checkasm.c
资源名称:X264CODEC.rar [点击查看]
上传用户:lctgjx
上传日期:2022-06-04
资源大小:8887k
文件大小:60k
源码类别:
流媒体/Mpeg4/MP4
开发平台:
Visual C++
- /*****************************************************************************
- * checkasm.c: assembly check tool
- *****************************************************************************
- * Copyright (C) 2003-2008 x264 project
- *
- * Authors: Loren Merritt <lorenm@u.washington.edu>
- * Laurent Aimar <fenrir@via.ecp.fr>
- * Jason Garrett-Glaser <darkshikari@gmail.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
- *****************************************************************************/
- #include <ctype.h>
- #include <stdlib.h>
- #include <limits.h>
- #include <math.h>
- #include "common/common.h"
- #include "common/cpu.h"
- // GCC doesn't align stack variables on ARM, so use .bss
- #ifdef ARCH_ARM
- #undef ALIGNED_16
- #define ALIGNED_16( var ) DECLARE_ALIGNED( static var, 16 )
- #endif
- /* buf1, buf2: initialised to random data and shouldn't write into them */
- uint8_t * buf1, * buf2;
- /* buf3, buf4: used to store output */
- uint8_t * buf3, * buf4;
- int quiet = 0;
- #define report( name ) {
- if( used_asm && !quiet )
- fprintf( stderr, " - %-21s [%s]n", name, ok ? "OK" : "FAILED" );
- if( !ok ) ret = -1;
- }
- #define BENCH_RUNS 100 // tradeoff between accuracy and speed
- #define BENCH_ALIGNS 16 // number of stack+heap data alignments (another accuracy vs speed tradeoff)
- #define MAX_FUNCS 1000 // just has to be big enough to hold all the existing functions
- #define MAX_CPUS 10 // number of different combinations of cpu flags
- typedef struct {
- void *pointer; // just for detecting duplicates
- uint32_t cpu;
- uint32_t cycles;
- uint32_t den;
- } bench_t;
- typedef struct {
- char *name;
- bench_t vers[MAX_CPUS];
- } bench_func_t;
- int do_bench = 0;
- int bench_pattern_len = 0;
- const char *bench_pattern = "";
- char func_name[100];
- static bench_func_t benchs[MAX_FUNCS];
- static const char *pixel_names[10] = { "16x16", "16x8", "8x16", "8x8", "8x4", "4x8", "4x4", "4x2", "2x4", "2x2" };
- static const char *intra_predict_16x16_names[7] = { "v", "h", "dc", "p", "dcl", "dct", "dc8" };
- static const char *intra_predict_8x8c_names[7] = { "dc", "h", "v", "p", "dcl", "dct", "dc8" };
- static const char *intra_predict_4x4_names[12] = { "v", "h", "dc", "ddl", "ddr", "vr", "hd", "vl", "hu", "dcl", "dct", "dc8" };
- static const char **intra_predict_8x8_names = intra_predict_4x4_names;
- #define set_func_name(...) snprintf( func_name, sizeof(func_name), __VA_ARGS__ )
- static inline uint32_t read_time(void)
- {
- uint32_t a = 0;
- #if defined(__GNUC__) && (defined(ARCH_X86) || defined(ARCH_X86_64))
- asm volatile( "rdtsc" :"=a"(a) ::"edx" );
- #elif defined(ARCH_PPC)
- asm volatile( "mftb %0" : "=r" (a) );
- #elif defined(ARCH_ARM) // ARMv7 only
- asm volatile( "mrc p15, 0, %0, c9, c13, 0" : "=r"(a) );
- #endif
- return a;
- }
- static bench_t* get_bench( const char *name, int cpu )
- {
- int i, j;
- for( i=0; benchs[i].name && strcmp(name, benchs[i].name); i++ )
- assert( i < MAX_FUNCS );
- if( !benchs[i].name )
- benchs[i].name = strdup( name );
- if( !cpu )
- return &benchs[i].vers[0];
- for( j=1; benchs[i].vers[j].cpu && benchs[i].vers[j].cpu != cpu; j++ )
- assert( j < MAX_CPUS );
- benchs[i].vers[j].cpu = cpu;
- return &benchs[i].vers[j];
- }
- static int cmp_nop( const void *a, const void *b )
- {
- return *(uint16_t*)a - *(uint16_t*)b;
- }
- static int cmp_bench( const void *a, const void *b )
- {
- // asciibetical sort except preserving numbers
- const char *sa = ((bench_func_t*)a)->name;
- const char *sb = ((bench_func_t*)b)->name;
- for(;; sa++, sb++)
- {
- if( !*sa && !*sb ) return 0;
- if( isdigit(*sa) && isdigit(*sb) && isdigit(sa[1]) != isdigit(sb[1]) )
- return isdigit(sa[1]) - isdigit(sb[1]);
- if( *sa != *sb ) return *sa - *sb;
- }
- }
- static void print_bench(void)
- {
- uint16_t nops[10000] = {0};
- int i, j, k, nfuncs, nop_time=0;
- for( i=0; i<10000; i++ )
- {
- int t = read_time();
- nops[i] = read_time() - t;
- }
- qsort( nops, 10000, sizeof(uint16_t), cmp_nop );
- for( i=500; i<9500; i++ )
- nop_time += nops[i];
- nop_time /= 900;
- printf( "nop: %dn", nop_time );
- for( i=0; i<MAX_FUNCS && benchs[i].name; i++ );
- nfuncs=i;
- qsort( benchs, nfuncs, sizeof(bench_func_t), cmp_bench );
- for( i=0; i<nfuncs; i++ )
- for( j=0; j<MAX_CPUS && (!j || benchs[i].vers[j].cpu); j++ )
- {
- bench_t *b = &benchs[i].vers[j];
- if( !b->den ) continue;
- for( k=0; k<j && benchs[i].vers[k].pointer != b->pointer; k++ );
- if( k<j ) continue;
- printf( "%s_%s%s: %"PRId64"n", benchs[i].name,
- b->cpu&X264_CPU_SSE4 ? "sse4" :
- b->cpu&X264_CPU_SHUFFLE_IS_FAST ? "fastshuffle" :
- b->cpu&X264_CPU_SSSE3 ? "ssse3" :
- b->cpu&X264_CPU_SSE3 ? "sse3" :
- /* print sse2slow only if there's also a sse2fast version of the same func */
- b->cpu&X264_CPU_SSE2_IS_SLOW && j<MAX_CPUS && b[1].cpu&X264_CPU_SSE2_IS_FAST && !(b[1].cpu&X264_CPU_SSE3) ? "sse2slow" :
- b->cpu&X264_CPU_SSE2 ? "sse2" :
- b->cpu&X264_CPU_MMX ? "mmx" :
- b->cpu&X264_CPU_ALTIVEC ? "altivec" :
- b->cpu&X264_CPU_NEON ? "neon" :
- b->cpu&X264_CPU_ARMV6 ? "armv6" : "c",
- b->cpu&X264_CPU_CACHELINE_32 ? "_c32" :
- b->cpu&X264_CPU_CACHELINE_64 ? "_c64" :
- b->cpu&X264_CPU_SSE_MISALIGN ? "_misalign" :
- b->cpu&X264_CPU_LZCNT ? "_lzcnt" :
- b->cpu&X264_CPU_FAST_NEON_MRC ? "_fast_mrc" : "",
- ((int64_t)10*b->cycles/b->den - nop_time)/4 );
- }
- }
- #if defined(ARCH_X86) || defined(ARCH_X86_64)
- int x264_stack_pagealign( int (*func)(), int align );
- #else
- #define x264_stack_pagealign( func, align ) func()
- #endif
- #define call_c1(func,...) func(__VA_ARGS__)
- #if defined(ARCH_X86) || defined(_WIN64)
- /* detect when callee-saved regs aren't saved.
- * needs an explicit asm check because it only sometimes crashes in normal use. */
- intptr_t x264_checkasm_call( intptr_t (*func)(), int *ok, ... );
- #define call_a1(func,...) x264_checkasm_call((intptr_t(*)())func, &ok, __VA_ARGS__)
- #else
- #define call_a1 call_c1
- #endif
- #define call_bench(func,cpu,...)
- if( do_bench && !strncmp(func_name, bench_pattern, bench_pattern_len) )
- {
- uint32_t tsum = 0;
- int tcount = 0;
- int ti;
- call_a1(func, __VA_ARGS__);
- for( ti=0; ti<(cpu?BENCH_RUNS:BENCH_RUNS/4); ti++ )
- {
- uint32_t t = read_time();
- func(__VA_ARGS__);
- func(__VA_ARGS__);
- func(__VA_ARGS__);
- func(__VA_ARGS__);
- t = read_time() - t;
- if( t*tcount <= tsum*4 && ti > 0 )
- {
- tsum += t;
- tcount++;
- }
- }
- bench_t *b = get_bench( func_name, cpu );
- b->cycles += tsum;
- b->den += tcount;
- b->pointer = func;
- }
- /* for most functions, run benchmark and correctness test at the same time.
