customorbit.cpp
上传用户:center1979
上传日期:2022-07-26
资源大小:50633k
文件大小:103k
- // customorbit.cpp
- //
- // Copyright (C) 2001, Chris Laurel <claurel@shatters.net>
- //
- // This program is free software; you can redistribute it and/or
- // modify it under the terms of the GNU General Public License
- // as published by the Free Software Foundation; either version 2
- // of the License, or (at your option) any later version.
- #include <cassert>
- #include <vector>
- #include <fstream>
- #include <iomanip>
- #include <celmath/mathlib.h>
- #include <celmath/quaternion.h>
- #include "astro.h"
- #include "customorbit.h"
- #include "vsop87.h"
- #include "jpleph.h"
- using namespace std;
- #define TWOPI 6.28318530717958647692
- #define LPEJ 0.23509484 // Longitude of perihelion of Jupiter
- // These are required because the orbits of the Jovian and Saturnian
- // satellites are computed in units of their parent planets' radii.
- static const double JupiterRadius = 71398.0;
- static const double SaturnRadius = 60330.0;
- // The expressions for custom orbits are complex, so the bounding radii are
- // generally must computed from mean orbital elements. It's important that
- // a sphere with the bounding radius completely enclose the orbit, so we
- // multiply by this factor to make the bounding radius a bit larger than
- // the apocenter distance computed from the mean elements.
- static const double BoundingRadiusSlack = 1.2;
- static bool jplephInitialized = false;
- static JPLEphemeris* jpleph = NULL;
- double gPlanetElements[8][9];
- double gElements[8][23] = {
- { /* mercury... */
- 178.179078, 415.2057519, 3.011e-4, 0.0,
- 75.899697, 1.5554889, 2.947e-4, 0.0,
- .20561421, 2.046e-5, 3e-8, 0.0,
- 7.002881, 1.8608e-3, -1.83e-5, 0.0,
- 47.145944, 1.1852083, 1.739e-4, 0.0,
- .3870986, 6.74, -0.42
- },
- { /* venus... */
- 342.767053, 162.5533664, 3.097e-4, 0.0,
- 130.163833, 1.4080361, -9.764e-4, 0.0,
- 6.82069e-3, -4.774e-5, 9.1e-8, 0.0,
- 3.393631, 1.0058e-3, -1e-6, 0.0,
- 75.779647, .89985, 4.1e-4, 0.0,
- .7233316, 16.92, -4.4
- },
- { /* mars... */
- 293.737334, 53.17137642, 3.107e-4, 0.0,
- 3.34218203e2, 1.8407584, 1.299e-4, -1.19e-6,
- 9.33129e-2, 9.2064e-5, 7.7e-8, 0.0,
- 1.850333, -6.75e-4, 1.26e-5, 0.0,
- 48.786442, .7709917, -1.4e-6, -5.33e-6,
- 1.5236883, 9.36, -1.52
- },
- { /* jupiter... */
- 238.049257, 8.434172183, 3.347e-4, -1.65e-6,
- 1.2720972e1, 1.6099617, 1.05627e-3, -3.43e-6,
- 4.833475e-2, 1.6418e-4, -4.676e-7, -1.7e-9,
- 1.308736, -5.6961e-3, 3.9e-6, 0.0,
- 99.443414, 1.01053, 3.5222e-4, -8.51e-6,
- 5.202561, 196.74, -9.4
- },
- { /* saturn... */
- 266.564377, 3.398638567, 3.245e-4, -5.8e-6,
- 9.1098214e1, 1.9584158, 8.2636e-4, 4.61e-6,
- 5.589232e-2, -3.455e-4, -7.28e-7, 7.4e-10,
- 2.492519, -3.9189e-3, -1.549e-5, 4e-8,
- 112.790414, .8731951, -1.5218e-4, -5.31e-6,
- 9.554747, 165.6, -8.88
- },
- { /* uranus... */
- 244.19747, 1.194065406, 3.16e-4, -6e-7,
- 1.71548692e2, 1.4844328, 2.372e-4, -6.1e-7,
- 4.63444e-2, -2.658e-5, 7.7e-8, 0.0,
- .772464, 6.253e-4, 3.95e-5, 0.0,
- 73.477111, .4986678, 1.3117e-3, 0.0,
- 19.21814, 65.8, -7.19
- },
- { /* neptune... */
- 84.457994, .6107942056, 3.205e-4, -6e-7,
- 4.6727364e1, 1.4245744, 3.9082e-4, -6.05e-7,
- 8.99704e-3, 6.33e-6, -2e-9, 0.0,
- 1.779242, -9.5436e-3, -9.1e-6, 0.0,
- 130.681389, 1.098935, 2.4987e-4, -4.718e-6,
- 30.10957, 62.2, -6.87
- },
- { /* pluto...(osculating 1984 jan 21) */
- 95.3113544, .3980332167, 0.0, 0.0,
- 224.017, 0.0, 0.0, 0.0,
- .25515, 0.0, 0.0, 0.0,
- 17.1329, 0.0, 0.0, 0.0,
- 110.191, 0.0, 0.0, 0.0,
- 39.8151, 8.2, -1.0
- }
- };
- // Useful version of trig functions which operate on values in degrees instead
- // of radians.
- static double sinD(double theta)
- {
- return sin(degToRad(theta));
- }
- static double cosD(double theta)
- {
- return cos(degToRad(theta));
- }
- static double Obliquity(double t)
- {
- // Parameter t represents the Julian centuries elapsed since 1900.
- // In other words, t = (jd - 2415020.0) / 36525.0
- return degToRad(2.345229444E1 - ((((-1.81E-3*t)+5.9E-3)*t+4.6845E1)*t)/3600.0);
- }
- static void Nutation(double t, double &deps, double& dpsi)
- {
- // Parameter t represents the Julian centuries elapsed since 1900.
