trees.c
上传用户:maxiaolivb
上传日期:2022-06-07
资源大小:915k
文件大小:32k
- /* trees.c -- output deflated data using Huffman coding
- * Copyright (C) 1995-2003 Jean-loup Gailly
- * For conditions of distribution and use, see copyright notice in zlib.h
- */
- /*
- * ALGORITHM
- *
- * The "deflation" process uses several Huffman trees. The more
- * common source values are represented by shorter bit sequences.
- *
- * Each code tree is stored in a compressed form which is itself
- * a Huffman encoding of the lengths of all the code strings (in
- * ascending order by source values). The actual code strings are
- * reconstructed from the lengths in the inflate process, as described
- * in the deflate specification.
- *
- * REFERENCES
- *
- * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
- * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
- *
- * Storer, James A.
- * Data Compression: Methods and Theory, pp. 49-50.
- * Computer Science Press, 1988. ISBN 0-7167-8156-5.
- *
- * Sedgewick, R.
- * Algorithms, p290.
- * Addison-Wesley, 1983. ISBN 0-201-06672-6.
- */
- /* @(#) $Id: trees.c,v 1.1 2005/11/23 14:29:59 stingerx Exp $ */
- #include "deflate.h"
- /* ===========================================================================
- * Constants
- */
- #define MAX_BL_BITS 7
- #define END_BLOCK 256
- #define REP_3_6 16
- #define REPZ_3_10 17
- #define REPZ_11_138 18
- static const int extra_lbits[LENGTH_CODES] =
- {
- 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0
- };
- static const int extra_dbits[D_CODES] =
- {
- 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13
- };
- static const int extra_blbits[BL_CODES] =
- {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7
- };
- static const BYTE bl_order[BL_CODES] =
- {
- 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
- };
- /* The lengths of the bit length codes are sent in order of decreasing
- * probability, to avoid transmitting the lengths for unused bit length codes.
- */
- #define Buf_size (8 * 2*sizeof(char))
- /* Number of bits used within bi_buf. (bi_buf might be implemented on
- * more than 16 bits on some systems.)
- */
- /* ===========================================================================
- * static data. These are initialized only once.
- */
- #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
- #include "trees.h"
- struct static_tree_desc_s
- {
- const ct_data *static_tree; /* static tree or NULL */
- const intf *extra_bits; /* extra bits for each code or NULL */
- int extra_base; /* base index for extra_bits */
- int elems; /* max number of elements in the tree */
- int max_length; /* max bit length for the codes */
- };
- static static_tree_desc static_l_desc =
- {
- static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS
- };
- static static_tree_desc static_d_desc =
- {
- static_dtree, extra_dbits, 0, D_CODES, MAX_BITS
- };
- static static_tree_desc static_bl_desc =
- {
- (const ct_data*)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS
- };
- /* ===========================================================================
- * Local (static) routines in this file.
- */
- static void tr_static_init(void);
- static void init_block(deflate_state *s);
- static void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
- static void gen_bitlen OF((deflate_state *s, tree_desc *desc));
- static void gen_codes OF((ct_data *tree, int max_code, WORD *bl_count));
- static void build_tree OF((deflate_state *s, tree_desc *desc));
- static void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
- static void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
- static int build_bl_tree OF((deflate_state *s));
- static void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, int blcodes));
- static void compress_block OF((deflate_state *s, ct_data *ltree, ct_data *dtree));
- static void set_data_type OF((deflate_state *s));
- static DWORD bi_reverse OF((DWORD value, int length));
- static void bi_windup OF((deflate_state *s));
- static void bi_flush OF((deflate_state *s));
- static void copy_block OF((deflate_state *s, BYTE *buf, DWORD len, int header));
- #define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
- /* Send a code of the given tree. c and tree must not have side effects */
- /* ===========================================================================
- * Output a short LSB first on the stream.
- * IN assertion: there is enough room in pendingBuf.