- * for those that modify their inputs, run the above macros separately */
- #define call_a(func,...) ({ call_a2(func,__VA_ARGS__); call_a1(func,__VA_ARGS__); })
- #define call_c(func,...) ({ call_c2(func,__VA_ARGS__); call_c1(func,__VA_ARGS__); })
- #define call_a2(func,...) ({ call_bench(func,cpu_new,__VA_ARGS__); })
- #define call_c2(func,...) ({ call_bench(func,0,__VA_ARGS__); })
- static int check_pixel( int cpu_ref, int cpu_new )
- {
- x264_pixel_function_t pixel_c;
- x264_pixel_function_t pixel_ref;
- x264_pixel_function_t pixel_asm;
- x264_predict_t predict_16x16[4+3];
- x264_predict_t predict_8x8c[4+3];
- x264_predict_t predict_4x4[9+3];
- x264_predict8x8_t predict_8x8[9+3];
- x264_predict_8x8_filter_t predict_8x8_filter;
- ALIGNED_16( uint8_t edge[33] );
- uint16_t cost_mv[32];
- int ret = 0, ok, used_asm;
- int i, j;
- x264_pixel_init( 0, &pixel_c );
- x264_pixel_init( cpu_ref, &pixel_ref );
- x264_pixel_init( cpu_new, &pixel_asm );
- x264_predict_16x16_init( 0, predict_16x16 );
- x264_predict_8x8c_init( 0, predict_8x8c );
- x264_predict_8x8_init( 0, predict_8x8, &predict_8x8_filter );
- x264_predict_4x4_init( 0, predict_4x4 );
- predict_8x8_filter( buf2+40, edge, ALL_NEIGHBORS, ALL_NEIGHBORS );
- // maximize sum
- for( i=0; i<256; i++ )
- {
- int z = i|(i>>4);
- z ^= z>>2;
- z ^= z>>1;
- buf3[i] = ~(buf4[i] = -(z&1));
- }
- // random pattern made of maxed pixel differences, in case an intermediate value overflows
- for( ; i<0x1000; i++ )
- buf3[i] = ~(buf4[i] = -(buf1[i&~0x88]&1));
- #define TEST_PIXEL( name, align )
- for( i = 0, ok = 1, used_asm = 0; i < 7; i++ )
- {
- int res_c, res_asm;
- if( pixel_asm.name[i] != pixel_ref.name[i] )
- {
- set_func_name( "%s_%s", #name, pixel_names[i] );
- used_asm = 1;
- for( j=0; j<64; j++ )
- {
- res_c = call_c( pixel_c.name[i], buf1, 16, buf2+j*!align, 64 );
- res_asm = call_a( pixel_asm.name[i], buf1, 16, buf2+j*!align, 64 );
- if( res_c != res_asm )
- {
- ok = 0;
- fprintf( stderr, #name "[%d]: %d != %d [FAILED]n", i, res_c, res_asm );
- break;
- }
- }
- for( j=0; j<0x1000 && ok; j+=256 )
- {
- res_c = pixel_c .name[i]( buf3+j, 16, buf4+j, 16 );
- res_asm = pixel_asm.name[i]( buf3+j, 16, buf4+j, 16 );
- if( res_c != res_asm )
- {
- ok = 0;
- fprintf( stderr, #name "[%d]: overflow %d != %dn", i, res_c, res_asm );
- }
- }
- }
- }
- report( "pixel " #name " :" );
- TEST_PIXEL( sad, 0 );
- TEST_PIXEL( sad_aligned, 1 );
- TEST_PIXEL( ssd, 1 );
- TEST_PIXEL( satd, 0 );
- TEST_PIXEL( sa8d, 1 );
- #define TEST_PIXEL_X( N )
- for( i = 0, ok = 1, used_asm = 0; i < 7; i++ )
- {
- int res_c[4]={0}, res_asm[4]={0};
- if( pixel_asm.sad_x##N[i] && pixel_asm.sad_x##N[i] != pixel_ref.sad_x##N[i] )
- {
- set_func_name( "sad_x%d_%s", N, pixel_names[i] );
- used_asm = 1;
- for( j=0; j<64; j++)
- {
- uint8_t *pix2 = buf2+j;
- res_c[0] = pixel_c.sad[i]( buf1, 16, pix2, 64 );
- res_c[1] = pixel_c.sad[i]( buf1, 16, pix2+6, 64 );
- res_c[2] = pixel_c.sad[i]( buf1, 16, pix2+1, 64 );
- if(N==4)
- {
- res_c[3] = pixel_c.sad[i]( buf1, 16, pix2+10, 64 );
- call_a( pixel_asm.sad_x4[i], buf1, pix2, pix2+6, pix2+1, pix2+10, 64, res_asm );
- }
- else
- call_a( pixel_asm.sad_x3[i], buf1, pix2, pix2+6, pix2+1, 64, res_asm );
- if( memcmp(res_c, res_asm, sizeof(res_c)) )
- {
- ok = 0;
- fprintf( stderr, "sad_x"#N"[%d]: %d,%d,%d,%d != %d,%d,%d,%d [FAILED]n",
- i, res_c[0], res_c[1], res_c[2], res_c[3],
- res_asm[0], res_asm[1], res_asm[2], res_asm[3] );
- }
- if(N==4)
- call_c2( pixel_c.sad_x4[i], buf1, pix2, pix2+6, pix2+1, pix2+10, 64, res_asm );
- else
- call_c2( pixel_c.sad_x3[i], buf1, pix2, pix2+6, pix2+1, 64, res_asm );
- }
- }
- }
- report( "pixel sad_x"#N" :" );
- TEST_PIXEL_X(3);
- TEST_PIXEL_X(4);
- #define TEST_PIXEL_VAR( i )
- if( pixel_asm.var[i] != pixel_ref.var[i] )
- {
- int res_c, res_asm;
- set_func_name( "%s_%s", "var", pixel_names[i] );
- used_asm = 1;
- res_c = call_c( pixel_c.var[i], buf1, 16 );
- res_asm = call_a( pixel_asm.var[i], buf1, 16 );
- if( res_c != res_asm )
- {
- ok = 0;
- fprintf( stderr, "var[%d]: %d != %d [FAILED]n", i, res_c, res_asm );
- }
- }
- ok = 1; used_asm = 0;
- TEST_PIXEL_VAR( PIXEL_16x16 );
- TEST_PIXEL_VAR( PIXEL_8x8 );
- report( "pixel var :" );
- ok = 1; used_asm = 0;
- if( pixel_asm.var2_8x8 != pixel_ref.var2_8x8 )
- {
- int res_c, res_asm, ssd_c, ssd_asm;
- set_func_name( "var2_8x8" );
- used_asm = 1;
- res_c = call_c( pixel_c.var2_8x8, buf1, 16, buf2, 16, &ssd_c );
- res_asm = call_a( pixel_asm.var2_8x8, buf1, 16, buf2, 16, &ssd_asm );
- if( res_c != res_asm || ssd_c != ssd_asm )
- {
- ok = 0;
- fprintf( stderr, "var[%d]: %d != %d or %d != %d [FAILED]n", i, res_c, res_asm, ssd_c, ssd_asm );
- }
- }
- report( "pixel var2 :" );
- for( i=0, ok=1, used_asm=0; i<4; i++ )
- if( pixel_asm.hadamard_ac[i] != pixel_ref.hadamard_ac[i] )
- {
- set_func_name( "hadamard_ac_%s", pixel_names[i] );
- used_asm = 1;
- for( j=0; j<32; j++ )
- {
- uint8_t *pix = (j&16 ? buf1 : buf3) + (j&15)*256;
- uint64_t rc = pixel_c.hadamard_ac[i]( pix, 16 );
- uint64_t ra = pixel_asm.hadamard_ac[i]( pix, 16 );
- if( rc != ra )
- {
- ok = 0;
- fprintf( stderr, "hadamard_ac[%d]: %d,%d != %d,%dn", i, (int)rc, (int)(rc>>32), (int)ra, (int)(ra>>32) );
- break;
- }
- }
- call_c2( pixel_c.hadamard_ac[i], buf1, 16 );
- call_a2( pixel_asm.hadamard_ac[i], buf1, 16 );
- }
- report( "pixel hadamard_ac :" );
- #define TEST_INTRA_MBCMP( name, pred, satd, i8x8, ... )
- if( pixel_asm.name && pixel_asm.name != pixel_ref.name )
- {
- int res_c[3], res_asm[3];
- set_func_name( #name );
- used_asm = 1;
- memcpy( buf3, buf2, 1024 );
- for( i=0; i<3; i++ )
- {
- pred[i]( buf3+48, ##__VA_ARGS__ );
- res_c[i] = pixel_c.satd( buf1+48, 16, buf3+48, 32 );
- }
- call_a( pixel_asm.name, buf1+48, i8x8 ? edge : buf3+48, res_asm );
- if( memcmp(res_c, res_asm, sizeof(res_c)) )
- {
- ok = 0;
- fprintf( stderr, #name": %d,%d,%d != %d,%d,%d [FAILED]n",
- res_c[0], res_c[1], res_c[2],
- res_asm[0], res_asm[1], res_asm[2] );
- }
- }
- ok = 1; used_asm = 0;
- TEST_INTRA_MBCMP( intra_satd_x3_16x16, predict_16x16, satd[PIXEL_16x16], 0 );
- TEST_INTRA_MBCMP( intra_satd_x3_8x8c , predict_8x8c , satd[PIXEL_8x8] , 0 );
- TEST_INTRA_MBCMP( intra_satd_x3_4x4 , predict_4x4 , satd[PIXEL_4x4] , 0 );