- // In other words, t = (jd - 2415020.0) / 36525.0
- double ls, ld; // sun's mean longitude, moon's mean longitude
- double ms, md; // sun's mean anomaly, moon's mean anomaly
- double nm; // longitude of moon's ascending node
- double t2;
- double tls, tnm, tld; // twice above
- double a, b;
- t2 = t*t;
- a = 100.0021358*t;
- b = 360.*(a-(int)a);
- ls = 279.697+.000303*t2+b;
- a = 1336.855231*t;
- b = 360.*(a-(int)a);
- ld = 270.434-.001133*t2+b;
- a = 99.99736056000026*t;
- b = 360.*(a-(int)a);
- ms = 358.476-.00015*t2+b;
- a = 13255523.59*t;
- b = 360.*(a-(int)a);
- md = 296.105+.009192*t2+b;
- a = 5.372616667*t;
- b = 360.*(a-(int)a);
- nm = 259.183+.002078*t2-b;
- //convert to radian forms for use with trig functions.
- tls = 2*degToRad(ls);
- nm = degToRad(nm);
- tnm = 2*degToRad(nm);
- ms = degToRad(ms);
- tld = 2*degToRad(ld);
- md = degToRad(md);
- // find delta psi and eps, in arcseconds.
- dpsi = (-17.2327-.01737*t)*sin(nm)+(-1.2729-.00013*t)*sin(tls)
- +.2088*sin(tnm)-.2037*sin(tld)+(.1261-.00031*t)*sin(ms)
- +.0675*sin(md)-(.0497-.00012*t)*sin(tls+ms)
- -.0342*sin(tld-nm)-.0261*sin(tld+md)+.0214*sin(tls-ms)
- -.0149*sin(tls-tld+md)+.0124*sin(tls-nm)+.0114*sin(tld-md);
- deps = (9.21+.00091*t)*cos(nm)+(.5522-.00029*t)*cos(tls)
- -.0904*cos(tnm)+.0884*cos(tld)+.0216*cos(tls+ms)
- +.0183*cos(tld-nm)+.0113*cos(tld+md)-.0093*cos(tls-ms)
- -.0066*cos(tls-nm);
- // convert to radians.
- dpsi = degToRad(dpsi/3600);
- deps = degToRad(deps/3600);
- }
- static void EclipticToEquatorial(double t, double fEclLat, double fEclLon,
- double& RA, double& dec)
- {
- // Parameter t represents the Julian centuries elapsed since 1900.
- // In other words, t = (jd - 2415020.0) / 36525.0
- double seps, ceps; // sin and cos of mean obliquity
- double sx, cx, sy, cy, ty;
- double eps;
- double deps, dpsi;
- t = (astro::J2000 - 2415020.0) / 36525.0;
- t = 0;
- eps = Obliquity(t); // mean obliquity for date
- Nutation(t, deps, dpsi);
- eps += deps;
- seps = sin(eps);
- ceps = cos(eps);
- sy = sin(fEclLat);
- cy = cos(fEclLat); // always non-negative
- if (fabs(cy)<1e-20)
- cy = 1e-20; // insure > 0
- ty = sy/cy;
- cx = cos(fEclLon);
- sx = sin(fEclLon);
- dec = asin((sy*ceps)+(cy*seps*sx));
- RA = atan(((sx*ceps)-(ty*seps))/cx);
- if (cx<0)
- RA += PI; // account for atan quad ambiguity
- RA = pfmod(RA, TWOPI);
- }
- // Convert equatorial coordinates from one epoch to another. Method is from
- // Chapter 21 of Meeus's _Astronomical Algorithms_
- void EpochConvert(double jdFrom, double jdTo,
- double a0, double d0,
- double& a, double& d)
- {
- double T = (jdFrom - astro::J2000) / 36525.0;
- double t = (jdTo - jdFrom) / 36525.0;
- double zeta = (2306.2181 + 1.39656 * T - 0.000139 * T * T) * t +
- (0.30188 - 0.000344 * T) * t * t + 0.017998 * t * t * t;
- double z = (2306.2181 + 1.39656 * T - 0.000139 * T * T) * t +
- (1.09468 + 0.000066 * T) * t * t + 0.018203 * t * t * t;
- double theta = (2004.3109 - 0.85330 * T - 0.000217 * T * T) * t -
- (0.42665 + 0.000217 * T) * t * t - 0.041833 * t * t * t;
- zeta = degToRad(zeta / 3600.0);
- z = degToRad(z / 3600.0);
- theta = degToRad(theta / 3600.0);
- double A = cos(d0) * sin(a0 + zeta);
- double B = cos(theta) * cos(d0) * cos(a0 + zeta) -
- sin(theta) * sin(d0);
- double C = sin(theta) * cos(d0) * cos(a0 + zeta) +
- cos(theta) * sin(d0);
- a = atan2(A, B) + z;
- d = asin(C);
- }
- double meanAnomalySun(double t)
- {
- double t2, a, b;
- t2 = t*t;
- a = 9.999736042e1*t;
- b = 360*(a - (int)a);
- return degToRad(3.5847583e2 - (1.5e-4 + 3.3e-6*t)*t2 + b);
- }
- void auxJSun(double t, double* x1, double* x2, double* x3, double* x4,
- double* x5, double* x6)
- {
- *x1 = t/5+0.1;
- *x2 = pfmod(4.14473+5.29691e1*t, TWOPI);
- *x3 = pfmod(4.641118+2.132991e1*t, TWOPI);
- *x4 = pfmod(4.250177+7.478172*t, TWOPI);
- *x5 = 5 * *x3 - 2 * *x2;
- *x6 = 2 * *x2 - 6 * *x3 + 3 * *x4;
- }
- void computePlanetElements(double t, vector<int> pList)
- {
- // Parameter t represents the Julian centuries elapsed since 1900.