- */
- #define put_short(s, w) { put_byte(s, (BYTE)((w) & 0xff)); put_byte(s, (BYTE)((WORD)(w) >> 8)); }
- /* ===========================================================================
- * Send a value on a given number of bits.
- * IN assertion: length <= 16 and value fits in length bits.
- */
- #define send_bits(s, value, length)
- { int len = length;
- if (s->bi_valid > (int)Buf_size - len) {
- int val = value;
- s->bi_buf |= (val << s->bi_valid);
- put_short(s, s->bi_buf);
- s->bi_buf = (WORD)val >> (Buf_size - s->bi_valid);
- s->bi_valid += len - Buf_size;
- } else {
- s->bi_buf |= (value) << s->bi_valid;
- s->bi_valid += len;
- }
- }
- /* the arguments must not have side effects */
- /* ===========================================================================
- * Initialize the tree data structures for a new zlib stream.
- */
- void _tr_init(deflate_state *s)
- {
- s->l_desc.dyn_tree = s->dyn_ltree;
- s->l_desc.stat_desc = &static_l_desc;
- s->d_desc.dyn_tree = s->dyn_dtree;
- s->d_desc.stat_desc = &static_d_desc;
- s->bl_desc.dyn_tree = s->bl_tree;
- s->bl_desc.stat_desc = &static_bl_desc;
- s->bi_buf = 0;
- s->bi_valid = 0;
- s->last_eob_len = 8; /* enough lookahead for inflate */
- /* Initialize the first block of the first file: */
- init_block(s);
- }
- /* ===========================================================================
- * Initialize a new block.
- */
- static void init_block(deflate_state *s)
- {
- int n;
- for (n = 0; n < L_CODES; n++)
- {
- s->dyn_ltree[n].Freq = 0;
- }
- for (n = 0; n < D_CODES; n++)
- {
- s->dyn_dtree[n].Freq = 0;
- }
- for (n = 0; n < BL_CODES; n++)
- {
- s->bl_tree[n].Freq = 0;
- }
- s->dyn_ltree[END_BLOCK].Freq = 1;
- s->opt_len = s->static_len = 0L;
- s->last_lit = s->matches = 0;
- }
- //-------------------------------------------------------------------------
- #define SMALLEST 1
- /* ===========================================================================
- * Remove the smallest element from the heap and recreate the heap with
- * one less element. Updates heap and heap_len.
- */
- #define pqremove(s, tree, top)
- {
- top = s->heap[SMALLEST];
- s->heap[SMALLEST] = s->heap[s->heap_len--];
- pqdownheap(s, tree, SMALLEST);
- }
- /* ===========================================================================
- * Compares to subtrees, using the tree depth as tie breaker when
- * the subtrees have equal frequency. This minimizes the worst case length.
- */
- #define smaller(tree, n, m, depth)
- (tree[n].Freq < tree[m].Freq ||
- (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
- /* ===========================================================================
- * Restore the heap property by moving down the tree starting at node k,
- * exchanging a node with the smallest of its two sons if necessary, stopping
- * when the heap property is re-established (each father smaller than its
- * two sons).
- */
- static void pqdownheap(deflate_state *s, ct_data *tree, int k)
- {
- int v = s->heap[k];
- int j = k << 1; /* left son of k */
- while (j <= s->heap_len)
- {
- /* Set j to the smallest of the two sons: */
- if (j < s->heap_len && smaller(tree, s->heap[j + 1], s->heap[j], s->depth))
- {
- j++;
- }
- /* Exit if v is smaller than both sons */
- if (smaller(tree, v, s->heap[j], s->depth))
- {
- break;
- }
- /* Exchange v with the smallest son */
- s->heap[k] = s->heap[j];
- k = j;
- /* And continue down the tree, setting j to the left son of k */
- j <<= 1;
- }
- s->heap[k] = v;
- }
- /* ===========================================================================
- * Compute the optimal bit lengths for a tree and update the total bit length
- * for the current block.