- TEST_INTRA_MBCMP( intra_sa8d_x3_8x8 , predict_8x8 , sa8d[PIXEL_8x8] , 1, edge );
- report( "intra satd_x3 :" );
- TEST_INTRA_MBCMP( intra_sad_x3_16x16 , predict_16x16, sad [PIXEL_16x16], 0 );
- TEST_INTRA_MBCMP( intra_sad_x3_8x8c , predict_8x8c , sad [PIXEL_8x8] , 0 );
- TEST_INTRA_MBCMP( intra_sad_x3_8x8 , predict_8x8 , sad [PIXEL_8x8] , 1, edge );
- TEST_INTRA_MBCMP( intra_sad_x3_4x4 , predict_4x4 , sad [PIXEL_4x4] , 0 );
- report( "intra sad_x3 :" );
- if( pixel_asm.ssim_4x4x2_core != pixel_ref.ssim_4x4x2_core ||
- pixel_asm.ssim_end4 != pixel_ref.ssim_end4 )
- {
- float res_c, res_a;
- ALIGNED_16( int sums[5][4] ) = {{0}};
- used_asm = ok = 1;
- x264_emms();
- res_c = x264_pixel_ssim_wxh( &pixel_c, buf1+2, 32, buf2+2, 32, 32, 28, buf3 );
- res_a = x264_pixel_ssim_wxh( &pixel_asm, buf1+2, 32, buf2+2, 32, 32, 28, buf3 );
- if( fabs(res_c - res_a) > 1e-6 )
- {
- ok = 0;
- fprintf( stderr, "ssim: %.7f != %.7f [FAILED]n", res_c, res_a );
- }
- set_func_name( "ssim_core" );
- call_c2( pixel_c.ssim_4x4x2_core, buf1+2, 32, buf2+2, 32, sums );
- call_a2( pixel_asm.ssim_4x4x2_core, buf1+2, 32, buf2+2, 32, sums );
- set_func_name( "ssim_end" );
- call_c2( pixel_c.ssim_end4, sums, sums, 4 );
- call_a2( pixel_asm.ssim_end4, sums, sums, 4 );
- report( "ssim :" );
- }
- ok = 1; used_asm = 0;
- for( i=0; i<32; i++ )
- cost_mv[i] = i*10;
- for( i=0; i<100 && ok; i++ )
- if( pixel_asm.ads[i&3] != pixel_ref.ads[i&3] )
- {
- ALIGNED_16( uint16_t sums[72] );
- ALIGNED_16( int dc[4] );
- int16_t mvs_a[32], mvs_c[32];
- int mvn_a, mvn_c;
- int thresh = rand() & 0x3fff;
- set_func_name( "esa_ads" );
- for( j=0; j<72; j++ )
- sums[j] = rand() & 0x3fff;
- for( j=0; j<4; j++ )
- dc[j] = rand() & 0x3fff;
- used_asm = 1;
- mvn_c = call_c( pixel_c.ads[i&3], dc, sums, 32, cost_mv, mvs_c, 28, thresh );
- mvn_a = call_a( pixel_asm.ads[i&3], dc, sums, 32, cost_mv, mvs_a, 28, thresh );
- if( mvn_c != mvn_a || memcmp( mvs_c, mvs_a, mvn_c*sizeof(*mvs_c) ) )
- {
- ok = 0;
- printf("c%d: ", i&3);
- for(j=0; j<mvn_c; j++)
- printf("%d ", mvs_c[j]);
- printf("na%d: ", i&3);
- for(j=0; j<mvn_a; j++)
- printf("%d ", mvs_a[j]);
- printf("nn");
- }
- }
- report( "esa ads:" );
- return ret;
- }
- static int check_dct( int cpu_ref, int cpu_new )
- {
- x264_dct_function_t dct_c;
- x264_dct_function_t dct_ref;
- x264_dct_function_t dct_asm;
- x264_quant_function_t qf;
- int ret = 0, ok, used_asm, i, j, interlace;
- ALIGNED_16( int16_t dct1[16][4][4] );
- ALIGNED_16( int16_t dct2[16][4][4] );
- ALIGNED_16( int16_t dct4[16][4][4] );
- ALIGNED_16( int16_t dct8[4][8][8] );
- ALIGNED_8( int16_t dctdc[2][2][2] );
- x264_t h_buf;
- x264_t *h = &h_buf;
- x264_dct_init( 0, &dct_c );
- x264_dct_init( cpu_ref, &dct_ref);
- x264_dct_init( cpu_new, &dct_asm );
- memset( h, 0, sizeof(*h) );
- h->pps = h->pps_array;
- x264_param_default( &h->param );
- h->chroma_qp_table = i_chroma_qp_table + 12;
- h->param.analyse.i_luma_deadzone[0] = 0;
- h->param.analyse.i_luma_deadzone[1] = 0;
- h->param.analyse.b_transform_8x8 = 1;
- for( i=0; i<6; i++ )
- h->pps->scaling_list[i] = x264_cqm_flat16;
- x264_cqm_init( h );
- x264_quant_init( h, 0, &qf );
- #define TEST_DCT( name, t1, t2, size )
- if( dct_asm.name != dct_ref.name )
- {
- set_func_name( #name );
- used_asm = 1;
- call_c( dct_c.name, t1, buf1, buf2 );
- call_a( dct_asm.name, t2, buf1, buf2 );
- if( memcmp( t1, t2, size ) )
- {
- ok = 0;
- fprintf( stderr, #name " [FAILED]n" );
- }
- }
- ok = 1; used_asm = 0;
- TEST_DCT( sub4x4_dct, dct1[0], dct2[0], 16*2 );
- TEST_DCT( sub8x8_dct, dct1, dct2, 16*2*4 );
- TEST_DCT( sub8x8_dct_dc, dctdc[0], dctdc[1], 4*2 );
- TEST_DCT( sub16x16_dct, dct1, dct2, 16*2*16 );
- report( "sub_dct4 :" );
- ok = 1; used_asm = 0;
- TEST_DCT( sub8x8_dct8, (void*)dct1[0], (void*)dct2[0], 64*2 );
- TEST_DCT( sub16x16_dct8, (void*)dct1, (void*)dct2, 64*2*4 );
- report( "sub_dct8 :" );
- #undef TEST_DCT
- // fdct and idct are denormalized by different factors, so quant/dequant
- // is needed to force the coefs into the right range.
- dct_c.sub16x16_dct( dct4, buf1, buf2 );
- dct_c.sub16x16_dct8( dct8, buf1, buf2 );
- for( i=0; i<16; i++ )
- {
- qf.quant_4x4( dct4[i], h->quant4_mf[CQM_4IY][20], h->quant4_bias[CQM_4IY][20] );
- qf.dequant_4x4( dct4[i], h->dequant4_mf[CQM_4IY], 20 );
- }
- for( i=0; i<4; i++ )
- {
- qf.quant_8x8( dct8[i], h->quant8_mf[CQM_8IY][20], h->quant8_bias[CQM_8IY][20] );
- qf.dequant_8x8( dct8[i], h->dequant8_mf[CQM_8IY], 20 );
- }
- #define TEST_IDCT( name, src )
- if( dct_asm.name != dct_ref.name )
- {
- set_func_name( #name );
- used_asm = 1;
- memcpy( buf3, buf1, 32*32 );
- memcpy( buf4, buf1, 32*32 );
- memcpy( dct1, src, 512 );
- memcpy( dct2, src, 512 );
- call_c1( dct_c.name, buf3, (void*)dct1 );
- call_a1( dct_asm.name, buf4, (void*)dct2 );
- if( memcmp( buf3, buf4, 32*32 ) )
- {
- ok = 0;
- fprintf( stderr, #name " [FAILED]n" );
- }
- call_c2( dct_c.name, buf3, (void*)dct1 );
- call_a2( dct_asm.name, buf4, (void*)dct2 );
- }
- ok = 1; used_asm = 0;
- TEST_IDCT( add4x4_idct, dct4 );
- TEST_IDCT( add8x8_idct, dct4 );
- TEST_IDCT( add8x8_idct_dc, dct4 );
- TEST_IDCT( add16x16_idct, dct4 );
- TEST_IDCT( add16x16_idct_dc, dct4 );
- report( "add_idct4 :" );
- ok = 1; used_asm = 0;
- TEST_IDCT( add8x8_idct8, dct8 );
- TEST_IDCT( add16x16_idct8, dct8 );
- report( "add_idct8 :" );
- #undef TEST_IDCT
- #define TEST_DCTDC( name )
- ok = 1; used_asm = 0;
- if( dct_asm.name != dct_ref.name )
- {
- set_func_name( #name );
- used_asm = 1;
- uint16_t *p = (uint16_t*)buf1;
- for( i=0; i<16 && ok; i++ )
- {
- for( j=0; j<16; j++ )
- dct1[0][0][j] = !i ? (j^j>>1^j>>2^j>>3)&1 ? 4080 : -4080 /* max dc */
- : i<8 ? (*p++)&1 ? 4080 : -4080 /* max elements */
- : ((*p++)&0x1fff)-0x1000; /* general case */
- memcpy( dct2, dct1, 32 );
- call_c1( dct_c.name, dct1[0] );
- call_a1( dct_asm.name, dct2[0] );
- if( memcmp( dct1, dct2, 32 ) )
- ok = 0;
- }
- call_c2( dct_c.name, dct1[0] );
- call_a2( dct_asm.name, dct2[0] );
- }
- report( #name " :" );
- TEST_DCTDC( dct4x4dc );
- TEST_DCTDC( idct4x4dc );
- #undef TEST_DCTDC
- x264_zigzag_function_t zigzag_c;
- x264_zigzag_function_t zigzag_ref;
- x264_zigzag_function_t zigzag_asm;
- ALIGNED_16( int16_t level1[64] );