- // In other words, t = (jd - 2415020.0) / 36525.0
- double *ep, *pp;
- double aa;
- int planet;
- for(unsigned i = 0; i < pList.size(); i++)
- {
- planet = pList[i];
- ep = gElements[planet];
- pp = gPlanetElements[planet];
- aa = ep[1]*t;
- pp[0] = ep[0] + 360*(aa-(int)aa) + (ep[3]*t + ep[2])*t*t;
- *pp = pfmod(*pp, 360.0);
- pp[1] = (ep[1]*9.856263e-3) + (ep[2] + ep[3])/36525;
- for(unsigned j = 4; j < 20; j += 4)
- pp[j/4+1] = ((ep[j+3]*t + ep[j+2])*t + ep[j+1])*t + ep[j+0];
- pp[6] = ep[20];
- pp[7] = ep[21];
- pp[8] = ep[22];
- }
- }
- void computePlanetCoords(int p, double map, double da, double dhl, double dl,
- double dm, double dml, double dr, double ds,
- double& eclLong, double& eclLat, double& distance)
- {
- double s, ma, nu, ea, lp, om, lo, slo, clo, inc, spsi, y;
- s = gPlanetElements[p][3] + ds;
- ma = map + dm;
- astro::anomaly(ma, s, nu, ea);
- distance = (gPlanetElements[p][6] + da)*(1 - s*s)/(1 + s*cos(nu));
- lp = radToDeg(nu) + gPlanetElements[p][2] + radToDeg(dml - dm);
- lp = degToRad(lp);
- om = degToRad(gPlanetElements[p][5]);
- lo = lp - om;
- slo = sin(lo);
- clo = cos(lo);
- inc = degToRad(gPlanetElements[p][4]);
- distance += dr;
- spsi = slo*sin(inc);
- y = slo*cos(inc);
- eclLat = asin(spsi) + dhl;
- spsi = sin(eclLat);
- eclLong = atan(y/clo) + om + degToRad(dl);
- if (clo < 0)
- eclLong += PI;
- eclLong = pfmod(eclLong, TWOPI);
- distance *= KM_PER_AU;
- }
- void ComputeGalileanElements(double t,
- double& l1, double& l2, double& l3, double& l4,
- double& p1, double& p2, double& p3, double& p4,
- double& w1, double& w2, double& w3, double& w4,
- double& gamma, double& phi, double& psi,
- double& G, double& Gp)
- {
- // Parameter t is Julian days, epoch 1950.0.
- l1 = 1.8513962 + 3.551552269981*t;
- l2 = 3.0670952 + 1.769322724929*t;
- l3 = 2.1041485 + 0.87820795239*t;
- l4 = 1.473836 + 0.37648621522*t;
- p1 = 1.69451 + 2.8167146e-3*t;
- p2 = 2.702927 + 8.248962e-4*t;
- p3 = 3.28443 + 1.24396e-4*t;
- p4 = 5.851859 + 3.21e-5*t;
- w1 = 5.451267 - 2.3176901e-3*t;
- w2 = 1.753028 - 5.695121e-4*t;
- w3 = 2.080331 - 1.25263e-4*t;
- w4 = 5.630757 - 3.07063e-5*t;
- gamma = 5.7653e-3*sin(2.85674 + 1.8347e-5*t) + 6.002e-4*sin(0.60189 - 2.82274e-4*t);
- phi = 3.485014 + 3.033241e-3*t;
- psi = 5.524285 - 3.63e-8*t;
- G = 0.527745 + 1.45023893e-3*t + gamma;
- Gp = 0.5581306 + 5.83982523e-4*t;
- }
- //////////////////////////////////////////////////////////////////////////////
- class MercuryOrbit : public CachingOrbit
- {
- public:
- virtual ~MercuryOrbit() {};
- Point3d computePosition(double jd) const
- {
- const int p = 0; //Planet 0
- vector<int> pList;
- double t;
- double map[4];
- double dl, dr, dml, ds, dm, da, dhl;
- double eclLong, eclLat, distance; //heliocentric longitude, latitude, distance
- dl = dr = dml = ds = dm = da = dhl = 0.0;
- // Calculate the Julian centuries elapsed since 1900
- t = (jd - 2415020.0)/36525.0;
- // Specify which planets we must compute elements for
- pList.push_back(0);
- pList.push_back(1);
- pList.push_back(3);
- computePlanetElements(t, pList);
- // Compute necessary planet mean anomalies
- map[0] = degToRad(gPlanetElements[0][0] - gPlanetElements[0][2]);
- map[1] = degToRad(gPlanetElements[1][0] - gPlanetElements[1][2]);
- map[2] = 0.0;
- map[3] = degToRad(gPlanetElements[3][0] - gPlanetElements[3][2]);
- // Compute perturbations
- dl = 2.04e-3*cos(5*map[1]-2*map[0]+2.1328e-1)+
- 1.03e-3*cos(2*map[1]-map[0]-2.8046)+
- 9.1e-4*cos(2*map[3]-map[0]-6.4582e-1)+
- 7.8e-4*cos(5*map[1]-3*map[0]+1.7692e-1);
- dr = 7.525e-6*cos(2*map[3]-map[0]+9.25251e-1)+
- 6.802e-6*cos(5*map[1]-3*map[0]-4.53642)+
- 5.457e-6*cos(2*map[1]-2*map[0]-1.24246)+
- 3.569e-6*cos(5*map[1]-map[0]-1.35699);
- computePlanetCoords(p, map[p], da, dhl, dl, dm, dml, dr, ds,
- eclLong, eclLat, distance);
- // Corrections for internal coordinate system
- eclLat -= (PI/2);
- eclLong += PI;
- return Point3d(cos(eclLong) * sin(eclLat) * distance,
- cos(eclLat) * distance,
- -sin(eclLong) * sin(eclLat) * distance);
- };
- double getPeriod() const