- * IN assertion: the fields freq and dad are set, heap[heap_max] and
- * above are the tree nodes sorted by increasing frequency.
- * OUT assertions: the field len is set to the optimal bit length, the
- * array bl_count contains the frequencies for each bit length.
- * The length opt_len is updated; static_len is also updated if stree is
- * not null.
- */
- static void gen_bitlen(deflate_state *s, tree_desc *desc)
- {
- ct_data *tree = desc->dyn_tree;
- int max_code = desc->max_code;
- const ct_data *stree = desc->stat_desc->static_tree;
- const intf *extra = desc->stat_desc->extra_bits;
- int base = desc->stat_desc->extra_base;
- int max_length = desc->stat_desc->max_length;
- int h; /* heap index */
- int n, m; /* iterate over the tree elements */
- int bits; /* bit length */
- int xbits; /* extra bits */
- WORD f; /* frequency */
- int overflow = 0; /* number of elements with bit length too large */
- for (bits = 0; bits <= MAX_BITS; bits++)
- {
- s->bl_count[bits] = 0;
- }
- /* In a first pass, compute the optimal bit lengths (which may
- * overflow in the case of the bit length tree).
- */
- tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
- for (h = s->heap_max + 1; h < HEAP_SIZE; h++)
- {
- n = s->heap[h];
- bits = tree[tree[n].Dad].Len + 1;
- if (bits > max_length)
- {
- bits = max_length, overflow++;
- }
- tree[n].Len = (WORD)bits;
- /* We overwrite tree[n].Dad which is no longer needed */
- if (n > max_code)
- {
- continue;
- }
- /* not a leaf node */
- s->bl_count[bits]++;
- xbits = 0;
- if (n >= base)
- {
- xbits = extra[n - base];
- }
- f = tree[n].Freq;
- s->opt_len += (DWORD)f *(bits + xbits);
- if (stree)
- {
- s->static_len += (DWORD)f *(stree[n].Len + xbits);
- }
- }
- if (!overflow)
- {
- return ;
- }
- /* This happens for example on obj2 and pic of the Calgary corpus */
- /* Find the first bit length which could increase: */
- do
- {
- bits = max_length - 1;
- while (s->bl_count[bits] == 0)bits--;
- s->bl_count[bits]--; /* move one leaf down the tree */
- s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
- s->bl_count[max_length]--;
- /* The brother of the overflow item also moves one step up,
- * but this does not affect bl_count[max_length]
- */
- overflow -= 2;
- }
- while (overflow > 0)
- ;
- /* Now recompute all bit lengths, scanning in increasing frequency.
- * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
- * lengths instead of fixing only the wrong ones. This idea is taken
- * from 'ar' written by Haruhiko Okumura.)
- */
- for (bits = max_length; bits != 0; bits--)
- {
- n = s->bl_count[bits];
- while (n != 0)
- {
- m = s->heap[--h];
- if (m > max_code)
- {
- continue;
- }
- if (tree[m].Len != (DWORD)bits)
- {
- s->opt_len += ((long)bits - (long)tree[m].Len)*(long)tree[m].Freq;
- tree[m].Len = (WORD)bits;
- }
- n--;
- }
- }
- }
- /* ===========================================================================
- * Generate the codes for a given tree and bit counts (which need not be
- * optimal).
- * IN assertion: the array bl_count contains the bit length statistics for
- * the given tree and the field len is set for all tree elements.
- * OUT assertion: the field code is set for all tree elements of non
- * zero code length.
- */
- static void gen_codes(ct_data *tree, int max_code, WORD *bl_count)
- {
- WORD next_code[MAX_BITS + 1]; /* next code value for each bit length */
- WORD code = 0; /* running code value */
- int bits; /* bit index */
- int n; /* code index */
- /* The distribution counts are first used to generate the code values
- * without bit reversal.