- ALIGNED_16( int16_t level2[64] );
- #define TEST_ZIGZAG_SCAN( name, t1, t2, dct, size )
- if( zigzag_asm.name != zigzag_ref.name )
- {
- set_func_name( "zigzag_"#name"_%s", interlace?"field":"frame" );
- used_asm = 1;
- memcpy(dct, buf1, size*sizeof(int16_t));
- call_c( zigzag_c.name, t1, dct );
- call_a( zigzag_asm.name, t2, dct );
- if( memcmp( t1, t2, size*sizeof(int16_t) ) )
- {
- ok = 0;
- fprintf( stderr, #name " [FAILED]n" );
- }
- }
- #define TEST_ZIGZAG_SUB( name, t1, t2, size )
- if( zigzag_asm.name != zigzag_ref.name )
- {
- int nz_a, nz_c;
- set_func_name( "zigzag_"#name"_%s", interlace?"field":"frame" );
- used_asm = 1;
- memcpy( buf3, buf1, 16*FDEC_STRIDE );
- memcpy( buf4, buf1, 16*FDEC_STRIDE );
- nz_c = call_c1( zigzag_c.name, t1, buf2, buf3 );
- nz_a = call_a1( zigzag_asm.name, t2, buf2, buf4 );
- if( memcmp( t1, t2, size*sizeof(int16_t) )|| memcmp( buf3, buf4, 16*FDEC_STRIDE ) || nz_c != nz_a )
- {
- ok = 0;
- fprintf( stderr, #name " [FAILED]n" );
- }
- call_c2( zigzag_c.name, t1, buf2, buf3 );
- call_a2( zigzag_asm.name, t2, buf2, buf4 );
- }
- #define TEST_ZIGZAG_SUBAC( name, t1, t2 )
- if( zigzag_asm.name != zigzag_ref.name )
- {
- int nz_a, nz_c;
- int16_t dc_a, dc_c;
- set_func_name( "zigzag_"#name"_%s", interlace?"field":"frame" );
- used_asm = 1;
- for( i = 0; i < 2; i++ )
- {
- memcpy( buf3, buf2, 16*FDEC_STRIDE );
- memcpy( buf4, buf2, 16*FDEC_STRIDE );
- for( j = 0; j < 4; j++ )
- {
- memcpy( buf3 + j*FDEC_STRIDE, (i?buf1:buf2) + j*FENC_STRIDE, 4 );
- memcpy( buf4 + j*FDEC_STRIDE, (i?buf1:buf2) + j*FENC_STRIDE, 4 );
- }
- nz_c = call_c1( zigzag_c.name, t1, buf2, buf3, &dc_c );
- nz_a = call_a1( zigzag_asm.name, t2, buf2, buf4, &dc_a );
- if( memcmp( t1+1, t2+1, 15*sizeof(int16_t) ) || memcmp( buf3, buf4, 16*FDEC_STRIDE ) || nz_c != nz_a || dc_c != dc_a )
- {
- ok = 0;
- fprintf( stderr, #name " [FAILED]n" );
- break;
- }
- }
- call_c2( zigzag_c.name, t1, buf2, buf3, &dc_c );
- call_a2( zigzag_asm.name, t2, buf2, buf4, &dc_a );
- }
- #define TEST_INTERLEAVE( name, t1, t2, dct, size )
- if( zigzag_asm.name != zigzag_ref.name )
- {
- for( j=0; j<100; j++ )
- {
- set_func_name( "zigzag_"#name"_%s", interlace?"field":"frame" );
- used_asm = 1;
- memcpy(dct, buf1, size*sizeof(int16_t));
- for( i=0; i<size; i++ )
- dct[i] = rand()&0x1F ? 0 : dct[i];
- memcpy(buf3, buf4, 10*sizeof(uint8_t));
- call_c( zigzag_c.name, t1, dct, buf3 );
- call_a( zigzag_asm.name, t2, dct, buf4 );
- if( memcmp( t1, t2, size*sizeof(int16_t) ) || memcmp( buf3, buf4, 10*sizeof(uint8_t) ) )
- {
- ok = 0;
- }
- }
- }
- interlace = 0;
- x264_zigzag_init( 0, &zigzag_c, 0 );
- x264_zigzag_init( cpu_ref, &zigzag_ref, 0 );
- x264_zigzag_init( cpu_new, &zigzag_asm, 0 );
- ok = 1; used_asm = 0;
- TEST_ZIGZAG_SCAN( scan_8x8, level1, level2, (void*)dct1, 64 );
- TEST_ZIGZAG_SCAN( scan_4x4, level1, level2, dct1[0], 16 );
- TEST_ZIGZAG_SUB( sub_4x4, level1, level2, 16 );
- TEST_ZIGZAG_SUBAC( sub_4x4ac, level1, level2 );
- report( "zigzag_frame :" );
- interlace = 1;
- x264_zigzag_init( 0, &zigzag_c, 1 );
- x264_zigzag_init( cpu_ref, &zigzag_ref, 1 );
- x264_zigzag_init( cpu_new, &zigzag_asm, 1 );
- ok = 1; used_asm = 0;
- TEST_ZIGZAG_SCAN( scan_8x8, level1, level2, (void*)dct1, 64 );
- TEST_ZIGZAG_SCAN( scan_4x4, level1, level2, dct1[0], 16 );
- TEST_ZIGZAG_SUB( sub_4x4, level1, level2, 16 );
- TEST_ZIGZAG_SUBAC( sub_4x4ac, level1, level2 );
- report( "zigzag_field :" );
- ok = 1; used_asm = 0;
- TEST_INTERLEAVE( interleave_8x8_cavlc, level1, level2, dct1[0][0], 64 );
- report( "zigzag_interleave :" );
- #undef TEST_ZIGZAG_SCAN
- #undef TEST_ZIGZAG_SUB
- return ret;
- }
- static int check_mc( int cpu_ref, int cpu_new )
- {
- x264_mc_functions_t mc_c;
- x264_mc_functions_t mc_ref;
- x264_mc_functions_t mc_a;
- x264_pixel_function_t pixel;
- uint8_t *src = &buf1[2*64+2];
- uint8_t *src2[4] = { &buf1[3*64+2], &buf1[5*64+2],
- &buf1[7*64+2], &buf1[9*64+2] };
- uint8_t *dst1 = buf3;
- uint8_t *dst2 = buf4;
- int dx, dy, i, j, k, w;
- int ret = 0, ok, used_asm;
- x264_mc_init( 0, &mc_c );
- x264_mc_init( cpu_ref, &mc_ref );
- x264_mc_init( cpu_new, &mc_a );
- x264_pixel_init( 0, &pixel );
- #define MC_TEST_LUMA( w, h )
- if( mc_a.mc_luma != mc_ref.mc_luma && !(w&(w-1)) && h<=16 )
- {
- set_func_name( "mc_luma_%dx%d", w, h );
- used_asm = 1;
- memset(buf3, 0xCD, 1024);
- memset(buf4, 0xCD, 1024);
- call_c( mc_c.mc_luma, dst1, 32, src2, 64, dx, dy, w, h );
- call_a( mc_a.mc_luma, dst2, 32, src2, 64, dx, dy, w, h );
- if( memcmp( buf3, buf4, 1024 ) )
- {
- fprintf( stderr, "mc_luma[mv(%d,%d) %2dx%-2d] [FAILED]n", dx, dy, w, h );
- ok = 0;
- }
- }
- if( mc_a.get_ref != mc_ref.get_ref )
- {
- uint8_t *ref = dst2;
- int ref_stride = 32;
- set_func_name( "get_ref_%dx%d", w, h );
- used_asm = 1;
- memset(buf3, 0xCD, 1024);
- memset(buf4, 0xCD, 1024);
- call_c( mc_c.mc_luma, dst1, 32, src2, 64, dx, dy, w, h );
- ref = (uint8_t*) call_a( mc_a.get_ref, ref, &ref_stride, src2, 64, dx, dy, w, h );
- for( i=0; i<h; i++ )
- if( memcmp( dst1+i*32, ref+i*ref_stride, w ) )
- {
- fprintf( stderr, "get_ref[mv(%d,%d) %2dx%-2d] [FAILED]n", dx, dy, w, h );
- ok = 0;
- break;
- }
- }
- #define MC_TEST_CHROMA( w, h )
- if( mc_a.mc_chroma != mc_ref.mc_chroma )
- {
- set_func_name( "mc_chroma_%dx%d", w, h );
- used_asm = 1;
- memset(buf3, 0xCD, 1024);
- memset(buf4, 0xCD, 1024);
- call_c( mc_c.mc_chroma, dst1, 16, src, 64, dx, dy, w, h );
- call_a( mc_a.mc_chroma, dst2, 16, src, 64, dx, dy, w, h );
- /* mc_chroma width=2 may write garbage to the right of dst. ignore that. */
- for( j=0; j<h; j++ )
- for( i=w; i<4; i++ )
- dst2[i+j*16] = dst1[i+j*16];
- if( memcmp( buf3, buf4, 1024 ) )
- {
- fprintf( stderr, "mc_chroma[mv(%d,%d) %2dx%-2d] [FAILED]n", dx, dy, w, h );
- ok = 0;
- }
- }
- ok = 1; used_asm = 0;
- for( dy = -8; dy < 8; dy++ )
- for( dx = -128; dx < 128; dx++ )
- {
- if( rand()&15 ) continue; // running all of them is too slow
- MC_TEST_LUMA( 20, 18 );
- MC_TEST_LUMA( 16, 16 );
- MC_TEST_LUMA( 16, 8 );
- MC_TEST_LUMA( 12, 10 );
- MC_TEST_LUMA( 8, 16 );
- MC_TEST_LUMA( 8, 8 );
- MC_TEST_LUMA( 8, 4 );
- MC_TEST_LUMA( 4, 8 );
- MC_TEST_LUMA( 4, 4 );
- }
- report( "mc luma :" );
- ok = 1; used_asm = 0;
- for( dy = -1; dy < 9; dy++ )