- {
- return 87.9522;
- };
- double getBoundingRadius() const
- {
- return 6.98e+7 * BoundingRadiusSlack;
- };
- };
- class VenusOrbit : public CachingOrbit
- {
- public:
- virtual ~VenusOrbit() {};
- Point3d computePosition(double jd) const
- {
- const int p = 1; //Planet 1
- vector<int> pList;
- double t;
- double map[4], mas;
- double dl, dr, dml, ds, dm, da, dhl;
- double eclLong, eclLat, distance; //heliocentric longitude, latitude, distance
- dl = dr = dml = ds = dm = da = dhl = 0.0;
- //Calculate the Julian centuries elapsed since 1900
- t = (jd - 2415020.0)/36525.0;
- mas = meanAnomalySun(t);
- //Specify which planets we must compute elements for
- pList.push_back(1);
- pList.push_back(3);
- computePlanetElements(t, pList);
- //Compute necessary planet mean anomalies
- map[0] = 0.0;
- map[1] = degToRad(gPlanetElements[1][0] - gPlanetElements[1][2]);
- map[2] = 0.0;
- map[3] = degToRad(gPlanetElements[3][0] - gPlanetElements[3][2]);
- //Compute perturbations
- dml = degToRad(7.7e-4*sin(4.1406+t*2.6227));
- dm = dml;
- dl = 3.13e-3*cos(2*mas-2*map[1]-2.587)+
- 1.98e-3*cos(3*mas-3*map[1]+4.4768e-2)+
- 1.36e-3*cos(mas-map[1]-2.0788)+
- 9.6e-4*cos(3*mas-2*map[1]-2.3721)+
- 8.2e-4*cos(map[3]-map[1]-3.6318);
- dr = 2.2501e-5*cos(2*mas-2*map[1]-1.01592)+
- 1.9045e-5*cos(3*mas-3*map[1]+1.61577)+
- 6.887e-6*cos(map[3]-map[1]-2.06106)+
- 5.172e-6*cos(mas-map[1]-5.08065e-1)+
- 3.62e-6*cos(5*mas-4*map[1]-1.81877)+
- 3.283e-6*cos(4*mas-4*map[1]+1.10851)+
- 3.074e-6*cos(2*map[3]-2*map[1]-9.62846e-1);
- computePlanetCoords(p, map[p], da, dhl, dl, dm, dml, dr, ds,
- eclLong, eclLat, distance);
- //Corrections for internal coordinate system
- eclLat -= (PI/2);
- eclLong += PI;
- return Point3d(cos(eclLong) * sin(eclLat) * distance,
- cos(eclLat) * distance,
- -sin(eclLong) * sin(eclLat) * distance);
- };
- double getPeriod() const
- {
- return 224.7018;
- };
- double getBoundingRadius() const
- {
- return 1.089e+8 * BoundingRadiusSlack;
- };
- };
- class EarthOrbit : public CachingOrbit
- {
- public:
- virtual ~EarthOrbit() {};
- Point3d computePosition(double jd) const
- {
- double t, t2;
- double ls, ms; // mean longitude and mean anomaly
- double s, nu, ea; // eccentricity, true anomaly, eccentric anomaly
- double a, b, a1, b1, c1, d1, e1, h1, dl, dr;
- double eclLong, distance;
- // Calculate the Julian centuries elapsed since 1900
- t = (jd - 2415020.0)/36525.0;
- t2 = t*t;
- a = 100.0021359*t;
- b = 360.*(a-(int)a);
- ls = 279.69668+.0003025*t2+b;
- ms = meanAnomalySun(t);
- s = .016751-.0000418*t-1.26e-07*t2;
- astro::anomaly(degToRad(ms), s, nu, ea);
- a = 62.55209472000015*t;
- b = 360*(a-(int)a);
- a1 = degToRad(153.23+b);
- a = 125.1041894*t;
- b = 360*(a-(int)a);
- b1 = degToRad(216.57+b);
- a = 91.56766028*t;
- b = 360*(a-(int)a);
- c1 = degToRad(312.69+b);
- a = 1236.853095*t;
- b = 360*(a-(int)a);
- d1 = degToRad(350.74-.00144*t2+b);
- e1 = degToRad(231.19+20.2*t);
- a = 183.1353208*t;
- b = 360*(a-(int)a);
- h1 = degToRad(353.4+b);
- dl = .00134*cos(a1)+.00154*cos(b1)+.002*cos(c1)+.00179*sin(d1)+
- .00178*sin(e1);
- dr = 5.43e-06*sin(a1)+1.575e-05*sin(b1)+1.627e-05*sin(c1)+
- 3.076e-05*cos(d1)+9.27e-06*sin(h1);
- eclLong = nu+degToRad(ls-ms+dl) + PI;
- eclLong = pfmod(eclLong, TWOPI);
- distance = KM_PER_AU * (1.0000002*(1-s*cos(ea))+dr);
- // Correction for internal coordinate system
- eclLong += PI;
- return Point3d(-cos(eclLong) * distance,
- 0,
- sin(eclLong) * distance);
- };
- double getPeriod() const
- {
- return 365.25;
- };
- double getBoundingRadius() const
- {
- return 1.52e+8 * BoundingRadiusSlack;
- };
- };
- class LunarOrbit : public CachingOrbit
- {
- public:
- virtual ~LunarOrbit() {};
- Point3d computePosition(double jd) const
- {
- double jd19, t, t2;
- double ld, ms, md, de, f, n, hp;
- double a, sa, sn, b, sb, c, sc, e, e2, l, g, w1, w2;
- double m1, m2, m3, m4, m5, m6;
- double eclLon, eclLat, horzPar, distance;
- double RA, dec;
- // Computation requires an abbreviated Julian day:
- // epoch January 0.5, 1900.