- */
- for (bits = 1; bits <= MAX_BITS; bits++)
- {
- next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
- }
- /* Check that the bit counts in bl_count are consistent. The last code
- * must be all ones.
- */
- for (n = 0; n <= max_code; n++)
- {
- int len = tree[n].Len;
- if (len == 0)
- {
- continue;
- }
- /* Now reverse the bits - DW */
- tree[n].Code = (WORD)bi_reverse(next_code[len]++, len);
- }
- }
- /* ===========================================================================
- * Construct one Huffman tree and assigns the code bit strings and lengths.
- * Update the total bit length for the current block.
- * IN assertion: the field freq is set for all tree elements.
- * OUT assertions: the fields len and code are set to the optimal bit length
- * and corresponding code. The length opt_len is updated; static_len is
- * also updated if stree is not null. The field max_code is set.
- */
- static void build_tree(deflate_state *s, tree_desc *desc)
- {
- ct_data *tree = desc->dyn_tree;
- const ct_data *stree = desc->stat_desc->static_tree;
- int elems = desc->stat_desc->elems;
- int n, m; /* iterate over heap elements */
- int max_code = - 1; /* largest code with non zero frequency */
- int node; /* new node being created */
- /* Construct the initial heap, with least frequent element in
- * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
- * heap[0] is not used.
- */
- s->heap_len = 0, s->heap_max = HEAP_SIZE;
- for (n = 0; n < elems; n++)
- {
- if (tree[n].Freq != 0)
- {
- s->heap[++(s->heap_len)] = max_code = n;
- s->depth[n] = 0;
- }
- else
- {
- tree[n].Len = 0;
- }
- }
- /* The pkzip format requires that at least one distance code exists,
- * and that at least one bit should be sent even if there is only one
- * possible code. So to avoid special checks later on we force at least
- * two codes of non zero frequency.
- */
- while (s->heap_len < 2)
- {
- node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code: 0);
- tree[node].Freq = 1;
- s->depth[node] = 0;
- s->opt_len--;
- if (stree)
- {
- s->static_len -= stree[node].Len;
- }
- /* node is 0 or 1 so it does not have extra bits */
- }
- desc->max_code = max_code;
- /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
- * establish sub-heaps of increasing lengths:
- */
- for (n = s->heap_len / 2; n >= 1; n--)
- {
- pqdownheap(s, tree, n);
- }
- /* Construct the Huffman tree by repeatedly combining the least two
- * frequent nodes.
- */
- node = elems; /* next internal node of the tree */
- do
- {
- pqremove(s, tree, n); /* n = node of least frequency */
- m = s->heap[SMALLEST]; /* m = node of next least frequency */
- s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
- s->heap[--(s->heap_max)] = m;
- /* Create a new node father of n and m */
- tree[node].Freq = tree[n].Freq + tree[m].Freq;
- s->depth[node] = (BYTE)((s->depth[n] >= s->depth[m] ? s->depth[n]: s->depth[m]) + 1);
- tree[n].Dad = tree[m].Dad = (WORD)node;
- #ifdef DUMP_BL_TREE
- if (tree == s->bl_tree)
- {
- fprintf(stderr, "nnode %d(%d), sons %d(%d) %d(%d)", node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
- }
- #endif
- /* and insert the new node in the heap */
- s->heap[SMALLEST] = node++;
- pqdownheap(s, tree, SMALLEST);
- }
- while (s->heap_len >= 2);
- s->heap[--(s->heap_max)] = s->heap[SMALLEST];
- /* At this point, the fields freq and dad are set. We can now
- * generate the bit lengths.
- */
- gen_bitlen(s, (tree_desc*)desc);
- /* The field len is now set, we can generate the bit codes */
- gen_codes((ct_data*)tree, max_code, s->bl_count);
- }
- /* ===========================================================================
- * Scan a literal or distance tree to determine the frequencies of the codes
- * in the bit length tree.