- for( dx = -128; dx < 128; dx++ )
- {
- if( rand()&15 ) continue;
- MC_TEST_CHROMA( 8, 8 );
- MC_TEST_CHROMA( 8, 4 );
- MC_TEST_CHROMA( 4, 8 );
- MC_TEST_CHROMA( 4, 4 );
- MC_TEST_CHROMA( 4, 2 );
- MC_TEST_CHROMA( 2, 4 );
- MC_TEST_CHROMA( 2, 2 );
- }
- report( "mc chroma :" );
- #undef MC_TEST_LUMA
- #undef MC_TEST_CHROMA
- #define MC_TEST_AVG( name, weight )
- for( i = 0, ok = 1, used_asm = 0; i < 10; i++ )
- {
- memcpy( buf3, buf1+320, 320 );
- memcpy( buf4, buf1+320, 320 );
- if( mc_a.name[i] != mc_ref.name[i] )
- {
- set_func_name( "%s_%s", #name, pixel_names[i] );
- used_asm = 1;
- call_c1( mc_c.name[i], buf3, 16, buf2+1, 16, buf1+18, 16, weight );
- call_a1( mc_a.name[i], buf4, 16, buf2+1, 16, buf1+18, 16, weight );
- if( memcmp( buf3, buf4, 320 ) )
- {
- ok = 0;
- fprintf( stderr, #name "[%d]: [FAILED]n", i );
- }
- call_c2( mc_c.name[i], buf3, 16, buf2+1, 16, buf1+18, 16, weight );
- call_a2( mc_a.name[i], buf4, 16, buf2+1, 16, buf1+18, 16, weight );
- }
- }
- ok = 1; used_asm = 0;
- for( w = -63; w <= 127 && ok; w++ )
- MC_TEST_AVG( avg, w );
- report( "mc wpredb :" );
- if( mc_a.hpel_filter != mc_ref.hpel_filter )
- {
- uint8_t *src = buf1+8+2*64;
- uint8_t *dstc[3] = { buf3+8, buf3+8+16*64, buf3+8+32*64 };
- uint8_t *dsta[3] = { buf4+8, buf4+8+16*64, buf4+8+32*64 };
- void *tmp = buf3+49*64;
- set_func_name( "hpel_filter" );
- ok = 1; used_asm = 1;
- memset( buf3, 0, 4096 );
- memset( buf4, 0, 4096 );
- call_c( mc_c.hpel_filter, dstc[0], dstc[1], dstc[2], src, 64, 48, 10, tmp );
- call_a( mc_a.hpel_filter, dsta[0], dsta[1], dsta[2], src, 64, 48, 10, tmp );
- for( i=0; i<3; i++ )
- for( j=0; j<10; j++ )
- //FIXME ideally the first pixels would match too, but they aren't actually used
- if( memcmp( dstc[i]+j*64+2, dsta[i]+j*64+2, 43 ) )
- {
- ok = 0;
- fprintf( stderr, "hpel filter differs at plane %c line %dn", "hvc"[i], j );
- for( k=0; k<48; k++ )
- printf("%02x%s", dstc[i][j*64+k], (k+1)&3 ? "" : " ");
- printf("n");
- for( k=0; k<48; k++ )
- printf("%02x%s", dsta[i][j*64+k], (k+1)&3 ? "" : " ");
- printf("n");
- break;
- }
- report( "hpel filter :" );
- }
- if( mc_a.frame_init_lowres_core != mc_ref.frame_init_lowres_core )
- {
- uint8_t *dstc[4] = { buf3, buf3+1024, buf3+2048, buf3+3072 };
- uint8_t *dsta[4] = { buf4, buf4+1024, buf4+2048, buf4+3072 };
- set_func_name( "lowres_init" );
- ok = 1; used_asm = 1;
- for( w=40; w<=48; w+=8 )
- {
- int stride = (w+8)&~15;
- call_c( mc_c.frame_init_lowres_core, buf1, dstc[0], dstc[1], dstc[2], dstc[3], w*2, stride, w, 16 );
- call_a( mc_a.frame_init_lowres_core, buf1, dsta[0], dsta[1], dsta[2], dsta[3], w*2, stride, w, 16 );
- for( i=0; i<16; i++)
- {
- for( j=0; j<4; j++)
- if( memcmp( dstc[j]+i*stride, dsta[j]+i*stride, w ) )
- {
- ok = 0;
- fprintf( stderr, "frame_init_lowres differs at plane %d line %dn", j, i );
- for( k=0; k<w; k++ )
- printf( "%d ", dstc[j][k+i*stride] );
- printf("n");
- for( k=0; k<w; k++ )
- printf( "%d ", dsta[j][k+i*stride] );
- printf("n");
- break;
- }
- }
- }
- report( "lowres init :" );
- }
- #define INTEGRAL_INIT( name, size, ... )
- if( mc_a.name != mc_ref.name )
- {
- int stride = 80;
- set_func_name( #name );
- used_asm = 1;
- memcpy( buf3, buf1, size*2*stride );
- memcpy( buf4, buf1, size*2*stride );
- uint16_t *sum = (uint16_t*)buf3;
- call_c1( mc_c.name, __VA_ARGS__ );
- sum = (uint16_t*)buf4;
- call_a1( mc_a.name, __VA_ARGS__ );
- if( memcmp( buf3, buf4, (stride-8)*2 )
- || (size>9 && memcmp( buf3+18*stride, buf4+18*stride, (stride-8)*2 )))
- ok = 0;
- call_c2( mc_c.name, __VA_ARGS__ );
- call_a2( mc_a.name, __VA_ARGS__ );
- }
- ok = 1; used_asm = 0;
- INTEGRAL_INIT( integral_init4h, 2, sum+stride, buf2, stride );
- INTEGRAL_INIT( integral_init8h, 2, sum+stride, buf2, stride );
- INTEGRAL_INIT( integral_init4v, 14, sum, sum+9*stride, stride );
- INTEGRAL_INIT( integral_init8v, 9, sum, stride );
- report( "integral init :" );
- if( mc_a.mbtree_propagate_cost != mc_ref.mbtree_propagate_cost )
- {
- ok = 1; used_asm = 1;
- set_func_name( "mbtree_propagate" );
- int *dsta = (int*)buf3;
- int *dstc = dsta+400;
- uint16_t *prop = (uint16_t*)buf1;
- uint16_t *intra = (uint16_t*)buf4;
- uint16_t *inter = intra+400;
- uint16_t *qscale = inter+400;
- uint16_t *rand = (uint16_t*)buf2;
- x264_emms();
- for( i=0; i<400; i++ )
- {
- intra[i] = *rand++ & 0x7fff;
- intra[i] += !intra[i];
- inter[i] = *rand++ & 0x7fff;
- qscale[i] = *rand++ & 0x7fff;
- }
- call_c( mc_c.mbtree_propagate_cost, dstc, prop, intra, inter, qscale, 400 );
- call_a( mc_a.mbtree_propagate_cost, dsta, prop, intra, inter, qscale, 400 );
- // I don't care about exact rounding, this is just how close the floating-point implementation happens to be
- for( i=0; i<400; i++ )
- ok &= abs(dstc[i]-dsta[i]) <= (abs(dstc[i])>512) || fabs((double)dstc[i]/dsta[i]-1) < 1e-6;
- report( "mbtree propagate :" );
- }
- return ret;
- }
- static int check_deblock( int cpu_ref, int cpu_new )
- {
- x264_deblock_function_t db_c;
- x264_deblock_function_t db_ref;
- x264_deblock_function_t db_a;
- int ret = 0, ok = 1, used_asm = 0;
- int alphas[36], betas[36];
- int8_t tcs[36][4];
- int a, c, i, j;
- x264_deblock_init( 0, &db_c );
- x264_deblock_init( cpu_ref, &db_ref );
- x264_deblock_init( cpu_new, &db_a );
- /* not exactly the real values of a,b,tc but close enough */
- a = 255; c = 250;
- for( i = 35; i >= 0; i-- )
- {
- alphas[i] = a;
- betas[i] = (i+1)/2;
- tcs[i][0] = tcs[i][2] = (c+6)/10;
- tcs[i][1] = tcs[i][3] = (c+9)/20;
- a = a*9/10;
- c = c*9/10;
- }
- #define TEST_DEBLOCK( name, align, ... )
- for( i = 0; i < 36; i++ )
- {
- int off = 8*32 + (i&15)*4*!align; /* benchmark various alignments of h filter */
- for( j = 0; j < 1024; j++ )
- /* two distributions of random to excersize different failure modes */
- buf3[j] = rand() & (i&1 ? 0xf : 0xff );
- memcpy( buf4, buf3, 1024 );
- if( db_a.name != db_ref.name )
- {
- set_func_name( #name );
- used_asm = 1;
- call_c1( db_c.name, buf3+off, 32, alphas[i], betas[i], ##__VA_ARGS__ );
- call_a1( db_a.name, buf4+off, 32, alphas[i], betas[i], ##__VA_ARGS__ );
- if( memcmp( buf3, buf4, 1024 ) )
- {
- ok = 0;
- fprintf( stderr, #name "(a=%d, b=%d): [FAILED]n", alphas[i], betas[i] );
- break;
- }