- jd19 = jd - 2415020.0;
- t = jd19/36525;
- t2 = t*t;
- m1 = jd19/27.32158213;
- m1 = 360.0*(m1-(int)m1);
- m2 = jd19/365.2596407;
- m2 = 360.0*(m2-(int)m2);
- m3 = jd19/27.55455094;
- m3 = 360.0*(m3-(int)m3);
- m4 = jd19/29.53058868;
- m4 = 360.0*(m4-(int)m4);
- m5 = jd19/27.21222039;
- m5 = 360.0*(m5-(int)m5);
- m6 = jd19/6798.363307;
- m6 = 360.0*(m6-(int)m6);
- ld = 270.434164+m1-(.001133-.0000019*t)*t2;
- ms = 358.475833+m2-(.00015+.0000033*t)*t2;
- md = 296.104608+m3+(.009192+.0000144*t)*t2;
- de = 350.737486+m4-(.001436-.0000019*t)*t2;
- f = 11.250889+m5-(.003211+.0000003*t)*t2;
- n = 259.183275-m6+(.002078+.000022*t)*t2;
- a = degToRad(51.2+20.2*t);
- sa = sin(a);
- sn = sin(degToRad(n));
- b = 346.56+(132.87-.0091731*t)*t;
- sb = .003964*sin(degToRad(b));
- c = degToRad(n+275.05-2.3*t);
- sc = sin(c);
- ld = ld+.000233*sa+sb+.001964*sn;
- ms = ms-.001778*sa;
- md = md+.000817*sa+sb+.002541*sn;
- f = f+sb-.024691*sn-.004328*sc;
- de = de+.002011*sa+sb+.001964*sn;
- e = 1-(.002495+7.52e-06*t)*t;
- e2 = e*e;
- ld = degToRad(ld);
- ms = degToRad(ms);
- n = degToRad(n);
- de = degToRad(de);
- f = degToRad(f);
- md = degToRad(md);
- l = 6.28875*sin(md)+1.27402*sin(2*de-md)+.658309*sin(2*de)+
- .213616*sin(2*md)-e*.185596*sin(ms)-.114336*sin(2*f)+
- .058793*sin(2*(de-md))+.057212*e*sin(2*de-ms-md)+
- .05332*sin(2*de+md)+.045874*e*sin(2*de-ms)+.041024*e*sin(md-ms);
- l = l-.034718*sin(de)-e*.030465*sin(ms+md)+.015326*sin(2*(de-f))-
- .012528*sin(2*f+md)-.01098*sin(2*f-md)+.010674*sin(4*de-md)+
- .010034*sin(3*md)+.008548*sin(4*de-2*md)-e*.00791*sin(ms-md+2*de)-
- e*.006783*sin(2*de+ms);
- l = l+.005162*sin(md-de)+e*.005*sin(ms+de)+.003862*sin(4*de)+
- e*.004049*sin(md-ms+2*de)+.003996*sin(2*(md+de))+
- .003665*sin(2*de-3*md)+e*.002695*sin(2*md-ms)+
- .002602*sin(md-2*(f+de))+e*.002396*sin(2*(de-md)-ms)-
- .002349*sin(md+de);
- l = l+e2*.002249*sin(2*(de-ms))-e*.002125*sin(2*md+ms)-
- e2*.002079*sin(2*ms)+e2*.002059*sin(2*(de-ms)-md)-
- .001773*sin(md+2*(de-f))-.001595*sin(2*(f+de))+
- e*.00122*sin(4*de-ms-md)-.00111*sin(2*(md+f))+.000892*sin(md-3*de);
- l = l-e*.000811*sin(ms+md+2*de)+e*.000761*sin(4*de-ms-2*md)+
- e2*.000704*sin(md-2*(ms+de))+e*.000693*sin(ms-2*(md-de))+
- e*.000598*sin(2*(de-f)-ms)+.00055*sin(md+4*de)+.000538*sin(4*md)+
- e*.000521*sin(4*de-ms)+.000486*sin(2*md-de);
- l = l+e2*.000717*sin(md-2*ms);
- eclLon = ld+degToRad(l);
- eclLon = pfmod(eclLon, TWOPI);
- g = 5.12819*sin(f)+.280606*sin(md+f)+.277693*sin(md-f)+
- .173238*sin(2*de-f)+.055413*sin(2*de+f-md)+.046272*sin(2*de-f-md)+
- .032573*sin(2*de+f)+.017198*sin(2*md+f)+.009267*sin(2*de+md-f)+
- .008823*sin(2*md-f)+e*.008247*sin(2*de-ms-f);
- g = g+.004323*sin(2*(de-md)-f)+.0042*sin(2*de+f+md)+
- e*.003372*sin(f-ms-2*de)+e*.002472*sin(2*de+f-ms-md)+
- e*.002222*sin(2*de+f-ms)+e*.002072*sin(2*de-f-ms-md)+
- e*.001877*sin(f-ms+md)+.001828*sin(4*de-f-md)-e*.001803*sin(f+ms)-
- .00175*sin(3*f);
- g = g+e*.00157*sin(md-ms-f)-.001487*sin(f+de)-e*.001481*sin(f+ms+md)+
- e*.001417*sin(f-ms-md)+e*.00135*sin(f-ms)+.00133*sin(f-de)+
- .001106*sin(f+3*md)+.00102*sin(4*de-f)+.000833*sin(f+4*de-md)+
- .000781*sin(md-3*f)+.00067*sin(f+4*de-2*md);
- g = g+.000606*sin(2*de-3*f)+.000597*sin(2*(de+md)-f)+
- e*.000492*sin(2*de+md-ms-f)+.00045*sin(2*(md-de)-f)+
- .000439*sin(3*md-f)+.000423*sin(f+2*(de+md))+
- .000422*sin(2*de-f-3*md)-e*.000367*sin(ms+f+2*de-md)-
- e*.000353*sin(ms+f+2*de)+.000331*sin(f+4*de);
- g = g+e*.000317*sin(2*de+f-ms+md)+e2*.000306*sin(2*(de-ms)-f)-
- .000283*sin(md+3*f);
- w1 = .0004664*cos(n);
- w2 = .0000754*cos(c);
- eclLat = degToRad(g)*(1-w1-w2);
- hp = .950724+.051818*cos(md)+.009531*cos(2*de-md)+.007843*cos(2*de)+
- .002824*cos(2*md)+.000857*cos(2*de+md)+e*.000533*cos(2*de-ms)+
- e*.000401*cos(2*de-md-ms)+e*.00032*cos(md-ms)-.000271*cos(de)-
- e*.000264*cos(ms+md)-.000198*cos(2*f-md);
- hp = hp+.000173*cos(3*md)+.000167*cos(4*de-md)-e*.000111*cos(ms)+
- .000103*cos(4*de-2*md)-.000084*cos(2*md-2*de)-
- e*.000083*cos(2*de+ms)+.000079*cos(2*de+2*md)+.000072*cos(4*de)+
- e*.000064*cos(2*de-ms+md)-e*.000063*cos(2*de+ms-md)+
- e*.000041*cos(ms+de);
- hp = hp+e*.000035*cos(2*md-ms)-.000033*cos(3*md-2*de)-
- .00003*cos(md+de)-.000029*cos(2*(f-de))-e*.000029*cos(2*md+ms)+
- e2*.000026*cos(2*(de-ms))-.000023*cos(2*(f-de)+md)+
- e*.000019*cos(4*de-ms-md);
- horzPar = degToRad(hp);
- // At this point we have values of ecliptic longitude, latitude and
- // horizontal parallax (eclLong, eclLat, horzPar) in radians.