- */
- static void scan_tree(deflate_state *s, ct_data *tree, int max_code)
- {
- int n; /* iterates over all tree elements */
- int prevlen = - 1; /* last emitted length */
- int curlen; /* length of current code */
- int nextlen = tree[0].Len; /* length of next code */
- int count = 0; /* repeat count of the current code */
- int max_count = 7; /* max repeat count */
- int min_count = 4; /* min repeat count */
- if (nextlen == 0)
- {
- max_count = 138, min_count = 3;
- }
- tree[max_code + 1].Len = (WORD)0xffff; /* guard */
- for (n = 0; n <= max_code; n++)
- {
- curlen = nextlen;
- nextlen = tree[n + 1].Len;
- if (++count < max_count && curlen == nextlen)
- {
- continue;
- }
- else if (count < min_count)
- {
- s->bl_tree[curlen].Freq += count;
- }
- else if (curlen != 0)
- {
- if (curlen != prevlen)
- {
- s->bl_tree[curlen].Freq++;
- }
- s->bl_tree[REP_3_6].Freq++;
- }
- else if (count <= 10)
- {
- s->bl_tree[REPZ_3_10].Freq++;
- }
- else
- {
- s->bl_tree[REPZ_11_138].Freq++;
- }
- count = 0;
- prevlen = curlen;
- if (nextlen == 0)
- {
- max_count = 138, min_count = 3;
- }
- else if (curlen == nextlen)
- {
- max_count = 6, min_count = 3;
- }
- else
- {
- max_count = 7, min_count = 4;
- }
- }
- }
- /* ===========================================================================
- * Send a literal or distance tree in compressed form, using the codes in
- * bl_tree.
- */
- static void send_tree(deflate_state *s, ct_data *tree, int max_code)
- {
- int n; /* iterates over all tree elements */
- int prevlen = - 1; /* last emitted length */
- int curlen; /* length of current code */
- int nextlen = tree[0].Len; /* length of next code */
- int count = 0; /* repeat count of the current code */
- int max_count = 7; /* max repeat count */
- int min_count = 4; /* min repeat count */
- /* tree[max_code+1].Len = -1; */ /* guard already set */
- if (nextlen == 0)
- {
- max_count = 138, min_count = 3;
- }
- for (n = 0; n <= max_code; n++)
- {
- curlen = nextlen;
- nextlen = tree[n + 1].Len;
- if (++count < max_count && curlen == nextlen)
- {
- continue;
- }
- else if (count < min_count)
- {
- do
- {
- send_code(s, curlen, s->bl_tree);
- }
- while (--count != 0);
- }
- else if (curlen != 0)
- {
- if (curlen != prevlen)
- {
- send_code(s, curlen, s->bl_tree);
- count--;
- }
- send_code(s, REP_3_6, s->bl_tree);
- send_bits(s, count - 3, 2);
- }
- else if (count <= 10)
- {
- send_code(s, REPZ_3_10, s->bl_tree);
- send_bits(s, count - 3, 3);
- }
- else
- {
- send_code(s, REPZ_11_138, s->bl_tree);
- send_bits(s, count - 11, 7);
- }
- count = 0;
- prevlen = curlen;
- if (nextlen == 0)
- {
- max_count = 138, min_count = 3;
- }
- else if (curlen == nextlen)
- {
- max_count = 6, min_count = 3;
- }
- else
- {
- max_count = 7, min_count = 4;
- }
- }
- }
- /* ===========================================================================
- * Construct the Huffman tree for the bit lengths and return the index in
- * bl_order of the last bit length code to send.