- call_c2( db_c.name, buf3+off, 32, alphas[i], betas[i], ##__VA_ARGS__ );
- call_a2( db_a.name, buf4+off, 32, alphas[i], betas[i], ##__VA_ARGS__ );
- }
- }
- TEST_DEBLOCK( deblock_h_luma, 0, tcs[i] );
- TEST_DEBLOCK( deblock_v_luma, 1, tcs[i] );
- TEST_DEBLOCK( deblock_h_chroma, 0, tcs[i] );
- TEST_DEBLOCK( deblock_v_chroma, 1, tcs[i] );
- TEST_DEBLOCK( deblock_h_luma_intra, 0 );
- TEST_DEBLOCK( deblock_v_luma_intra, 1 );
- TEST_DEBLOCK( deblock_h_chroma_intra, 0 );
- TEST_DEBLOCK( deblock_v_chroma_intra, 1 );
- report( "deblock :" );
- return ret;
- }
- static int check_quant( int cpu_ref, int cpu_new )
- {
- x264_quant_function_t qf_c;
- x264_quant_function_t qf_ref;
- x264_quant_function_t qf_a;
- ALIGNED_16( int16_t dct1[64] );
- ALIGNED_16( int16_t dct2[64] );
- ALIGNED_16( uint8_t cqm_buf[64] );
- int ret = 0, ok, used_asm;
- int oks[2] = {1,1}, used_asms[2] = {0,0};
- int i, j, i_cqm, qp;
- x264_t h_buf;
- x264_t *h = &h_buf;
- memset( h, 0, sizeof(*h) );
- h->pps = h->pps_array;
- x264_param_default( &h->param );
- h->chroma_qp_table = i_chroma_qp_table + 12;
- h->param.rc.i_qp_min = 26;
- h->param.analyse.b_transform_8x8 = 1;
- for( i_cqm = 0; i_cqm < 4; i_cqm++ )
- {
- if( i_cqm == 0 )
- {
- for( i = 0; i < 6; i++ )
- h->pps->scaling_list[i] = x264_cqm_flat16;
- h->param.i_cqm_preset = h->pps->i_cqm_preset = X264_CQM_FLAT;
- }
- else if( i_cqm == 1 )
- {
- for( i = 0; i < 6; i++ )
- h->pps->scaling_list[i] = x264_cqm_jvt[i];
- h->param.i_cqm_preset = h->pps->i_cqm_preset = X264_CQM_JVT;
- }
- else
- {
- if( i_cqm == 2 )
- for( i = 0; i < 64; i++ )
- cqm_buf[i] = 10 + rand() % 246;
- else
- for( i = 0; i < 64; i++ )
- cqm_buf[i] = 1;
- for( i = 0; i < 6; i++ )
- h->pps->scaling_list[i] = cqm_buf;
- h->param.i_cqm_preset = h->pps->i_cqm_preset = X264_CQM_CUSTOM;
- }
- x264_cqm_init( h );
- x264_quant_init( h, 0, &qf_c );
- x264_quant_init( h, cpu_ref, &qf_ref );
- x264_quant_init( h, cpu_new, &qf_a );
- #define INIT_QUANT8()
- {
- static const int scale1d[8] = {32,31,24,31,32,31,24,31};
- int x, y;
- for( y = 0; y < 8; y++ )
- for( x = 0; x < 8; x++ )
- {
- unsigned int scale = (255*scale1d[y]*scale1d[x])/16;
- dct1[y*8+x] = dct2[y*8+x] = j ? (rand()%(2*scale+1))-scale : 0;
- }
- }
- #define INIT_QUANT4()
- {
- static const int scale1d[4] = {4,6,4,6};
- int x, y;
- for( y = 0; y < 4; y++ )
- for( x = 0; x < 4; x++ )
- {
- unsigned int scale = 255*scale1d[y]*scale1d[x];
- dct1[y*4+x] = dct2[y*4+x] = j ? (rand()%(2*scale+1))-scale : 0;
- }
- }
- #define TEST_QUANT_DC( name, cqm )
- if( qf_a.name != qf_ref.name )
- {
- set_func_name( #name );
- used_asms[0] = 1;
- for( qp = 51; qp > 0; qp-- )
- {
- for( j = 0; j < 2; j++ )
- {
- int result_c, result_a;
- for( i = 0; i < 16; i++ )
- dct1[i] = dct2[i] = j ? (rand() & 0x1fff) - 0xfff : 0;
- result_c = call_c1( qf_c.name, (void*)dct1, h->quant4_mf[CQM_4IY][qp][0], h->quant4_bias[CQM_4IY][qp][0] );
- result_a = call_a1( qf_a.name, (void*)dct2, h->quant4_mf[CQM_4IY][qp][0], h->quant4_bias[CQM_4IY][qp][0] );
- if( memcmp( dct1, dct2, 16*2 ) || result_c != result_a )
- {
- oks[0] = 0;
- fprintf( stderr, #name "(cqm=%d): [FAILED]n", i_cqm );
- break;
- }
- call_c2( qf_c.name, (void*)dct1, h->quant4_mf[CQM_4IY][qp][0], h->quant4_bias[CQM_4IY][qp][0] );
- call_a2( qf_a.name, (void*)dct2, h->quant4_mf[CQM_4IY][qp][0], h->quant4_bias[CQM_4IY][qp][0] );
- }
- }
- }
- #define TEST_QUANT( qname, block, w )
- if( qf_a.qname != qf_ref.qname )
- {
- set_func_name( #qname );
- used_asms[0] = 1;
- for( qp = 51; qp > 0; qp-- )
- {
- for( j = 0; j < 2; j++ )
- {
- int result_c, result_a;
- INIT_QUANT##w()
- result_c = call_c1( qf_c.qname, (void*)dct1, h->quant##w##_mf[block][qp], h->quant##w##_bias[block][qp] );
- result_a = call_a1( qf_a.qname, (void*)dct2, h->quant##w##_mf[block][qp], h->quant##w##_bias[block][qp] );
- if( memcmp( dct1, dct2, w*w*2 ) || result_c != result_a )
- {
- oks[0] = 0;
- fprintf( stderr, #qname "(qp=%d, cqm=%d, block="#block"): [FAILED]n", qp, i_cqm );
- break;
- }
- call_c2( qf_c.qname, (void*)dct1, h->quant##w##_mf[block][qp], h->quant##w##_bias[block][qp] );
- call_a2( qf_a.qname, (void*)dct2, h->quant##w##_mf[block][qp], h->quant##w##_bias[block][qp] );
- }
- }
- }
- TEST_QUANT( quant_8x8, CQM_8IY, 8 );
- TEST_QUANT( quant_8x8, CQM_8PY, 8 );
- TEST_QUANT( quant_4x4, CQM_4IY, 4 );
- TEST_QUANT( quant_4x4, CQM_4PY, 4 );
- TEST_QUANT_DC( quant_4x4_dc, **h->quant4_mf[CQM_4IY] );
- TEST_QUANT_DC( quant_2x2_dc, **h->quant4_mf[CQM_4IC] );
- #define TEST_DEQUANT( qname, dqname, block, w )
- if( qf_a.dqname != qf_ref.dqname )
- {
- set_func_name( "%s_%s", #dqname, i_cqm?"cqm":"flat" );
- used_asms[1] = 1;
- j = 1;
- for( qp = 51; qp > 0; qp-- )
- {
- INIT_QUANT##w()
- call_c1( qf_c.qname, (void*)dct1, h->quant##w##_mf[block][qp], h->quant##w##_bias[block][qp] );
- memcpy( dct2, dct1, w*w*2 );
- call_c1( qf_c.dqname, (void*)dct1, h->dequant##w##_mf[block], qp );
- call_a1( qf_a.dqname, (void*)dct2, h->dequant##w##_mf[block], qp );
- if( memcmp( dct1, dct2, w*w*2 ) )
- {
- oks[1] = 0;
- fprintf( stderr, #dqname "(qp=%d, cqm=%d, block="#block"): [FAILED]n", qp, i_cqm );
- break;
- }
- call_c2( qf_c.dqname, (void*)dct1, h->dequant##w##_mf[block], qp );
- call_a2( qf_a.dqname, (void*)dct2, h->dequant##w##_mf[block], qp );
- }
- }
- TEST_DEQUANT( quant_8x8, dequant_8x8, CQM_8IY, 8 );
- TEST_DEQUANT( quant_8x8, dequant_8x8, CQM_8PY, 8 );
- TEST_DEQUANT( quant_4x4, dequant_4x4, CQM_4IY, 4 );
- TEST_DEQUANT( quant_4x4, dequant_4x4, CQM_4PY, 4 );
- #define TEST_DEQUANT_DC( qname, dqname, block, w )
- if( qf_a.dqname != qf_ref.dqname )
- {
- set_func_name( "%s_%s", #dqname, i_cqm?"cqm":"flat" );
- used_asms[1] = 1;
- for( qp = 51; qp > 0; qp-- )
- {
- for( i = 0; i < 16; i++ )
- dct1[i] = rand();
- call_c1( qf_c.qname, (void*)dct1, h->quant##w##_mf[block][qp][0]>>1, h->quant##w##_bias[block][qp][0]>>1 );
- memcpy( dct2, dct1, w*w*2 );
- call_c1( qf_c.dqname, (void*)dct1, h->dequant##w##_mf[block], qp );
- call_a1( qf_a.dqname, (void*)dct2, h->dequant##w##_mf[block], qp );
- if( memcmp( dct1, dct2, w*w*2 ) )
- {
- oks[1] = 0;
- fprintf( stderr, #dqname "(qp=%d, cqm=%d, block="#block"): [FAILED]n", qp, i_cqm );
- }
- call_c2( qf_c.dqname, (void*)dct1, h->dequant##w##_mf[block], qp );