- // Now compute distance using horizontal parallax.
- distance = 6378.14 / sin(horzPar);
- #if 1
- // Finally convert eclLat, eclLon to RA, Dec.
- EclipticToEquatorial(t, eclLat, eclLon, RA, dec);
- // RA and Dec are referred to the equinox of date; we want to use
- // the J2000 equinox instead. A better idea would be to directly
- // compute the position of the Moon in this coordinate system, but
- // this was easier.
- EpochConvert(jd, astro::J2000, RA, dec, RA, dec);
- // Corrections for internal coordinate system
- dec -= (PI/2);
- RA += PI;
- return Point3d(cos(RA) * sin(dec) * distance,
- cos(dec) * distance,
- -sin(RA) * sin(dec) * distance);
- #else
- // Skip the conversion and return ecliptical coordinates
- double x = distance * cos(eclLat) * cos(eclLon);
- double y = distance * cos(eclLat) * sin(eclLon);
- double z = distance * sin(eclLat);
- return Point3d(x, z, -y);
- #endif
- };
- double getPeriod() const
- {
- return 27.321661;
- };
- double getBoundingRadius() const
- {
- return 405504 * BoundingRadiusSlack;
- };
- };
- class MarsOrbit : public CachingOrbit
- {
- public:
- virtual ~MarsOrbit() {};
- Point3d computePosition(double jd) const
- {
- const int p = 2; //Planet 2
- vector<int> pList;
- double t;
- double map[4], mas, a;
- double dl, dr, dml, ds, dm, da, dhl;
- double eclLong, eclLat, distance; //heliocentric longitude, latitude, distance
- dl = dr = dml = ds = dm = da = dhl = 0.0;
- //Calculate the Julian centuries elapsed since 1900
- t = (jd - 2415020.0)/36525.0;
- mas = meanAnomalySun(t);
- //Specify which planets we must compute elements for
- pList.push_back(1);
- pList.push_back(2);
- pList.push_back(3);
- computePlanetElements(t, pList);
- //Compute necessary planet mean anomalies
- map[0] = 0.0;
- map[1] = degToRad(gPlanetElements[1][0] - gPlanetElements[1][2]);
- map[2] = degToRad(gPlanetElements[2][0] - gPlanetElements[2][2]);
- map[3] = degToRad(gPlanetElements[3][0] - gPlanetElements[3][2]);
- //Compute perturbations
- a = 3*map[3]-8*map[2]+4*mas;
- dml = degToRad(-1*(1.133e-2*sin(a)+9.33e-3*cos(a)));
- dm = dml;
- dl = 7.05e-3*cos(map[3]-map[2]-8.5448e-1)+
- 6.07e-3*cos(2*map[3]-map[2]-3.2873)+
- 4.45e-3*cos(2*map[3]-2*map[2]-3.3492)+
- 3.88e-3*cos(mas-2*map[2]+3.5771e-1)+
- 2.38e-3*cos(mas-map[2]+6.1256e-1)+
- 2.04e-3*cos(2*mas-3*map[2]+2.7688)+
- 1.77e-3*cos(3*map[2]-map[2-1]-1.0053)+
- 1.36e-3*cos(2*mas-4*map[2]+2.6894)+
- 1.04e-3*cos(map[3]+3.0749e-1);
- dr = 5.3227e-5*cos(map[3]-map[2]+7.17864e-1)+
- 5.0989e-5*cos(2*map[3]-2*map[2]-1.77997)+
- 3.8278e-5*cos(2*map[3]-map[2]-1.71617)+
- 1.5996e-5*cos(mas-map[2]-9.69618e-1)+
- 1.4764e-5*cos(2*mas-3*map[2]+1.19768)+
- 8.966e-6*cos(map[3]-2*map[2]+7.61225e-1);
- dr += 7.914e-6*cos(3*map[3]-2*map[2]-2.43887)+
- 7.004e-6*cos(2*map[3]-3*map[2]-1.79573)+
- 6.62e-6*cos(mas-2*map[2]+1.97575)+
- 4.93e-6*cos(3*map[3]-3*map[2]-1.33069)+
- 4.693e-6*cos(3*mas-5*map[2]+3.32665)+
- 4.571e-6*cos(2*mas-4*map[2]+4.27086)+
- 4.409e-6*cos(3*map[3]-map[2]-2.02158);
- computePlanetCoords(p, map[p], da, dhl, dl, dm, dml, dr, ds,
- eclLong, eclLat, distance);
- //Corrections for internal coordinate system
- eclLat -= (PI/2);
- eclLong += PI;
- return Point3d(cos(eclLong) * sin(eclLat) * distance,
- cos(eclLat) * distance,
- -sin(eclLong) * sin(eclLat) * distance);
- };
- double getPeriod() const
- {
