- node3.setSide(1 - i);
- }
- if (loc5 != NullTupLoc) {
- jam();
- NodeHandle node5(frag);
- selectNode(node5, loc5);
- node5.setLink(2, node6.m_loc);
- node5.setSide(i);
- }
- }
- // parent
- TupLoc loc0 = node6.getLink(2);
- NodeHandle node0(frag);
- // perform the rotation
- node6.setLink(i, loc5);
- node6.setLink(2, loc4);
- node6.setSide(1 - i);
- node2.setLink(1 - i, loc3);
- node2.setLink(2, loc4);
- node4.setLink(i, loc2);
- node4.setLink(1 - i, loc6);
- node4.setLink(2, loc0);
- node4.setSide(side6);
- if (loc0 != NullTupLoc) {
- jam();
- selectNode(node0, loc0);
- node0.setLink(side6, loc4);
- } else {
- jam();
- frag.m_tree.m_root = loc4;
- }
- // set balance of changed nodes
- node4.setBalance(0);
- if (bal4 == 0) {
- jam();
- node2.setBalance(0);
- node6.setBalance(0);
- } else if (bal4 == -bal2) {
- jam();
- node2.setBalance(0);
- node6.setBalance(bal2);
- } else if (bal4 == bal2) {
- jam();
- node2.setBalance(-bal2);
- node6.setBalance(0);
- } else {
- ndbrequire(false);
- }
- // new top node
- node = node4;
- }