- call_a2( qf_a.dqname, (void*)dct2, h->dequant##w##_mf[block], qp );
- }
- }
- TEST_DEQUANT_DC( quant_4x4_dc, dequant_4x4_dc, CQM_4IY, 4 );
- x264_cqm_delete( h );
- }
- ok = oks[0]; used_asm = used_asms[0];
- report( "quant :" );
- ok = oks[1]; used_asm = used_asms[1];
- report( "dequant :" );
- ok = 1; used_asm = 0;
- if( qf_a.denoise_dct != qf_ref.denoise_dct )
- {
- int size;
- used_asm = 1;
- for( size = 16; size <= 64; size += 48 )
- {
- set_func_name( "denoise_dct" );
- memcpy(dct1, buf1, size*2);
- memcpy(dct2, buf1, size*2);
- memcpy(buf3+256, buf3, 256);
- call_c1( qf_c.denoise_dct, dct1, (uint32_t*)buf3, (uint16_t*)buf2, size );
- call_a1( qf_a.denoise_dct, dct2, (uint32_t*)(buf3+256), (uint16_t*)buf2, size );
- if( memcmp( dct1, dct2, size*2 ) || memcmp( buf3+4, buf3+256+4, (size-1)*sizeof(uint32_t) ) )
- ok = 0;
- call_c2( qf_c.denoise_dct, dct1, (uint32_t*)buf3, (uint16_t*)buf2, size );
- call_a2( qf_a.denoise_dct, dct2, (uint32_t*)(buf3+256), (uint16_t*)buf2, size );
- }
- }
- report( "denoise dct :" );
- #define TEST_DECIMATE( decname, w, ac, thresh )
- if( qf_a.decname != qf_ref.decname )
- {
- set_func_name( #decname );
- used_asm = 1;
- for( i = 0; i < 100; i++ )
- {
- int result_c, result_a, idx;
- for( idx = 0; idx < w*w; idx++ )
- dct1[idx] = !(rand()&3) + (!(rand()&15))*(rand()&3);
- if( ac )
- dct1[0] = 0;
- result_c = call_c( qf_c.decname, (void*)dct1 );
- result_a = call_a( qf_a.decname, (void*)dct1 );
- if( X264_MIN(result_c,thresh) != X264_MIN(result_a,thresh) )
- {
- ok = 0;
- fprintf( stderr, #decname ": [FAILED]n" );
- break;
- }
- }
- }
- ok = 1; used_asm = 0;
- TEST_DECIMATE( decimate_score64, 8, 0, 6 );
- TEST_DECIMATE( decimate_score16, 4, 0, 6 );
- TEST_DECIMATE( decimate_score15, 4, 1, 7 );
- report( "decimate_score :" );
- #define TEST_LAST( last, lastname, w, ac )
- if( qf_a.last != qf_ref.last )
- {
- set_func_name( #lastname );
- used_asm = 1;
- for( i = 0; i < 100; i++ )
- {
- int result_c, result_a, idx, nnz=0;
- int max = rand() & (w*w-1);
- memset( dct1, 0, w*w*2 );
- for( idx = ac; idx < max; idx++ )
- nnz |= dct1[idx] = !(rand()&3) + (!(rand()&15))*rand();
- if( !nnz )
- dct1[ac] = 1;
- result_c = call_c( qf_c.last, (void*)(dct1+ac) );
- result_a = call_a( qf_a.last, (void*)(dct1+ac) );
- if( result_c != result_a )
- {
- ok = 0;
- fprintf( stderr, #lastname ": [FAILED]n" );
- break;
- }
- }
- }
- ok = 1; used_asm = 0;
- TEST_LAST( coeff_last[DCT_CHROMA_DC], coeff_last4, 2, 0 );
- TEST_LAST( coeff_last[ DCT_LUMA_AC], coeff_last15, 4, 1 );
- TEST_LAST( coeff_last[ DCT_LUMA_4x4], coeff_last16, 4, 0 );
- TEST_LAST( coeff_last[ DCT_LUMA_8x8], coeff_last64, 8, 0 );
- report( "coeff_last :" );
- #define TEST_LEVELRUN( lastname, name, w, ac )
- if( qf_a.lastname != qf_ref.lastname )
- {
- set_func_name( #name );
- used_asm = 1;
- for( i = 0; i < 100; i++ )
- {
- x264_run_level_t runlevel_c, runlevel_a;
- int result_c, result_a, idx, nnz=0;
- int max = rand() & (w*w-1);
- memset( dct1, 0, w*w*2 );
- memcpy( &runlevel_a, buf1+i, sizeof(x264_run_level_t) );
- memcpy( &runlevel_c, buf1+i, sizeof(x264_run_level_t) );
- for( idx = ac; idx < max; idx++ )
- nnz |= dct1[idx] = !(rand()&3) + (!(rand()&15))*rand();
- if( !nnz )
- dct1[ac] = 1;
- result_c = call_c( qf_c.lastname, (void*)(dct1+ac), &runlevel_c );
- result_a = call_a( qf_a.lastname, (void*)(dct1+ac), &runlevel_a );
- if( result_c != result_a || runlevel_c.last != runlevel_a.last ||
- memcmp(runlevel_c.level, runlevel_a.level, sizeof(int16_t)*result_c) ||
- memcmp(runlevel_c.run, runlevel_a.run, sizeof(uint8_t)*(result_c-1)) )
- {
- ok = 0;
- fprintf( stderr, #name ": [FAILED]n" );
- break;
- }
- }
- }
- ok = 1; used_asm = 0;
- TEST_LEVELRUN( coeff_level_run[DCT_CHROMA_DC], coeff_level_run4, 2, 0 );
- TEST_LEVELRUN( coeff_level_run[ DCT_LUMA_AC], coeff_level_run15, 4, 1 );
- TEST_LEVELRUN( coeff_level_run[ DCT_LUMA_4x4], coeff_level_run16, 4, 0 );
- report( "coeff_level_run :" );
- return ret;
- }
- static int check_intra( int cpu_ref, int cpu_new )
- {
- int ret = 0, ok = 1, used_asm = 0;
- int i;
- ALIGNED_16( uint8_t edge[33] );
- ALIGNED_16( uint8_t edge2[33] );
- struct
- {
- x264_predict_t predict_16x16[4+3];
- x264_predict_t predict_8x8c[4+3];
- x264_predict8x8_t predict_8x8[9+3];
- x264_predict_t predict_4x4[9+3];
- x264_predict_8x8_filter_t predict_8x8_filter;
- } ip_c, ip_ref, ip_a;
- x264_predict_16x16_init( 0, ip_c.predict_16x16 );
- x264_predict_8x8c_init( 0, ip_c.predict_8x8c );
- x264_predict_8x8_init( 0, ip_c.predict_8x8, &ip_c.predict_8x8_filter );
- x264_predict_4x4_init( 0, ip_c.predict_4x4 );
- x264_predict_16x16_init( cpu_ref, ip_ref.predict_16x16 );
- x264_predict_8x8c_init( cpu_ref, ip_ref.predict_8x8c );
- x264_predict_8x8_init( cpu_ref, ip_ref.predict_8x8, &ip_ref.predict_8x8_filter );
- x264_predict_4x4_init( cpu_ref, ip_ref.predict_4x4 );
- x264_predict_16x16_init( cpu_new, ip_a.predict_16x16 );
- x264_predict_8x8c_init( cpu_new, ip_a.predict_8x8c );
- x264_predict_8x8_init( cpu_new, ip_a.predict_8x8, &ip_a.predict_8x8_filter );
- x264_predict_4x4_init( cpu_new, ip_a.predict_4x4 );
- ip_c.predict_8x8_filter( buf1+48, edge, ALL_NEIGHBORS, ALL_NEIGHBORS );
- #define INTRA_TEST( name, dir, w, ... )
- if( ip_a.name[dir] != ip_ref.name[dir] )
- {
- set_func_name( "intra_%s_%s", #name, intra_##name##_names[dir] );
- used_asm = 1;
- memcpy( buf3, buf1, 32*20 );
- memcpy( buf4, buf1, 32*20 );
- call_c( ip_c.name[dir], buf3+48, ##__VA_ARGS__ );
- call_a( ip_a.name[dir], buf4+48, ##__VA_ARGS__ );
- if( memcmp( buf3, buf4, 32*20 ) )
- {
- fprintf( stderr, #name "[%d] : [FAILED]n", dir );
- ok = 0;
- int j,k;
- for(k=-1; k<16; k++)
- printf("%2x ", edge[16+k]);
- printf("n");
- for(j=0; j<w; j++){
- printf("%2x ", edge[14-j]);
- for(k=0; k<w; k++)
- printf("%2x ", buf4[48+k+j*32]);
- printf("n");
- }
- printf("n");
- for(j=0; j<w; j++){
- printf(" ");
- for(k=0; k<w; k++)
- printf("%2x ", buf3[48+k+j*32]);
- printf("n");
- }
- }
- }
- for( i = 0; i < 12; i++ )
- INTRA_TEST( predict_4x4, i, 4 );
- for( i = 0; i < 7; i++ )
- INTRA_TEST( predict_8x8c, i, 8 );
- for( i = 0; i < 7; i++ )
- INTRA_TEST( predict_16x16, i, 16 );
- for( i = 0; i < 12; i++ )
- INTRA_TEST( predict_8x8, i, 8, edge );