- return 689.998725;
- };
- double getBoundingRadius() const
- {
- return 2.49e+8 * BoundingRadiusSlack;
- };
- };
- class JupiterOrbit : public CachingOrbit
- {
- public:
- virtual ~JupiterOrbit() {};
- Point3d computePosition(double jd) const
- {
- const int p = 3; //Planet 3
- vector<int> pList(1, p);
- double t, map;
- double dl, dr, dml, ds, dm, da, dhl, s;
- double dp;
- double x1, x2, x3, x4, x5, x6, x7;
- double sx3, cx3, s2x3, c2x3;
- double sx5, cx5, s2x5;
- double sx6;
- double sx7, cx7, s2x7, c2x7, s3x7, c3x7, s4x7, c4x7, c5x7;
- double eclLong, eclLat, distance; //heliocentric longitude, latitude, distance
- dl = dr = dml = ds = dm = da = dhl = 0.0;
- //Calculate the Julian centuries elapsed since 1900
- t = (jd - 2415020.0)/36525.0;
- computePlanetElements(t, pList);
- map = degToRad(gPlanetElements[p][0] - gPlanetElements[p][2]);
- //Compute perturbations
- s = gPlanetElements[p][3];
- auxJSun(t, &x1, &x2, &x3, &x4, &x5, &x6);
- x7 = x3-x2;
- sx3 = sin(x3);
- cx3 = cos(x3);
- s2x3 = sin(2*x3);
- c2x3 = cos(2*x3);
- sx5 = sin(x5);
- cx5 = cos(x5);
- s2x5 = sin(2*x5);
- sx6 = sin(x6);
- sx7 = sin(x7);
- cx7 = cos(x7);
- s2x7 = sin(2*x7);
- c2x7 = cos(2*x7);
- s3x7 = sin(3*x7);
- c3x7 = cos(3*x7);
- s4x7 = sin(4*x7);
- c4x7 = cos(4*x7);
- c5x7 = cos(5*x7);
- dml = (3.31364e-1-(1.0281e-2+4.692e-3*x1)*x1)*sx5+
- (3.228e-3-(6.4436e-2-2.075e-3*x1)*x1)*cx5-
- (3.083e-3+(2.75e-4-4.89e-4*x1)*x1)*s2x5+
- 2.472e-3*sx6+1.3619e-2*sx7+1.8472e-2*s2x7+6.717e-3*s3x7+
- 2.775e-3*s4x7+6.417e-3*s2x7*sx3+
- (7.275e-3-1.253e-3*x1)*sx7*sx3+
- 2.439e-3*s3x7*sx3-(3.5681e-2+1.208e-3*x1)*sx7*cx3;
- dml += -3.767e-3*c2x7*sx3-(3.3839e-2+1.125e-3*x1)*cx7*sx3-
- 4.261e-3*s2x7*cx3+
- (1.161e-3*x1-6.333e-3)*cx7*cx3+
- 2.178e-3*cx3-6.675e-3*c2x7*cx3-2.664e-3*c3x7*cx3-
- 2.572e-3*sx7*s2x3-3.567e-3*s2x7*s2x3+2.094e-3*cx7*c2x3+
- 3.342e-3*c2x7*c2x3;
- dml = degToRad(dml);
- ds = (3606+(130-43*x1)*x1)*sx5+(1289-580*x1)*cx5-6764*sx7*sx3-
- 1110*s2x7*sx3-224*s3x7*sx3-204*sx3+(1284+116*x1)*cx7*sx3+
- 188*c2x7*sx3+(1460+130*x1)*sx7*cx3+224*s2x7*cx3-817*cx3+
- 6074*cx3*cx7+992*c2x7*cx3+
- 508*c3x7*cx3+230*c4x7*cx3+108*c5x7*cx3;
- ds += -(956+73*x1)*sx7*s2x3+448*s2x7*s2x3+137*s3x7*s2x3+
- (108*x1-997)*cx7*s2x3+480*c2x7*s2x3+148*c3x7*s2x3+
- (99*x1-956)*sx7*c2x3+490*s2x7*c2x3+
- 158*s3x7*c2x3+179*c2x3+(1024+75*x1)*cx7*c2x3-
- 437*c2x7*c2x3-132*c3x7*c2x3;
- ds *= 1e-7;
- dp = (7.192e-3-3.147e-3*x1)*sx5-4.344e-3*sx3+
- (x1*(1.97e-4*x1-6.75e-4)-2.0428e-2)*cx5+
- 3.4036e-2*cx7*sx3+(7.269e-3+6.72e-4*x1)*sx7*sx3+
- 5.614e-3*c2x7*sx3+2.964e-3*c3x7*sx3+3.7761e-2*sx7*cx3+
- 6.158e-3*s2x7*cx3-
- 6.603e-3*cx7*cx3-5.356e-3*sx7*s2x3+2.722e-3*s2x7*s2x3+
- 4.483e-3*cx7*s2x3-2.642e-3*c2x7*s2x3+4.403e-3*sx7*c2x3-
- 2.536e-3*s2x7*c2x3+5.547e-3*cx7*c2x3-2.689e-3*c2x7*c2x3;
- dm = dml-(degToRad(dp)/s);
- da = 205*cx7-263*cx5+693*c2x7+312*c3x7+147*c4x7+299*sx7*sx3+
- 181*c2x7*sx3+204*s2x7*cx3+111*s3x7*cx3-337*cx7*cx3-
- 111*c2x7*cx3;
- da *= 1e-6;
- computePlanetCoords(p, map, da, dhl, dl, dm, dml, dr, ds,
- eclLong, eclLat, distance);
- //Corrections for internal coordinate system
- eclLat -= (PI/2);
- eclLong += PI;
- return Point3d(cos(eclLong) * sin(eclLat) * distance,
- cos(eclLat) * distance,
- -sin(eclLong) * sin(eclLat) * distance);
- };
- double getPeriod() const
- {
- return 4332.66855;
- };
- double getBoundingRadius() const