- */
- static int build_bl_tree(deflate_state *s)
- {
- int max_blindex; /* index of last bit length code of non zero freq */
- /* Determine the bit length frequencies for literal and distance trees */
- scan_tree(s, (ct_data*)s->dyn_ltree, s->l_desc.max_code);
- scan_tree(s, (ct_data*)s->dyn_dtree, s->d_desc.max_code);
- /* Build the bit length tree: */
- build_tree(s, (tree_desc*)(&(s->bl_desc)));
- /* opt_len now includes the length of the tree representations, except
- * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
- */
- /* Determine the number of bit length codes to send. The pkzip format
- * requires that at least 4 bit length codes be sent. (appnote.txt says
- * 3 but the actual value used is 4.)
- */
- for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--)
- {
- if (s->bl_tree[bl_order[max_blindex]].Len != 0)
- {
- break;
- }
- }
- /* Update opt_len to include the bit length tree and counts */
- s->opt_len += 3 *(max_blindex + 1) + 5+5+4;
- return max_blindex;
- }
- /* ===========================================================================
- * Send the header for a block using dynamic Huffman trees: the counts, the
- * lengths of the bit length codes, the literal tree and the distance tree.
- * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
- */
- static void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
- {
- int rank; /* index in bl_order */
- send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
- send_bits(s, dcodes - 1, 5);
- send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
- for (rank = 0; rank < blcodes; rank++)
- {
- send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
- }
- send_tree(s, (ct_data*)s->dyn_ltree, lcodes - 1); /* literal tree */
- send_tree(s, (ct_data*)s->dyn_dtree, dcodes - 1); /* distance tree */
- }
- /* ===========================================================================
- * Send a stored block
- */
- void _tr_stored_block(deflate_state *s, BYTE *buf, DWORD stored_len, int eof)
- {
- send_bits(s, (STORED_BLOCK << 1) + eof, 3); /* send block type */
- copy_block(s, buf, (DWORD)stored_len, 1); /* with header */
- }
- /* ===========================================================================
- * Send one empty static block to give enough lookahead for inflate.
- * This takes 10 bits, of which 7 may remain in the bit buffer.
- * The current inflate code requires 9 bits of lookahead. If the
- * last two codes for the previous block (real code plus EOB) were coded
- * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
- * the last real code. In this case we send two empty static blocks instead
- * of one. (There are no problems if the previous block is stored or fixed.)
- * To simplify the code, we assume the worst case of last real code encoded
- * on one bit only.
- */
- void _tr_align(deflate_state *s)
- {
- send_bits(s, STATIC_TREES << 1, 3);
- send_code(s, END_BLOCK, static_ltree);
- bi_flush(s);
- /* Of the 10 bits for the empty block, we have already sent
- * (10 - bi_valid) bits. The lookahead for the last real code (before
- * the EOB of the previous block) was thus at least one plus the length
- * of the EOB plus what we have just sent of the empty static block.
- */
- if (1+s->last_eob_len + 10-s->bi_valid < 9)
- {
- send_bits(s, STATIC_TREES << 1, 3);
- send_code(s, END_BLOCK, static_ltree);
- bi_flush(s);
- }
- s->last_eob_len = 7;
- }
- /* ===========================================================================
- * Determine the best encoding for the current block: dynamic trees, static
- * trees or store, and output the encoded block to the zip file.
- */
- void _tr_flush_block(deflate_state *s, BYTE *buf, DWORD stored_len, int eof)
- {
- DWORD opt_lenb, static_lenb; /* opt_len and static_len in bytes */
- int max_blindex = 0; /* index of last bit length code of non zero freq */
- /* Build the Huffman trees unless a stored block is forced */
- if (s->level > 0)
- {
- /* Check if the file is ascii or binary */
- if (s->data_type == Z_UNKNOWN)
- {
- set_data_type(s);
- }
- /* Construct the literal and distance trees */
- build_tree(s, (tree_desc*)(&(s->l_desc)));
- build_tree(s, (tree_desc*)(&(s->d_desc)));
- /* At this point, opt_len and static_len are the total bit lengths of
- * the compressed block data, excluding the tree representations.