- set_func_name("intra_predict_8x8_filter");
- if( ip_a.predict_8x8_filter != ip_ref.predict_8x8_filter )
- {
- used_asm = 1;
- for( i = 0; i < 32; i++ )
- {
- memcpy( edge2, edge, 33 );
- call_c(ip_c.predict_8x8_filter, buf1+48, edge, (i&24)>>1, i&7);
- call_a(ip_a.predict_8x8_filter, buf1+48, edge2, (i&24)>>1, i&7);
- if( memcmp( edge, edge2, 33 ) )
- {
- fprintf( stderr, "predict_8x8_filter : [FAILED] %d %dn", (i&24)>>1, i&7);
- ok = 0;
- }
- }
- }
- report( "intra pred :" );
- return ret;
- }
- #define DECL_CABAC(cpu)
- static void run_cabac_##cpu( uint8_t *dst )
- {
- int i;
- x264_cabac_t cb;
- x264_cabac_context_init( &cb, SLICE_TYPE_P, 26, 0 );
- x264_cabac_encode_init( &cb, dst, dst+0xff0 );
- for( i=0; i<0x1000; i++ )
- x264_cabac_encode_decision_##cpu( &cb, buf1[i]>>1, buf1[i]&1 );
- }
- DECL_CABAC(c)
- #ifdef HAVE_MMX
- DECL_CABAC(asm)
- #else
- #define run_cabac_asm run_cabac_c
- #endif
- static int check_cabac( int cpu_ref, int cpu_new )
- {
- int ret = 0, ok, used_asm = 1;
- if( cpu_ref || run_cabac_c == run_cabac_asm)
- return 0;
- set_func_name( "cabac_encode_decision" );
- memcpy( buf4, buf3, 0x1000 );
- call_c( run_cabac_c, buf3 );
- call_a( run_cabac_asm, buf4 );
- ok = !memcmp( buf3, buf4, 0x1000 );
- report( "cabac :" );
- return ret;
- }
- static int check_all_funcs( int cpu_ref, int cpu_new )
- {
- return check_pixel( cpu_ref, cpu_new )
- + check_dct( cpu_ref, cpu_new )
- + check_mc( cpu_ref, cpu_new )
- + check_intra( cpu_ref, cpu_new )
- + check_deblock( cpu_ref, cpu_new )
- + check_quant( cpu_ref, cpu_new )
- + check_cabac( cpu_ref, cpu_new );
- }
- static int add_flags( int *cpu_ref, int *cpu_new, int flags, const char *name )
- {
- *cpu_ref = *cpu_new;
- *cpu_new |= flags;
- if( *cpu_new & X264_CPU_SSE2_IS_FAST )
- *cpu_new &= ~X264_CPU_SSE2_IS_SLOW;
- if( !quiet )
- fprintf( stderr, "x264: %sn", name );
- return check_all_funcs( *cpu_ref, *cpu_new );
- }
- static int check_all_flags( void )
- {
- int ret = 0;
- int cpu0 = 0, cpu1 = 0;
- #ifdef HAVE_MMX
- if( x264_cpu_detect() & X264_CPU_MMXEXT )
- {
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_MMX | X264_CPU_MMXEXT, "MMX" );
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_CACHELINE_64, "MMX Cache64" );
- cpu1 &= ~X264_CPU_CACHELINE_64;
- #ifdef ARCH_X86
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_CACHELINE_32, "MMX Cache32" );
- cpu1 &= ~X264_CPU_CACHELINE_32;
- #endif
- if( x264_cpu_detect() & X264_CPU_LZCNT )
- {
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_LZCNT, "MMX_LZCNT" );
- cpu1 &= ~X264_CPU_LZCNT;
- }
- }
- if( x264_cpu_detect() & X264_CPU_SSE2 )
- {
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_SSE | X264_CPU_SSE2 | X264_CPU_SSE2_IS_SLOW, "SSE2Slow" );
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_SSE2_IS_FAST, "SSE2Fast" );
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_CACHELINE_64, "SSE2Fast Cache64" );
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_SHUFFLE_IS_FAST, "SSE2 FastShuffle" );
- cpu1 &= ~X264_CPU_SHUFFLE_IS_FAST;
- }
- if( x264_cpu_detect() & X264_CPU_SSE_MISALIGN )
- {
- cpu1 &= ~X264_CPU_CACHELINE_64;
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_SSE_MISALIGN, "SSE_Misalign" );
- cpu1 &= ~X264_CPU_SSE_MISALIGN;
- }
- if( x264_cpu_detect() & X264_CPU_LZCNT )
- {
- cpu1 &= ~X264_CPU_CACHELINE_64;
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_LZCNT, "SSE_LZCNT" );
- cpu1 &= ~X264_CPU_LZCNT;
- }
- if( x264_cpu_detect() & X264_CPU_SSE3 )
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_SSE3 | X264_CPU_CACHELINE_64, "SSE3" );
- if( x264_cpu_detect() & X264_CPU_SSSE3 )
- {
- cpu1 &= ~X264_CPU_CACHELINE_64;
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_SSSE3, "SSSE3" );
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_CACHELINE_64, "SSSE3 Cache64" );
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_SHUFFLE_IS_FAST, "SSSE3 FastShuffle" );
- cpu1 &= ~X264_CPU_SHUFFLE_IS_FAST;
- }
- if( x264_cpu_detect() & X264_CPU_SSE4 )
- {
- cpu1 &= ~X264_CPU_CACHELINE_64;
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_SSE4, "SSE4" );
- }
- #elif ARCH_PPC
- if( x264_cpu_detect() & X264_CPU_ALTIVEC )
- {
- fprintf( stderr, "x264: ALTIVEC against Cn" );
- ret = check_all_funcs( 0, X264_CPU_ALTIVEC );
- }
- #elif ARCH_ARM
- if( x264_cpu_detect() & X264_CPU_ARMV6 )
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_ARMV6, "ARMv6" );
- if( x264_cpu_detect() & X264_CPU_NEON )
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_NEON, "NEON" );
- if( x264_cpu_detect() & X264_CPU_FAST_NEON_MRC )
- ret |= add_flags( &cpu0, &cpu1, X264_CPU_FAST_NEON_MRC, "Fast NEON MRC" );
- #endif
- return ret;
- }
- int main(int argc, char *argv[])
- {
- int ret = 0;
- int i;
- if( argc > 1 && !strncmp( argv[1], "--bench", 7 ) )
- {
- #if !defined(ARCH_X86) && !defined(ARCH_X86_64) && !defined(ARCH_PPC) && !defined(ARCH_ARM)
- fprintf( stderr, "no --bench for your cpu until you port rdtscn" );
- return 1;
- #endif
- do_bench = 1;
- if( argv[1][7] == '=' )
- {
- bench_pattern = argv[1]+8;
- bench_pattern_len = strlen(bench_pattern);
- }
- argc--;
- argv++;
- }
- i = ( argc > 1 ) ? atoi(argv[1]) : x264_mdate();
- fprintf( stderr, "x264: using random seed %un", i );
- srand( i );
- buf1 = x264_malloc( 0x3e00 + 16*BENCH_ALIGNS );
- if( !buf1 )
- {
- fprintf( stderr, "malloc failed, unable to initiate tests!n" );
- return -1;
- }
- buf2 = buf1 + 0xf00;
- buf3 = buf2 + 0xf00;
- buf4 = buf3 + 0x1000;
- for( i=0; i<0x1e00; i++ )
- buf1[i] = rand() & 0xFF;
- memset( buf1+0x1e00, 0, 0x2000 );
- /* 16-byte alignment is guaranteed whenever it's useful, but some functions also vary in speed depending on %64 */
- if( do_bench )
- for( i=0; i<BENCH_ALIGNS && !ret; i++ )
- {
- buf2 = buf1 + 0xf00;
- buf3 = buf2 + 0xf00;
- buf4 = buf3 + 0x1000;
- ret |= x264_stack_pagealign( check_all_flags, i*16 );
- buf1 += 16;
- quiet = 1;
- fprintf( stderr, "%d/%dr", i+1, BENCH_ALIGNS );
- }
- else
- ret = check_all_flags();
- if( ret )
- {
- fprintf( stderr, "x264: at least one test has failed. Go and fix that Right Now!n" );
- return -1;
- }
- fprintf( stderr, "x264: All tests passed Yeah :)n" );
- if( do_bench )
- print_bench();
- return 0;
- }