- */
- /* Build the bit length tree for the above two trees, and get the index
- * in bl_order of the last bit length code to send.
- */
- max_blindex = build_bl_tree(s);
- /* Determine the best encoding. Compute the block lengths in bytes. */
- opt_lenb = (s->opt_len + 3+7) >> 3;
- static_lenb = (s->static_len + 3+7) >> 3;
- if (static_lenb <= opt_lenb)
- {
- opt_lenb = static_lenb;
- }
- }
- else
- {
- opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
- }
- #ifdef FORCE_STORED
- if (buf != (char*)0)
- {
- /* force stored block */
- #else
- if (stored_len + 4 <= opt_lenb && buf != (char*)0)
- {
- /* 4: two words for the lengths */
- #endif
- /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
- * Otherwise we can't have processed more than WSIZE input bytes since
- * the last block flush, because compression would have been
- * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
- * transform a block into a stored block.
- */
- _tr_stored_block(s, buf, stored_len, eof);
- #ifdef FORCE_STATIC
- }
- else if (static_lenb >= 0)
- {
- /* force static trees */
- #else
- }
- else if (static_lenb == opt_lenb)
- {
- #endif
- send_bits(s, (STATIC_TREES << 1) + eof, 3);
- compress_block(s, (ct_data*)static_ltree, (ct_data*)static_dtree);
- }
- else
- {
- send_bits(s, (DYN_TREES << 1) + eof, 3);
- send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1, max_blindex + 1);
- compress_block(s, (ct_data*)s->dyn_ltree, (ct_data*)s->dyn_dtree);
- }
- /* The above check is made mod 2^32, for files larger than 512 MB
- * and uLong implemented on 32 bits.
- */
- init_block(s);
- if (eof)
- {
- bi_windup(s);
- }
- }
- /* ===========================================================================
- * Save the match info and tally the frequency counts. Return true if
- * the current block must be flushed.
- */
- int _tr_tally(s, dist, lc)deflate_state *s;
- DWORD dist; /* distance of matched string */
- DWORD lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
- {
- s->d_buf[s->last_lit] = (WORD)dist;
- s->l_buf[s->last_lit++] = (BYTE)lc;
- if (dist == 0)
- {
- /* lc is the unmatched char */
- s->dyn_ltree[lc].Freq++;
- }
- else
- {
- s->matches++;
- /* Here, lc is the match length - MIN_MATCH */
- dist--; /* dist = match distance - 1 */
- s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
- s->dyn_dtree[d_code(dist)].Freq++;
- }
- #ifdef TRUNCATE_BLOCK
- /* Try to guess if it is profitable to stop the current block here */
- if ((s->last_lit &0x1fff) == 0 && s->level > 2)
- {
- /* Compute an upper bound for the compressed length */
- ulg out_length = (ulg)s->last_lit *8L;
- ulg in_length = (ulg)((long)s->strstart - s->block_start);
- int dcode;
- for (dcode = 0; dcode < D_CODES; dcode++)
- {
- out_length += (ulg)s->dyn_dtree[dcode].Freq *(5L + extra_dbits[dcode]);
- }
- out_length >>= 3;
- Tracev((stderr, "nlast_lit %u, in %ld, out ~%ld(%ld%%) ", s->last_lit, in_length, out_length, 100L - out_length * 100L / in_length));
- if (s->matches < s->last_lit / 2 && out_length < in_length / 2)
- {
- return 1;
- }
- }
- #endif
- return (s->last_lit == s->lit_bufsize - 1);
- /* We avoid equality with lit_bufsize because of wraparound at 64K
- * on 16 bit machines and because stored blocks are restricted to
- * 64K-1 bytes.
- */
- }
- /* ===========================================================================
- * Send the block data compressed using the given Huffman trees
- */
- static void compress_block(deflate_state *s, ct_data *ltree, ct_data *dtree)
- {
- DWORD dist; /* distance of matched string */
- int lc; /* match length or unmatched char (if dist == 0) */
- DWORD lx = 0; /* running index in l_buf */
- DWORD code; /* the code to send */
- int extra; /* number of extra bits to send */
- if (s->last_lit != 0)
- {
- do
- {
- dist = s->d_buf[lx];
- lc = s->l_buf[lx++];
- if (dist == 0)
- {
- send_code(s, lc, ltree); /* send a literal byte */
- }
- else
- {
- /* Here, lc is the match length - MIN_MATCH */
- code = _length_code[lc];
- send_code(s, code + LITERALS + 1, ltree); /* send the length code */
- extra = extra_lbits[code];
- if (extra != 0)
- {
- lc -= base_length[code];
- send_bits(s, lc, extra); /* send the extra length bits */
- }
- dist--; /* dist is now the match distance - 1 */
- code = d_code(dist);
- send_code(s, code, dtree); /* send the distance code */
- extra = extra_dbits[code];
- if (extra != 0)
- {
- dist -= base_dist[code];
- send_bits(s, dist, extra); /* send the extra distance bits */
- }
- } /* literal or match pair ? */
- /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
- }
- while (lx < s->last_lit);
- }
- send_code(s, END_BLOCK, ltree)
- ;
- s->last_eob_len = ltree[END_BLOCK].Len;
- }
- /* ===========================================================================
- * Set the data type to ASCII or BINARY, using a crude approximation:
- * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
- * IN assertion: the fields freq of dyn_ltree are set and the total of all
- * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
- */
- static void set_data_type(deflate_state *s)
- {
- int n = 0;
- DWORD ascii_freq = 0;
- DWORD bin_freq = 0;
- while (n < 7)
- {
- bin_freq += s->dyn_ltree[n++].Freq;
- }
- while (n < 128)
- {
- ascii_freq += s->dyn_ltree[n++].Freq;
- }
- while (n < LITERALS)
- {
- bin_freq += s->dyn_ltree[n++].Freq;
- }
- s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
- }
- /* ===========================================================================
- * Reverse the first len bits of a code, using straightforward code (a faster
- * method would use a table)
- * IN assertion: 1 <= len <= 15
- */
- static DWORD bi_reverse(DWORD code, int len)
- {
- register DWORD res = 0;
- do
- {
- res |= code &1;
- code >>= 1, res <<= 1;
- }
- while (--len > 0);
- return res >> 1;
- }
- /* ===========================================================================
- * Flush the bit buffer, keeping at most 7 bits in it.
- */
- static void bi_flush(deflate_state *s)
- {
- if (s->bi_valid == 16)
- {
- put_short(s, s->bi_buf);
- s->bi_buf = 0;
- s->bi_valid = 0;
- }
- else if (s->bi_valid >= 8)
- {
- put_byte(s, (Byte)s->bi_buf);
- s->bi_buf >>= 8;
- s->bi_valid -= 8;
- }
- }
- /* ===========================================================================
- * Flush the bit buffer and align the output on a byte boundary
- */
- static void bi_windup(deflate_state *s)
- {
- if (s->bi_valid > 8)
- {
- put_short(s, s->bi_buf);
- }
- else if (s->bi_valid > 0)
- {
- put_byte(s, (Byte)s->bi_buf);
- }
- s->bi_buf = 0;
- s->bi_valid = 0;
- }
- /* ===========================================================================
- * Copy a stored block, storing first the length and its
- * one's complement if requested.
- */
- static void copy_block(deflate_state *s, BYTE *buf, DWORD len, int header)
- {
- bi_windup(s); /* align on byte boundary */
- s->last_eob_len = 8; /* enough lookahead for inflate */
- if (header)
- {
- put_short(s, (WORD)len);
- put_short(s, (WORD)~len);
- }
- while (len--)
- {
- put_byte(s, *buf++);
- }
- }