- {
- return 8.16e+8 * BoundingRadiusSlack;
- };
- };
- class SaturnOrbit : public CachingOrbit
- {
- public:
- virtual ~SaturnOrbit() {};
- Point3d computePosition(double jd) const
- {
- const int p = 4; //Planet 4
- vector<int> pList(1, p);
- double t, map;
- double dl, dr, dml, ds, dm, da, dhl, s;
- double dp;
- double x1, x2, x3, x4, x5, x6, x7, x8;
- double sx3, cx3, s2x3, c2x3, s3x3, c3x3, s4x3, c4x3;
- double sx5, cx5, s2x5, c2x5;
- double sx6;
- double sx7, cx7, s2x7, c2x7, s3x7, c3x7, s4x7, c4x7, c5x7, s5x7;
- double s2x8, c2x8, s3x8, c3x8;
- double eclLong, eclLat, distance; //heliocentric longitude, latitude, distance
- dl = dr = dml = ds = dm = da = dhl = 0.0;
- //Calculate the Julian centuries elapsed since 1900
- t = (jd - 2415020.0)/36525.0;
- computePlanetElements(t, pList);
- map = degToRad(gPlanetElements[p][0] - gPlanetElements[p][2]);
- //Compute perturbations
- s = gPlanetElements[p][3];
- auxJSun(t, &x1, &x2, &x3, &x4, &x5, &x6);
- x7 = x3-x2;
- sx3 = sin(x3);
- cx3 = cos(x3);
- s2x3 = sin(2*x3);
- c2x3 = cos(2*x3);
- sx5 = sin(x5);
- cx5 = cos(x5);
- s2x5 = sin(2*x5);
- sx6 = sin(x6);
- sx7 = sin(x7);
- cx7 = cos(x7);
- s2x7 = sin(2*x7);
- c2x7 = cos(2*x7);
- s3x7 = sin(3*x7);
- c3x7 = cos(3*x7);
- s4x7 = sin(4*x7);
- c4x7 = cos(4*x7);
- c5x7 = cos(5*x7);
- s3x3 = sin(3*x3);
- c3x3 = cos(3*x3);
- s4x3 = sin(4*x3);
- c4x3 = cos(4*x3);
- c2x5 = cos(2*x5);
- s5x7 = sin(5*x7);
- x8 = x4-x3;
- s2x8 = sin(2*x8);
- c2x8 = cos(2*x8);
- s3x8 = sin(3*x8);
- c3x8 = cos(3*x8);
- dml = 7.581e-3*s2x5-7.986e-3*sx6-1.48811e-1*sx7-4.0786e-2*s2x7-
- (8.14181e-1-(1.815e-2-1.6714e-2*x1)*x1)*sx5-
- (1.0497e-2-(1.60906e-1-4.1e-3*x1)*x1)*cx5-1.5208e-2*s3x7-
- 6.339e-3*s4x7-6.244e-3*sx3-1.65e-2*s2x7*sx3+
- (8.931e-3+2.728e-3*x1)*sx7*sx3-5.775e-3*s3x7*sx3+
- (8.1344e-2+3.206e-3*x1)*cx7*sx3+1.5019e-2*c2x7*sx3;
- dml += (8.5581e-2+2.494e-3*x1)*sx7*cx3+1.4394e-2*c2x7*cx3+
- (2.5328e-2-3.117e-3*x1)*cx7*cx3+
- 6.319e-3*c3x7*cx3+6.369e-3*sx7*s2x3+9.156e-3*s2x7*s2x3+
- 7.525e-3*s3x8*s2x3-5.236e-3*cx7*c2x3-7.736e-3*c2x7*c2x3-
- 7.528e-3*c3x8*c2x3;
- dml = degToRad(dml);
- ds = (-7927+(2548+91*x1)*x1)*sx5+(13381+(1226-253*x1)*x1)*cx5+
- (248-121*x1)*s2x5-(305+91*x1)*c2x5+412*s2x7+12415*sx3+
- (390-617*x1)*sx7*sx3+(165-204*x1)*s2x7*sx3+26599*cx7*sx3-
- 4687*c2x7*sx3-1870*c3x7*sx3-821*c4x7*sx3-
- 377*c5x7*sx3+497*c2x8*sx3+(163-611*x1)*cx3;
- ds += -12696*sx7*cx3-4200*s2x7*cx3-1503*s3x7*cx3-619*s4x7*cx3-
- 268*s5x7*cx3-(282+1306*x1)*cx7*cx3+(-86+230*x1)*c2x7*cx3+
- 461*s2x8*cx3-350*s2x3+(2211-286*x1)*sx7*s2x3-
- 2208*s2x7*s2x3-568*s3x7*s2x3-346*s4x7*s2x3-
- (2780+222*x1)*cx7*s2x3+(2022+263*x1)*c2x7*s2x3+248*c3x7*s2x3+
- 242*s3x8*s2x3+467*c3x8*s2x3-490*c2x3-(2842+279*x1)*sx7*c2x3;
- ds += (128+226*x1)*s2x7*c2x3+224*s3x7*c2x3+
- (-1594+282*x1)*cx7*c2x3+(2162-207*x1)*c2x7*c2x3+
- 561*c3x7*c2x3+343*c4x7*c2x3+469*s3x8*c2x3-242*c3x8*c2x3-
- 205*sx7*s3x3+262*s3x7*s3x3+208*cx7*c3x3-271*c3x7*c3x3-
- 382*c3x7*s4x3-376*s3x7*c4x3;
- ds *= 1e-7;
- dp = (7.7108e-2+(7.186e-3-1.533e-3*x1)*x1)*sx5-7.075e-3*sx7+
- (4.5803e-2-(1.4766e-2+5.36e-4*x1)*x1)*cx5-7.2586e-2*cx3-
- 7.5825e-2*sx7*sx3-2.4839e-2*s2x7*sx3-8.631e-3*s3x7*sx3-
- 1.50383e-1*cx7*cx3+2.6897e-2*c2x7*cx3+1.0053e-2*c3x7*cx3-
- (1.3597e-2+1.719e-3*x1)*sx7*s2x3+1.1981e-2*s2x7*c2x3;
- dp += -(7.742e-3-1.517e-3*x1)*cx7*s2x3+
- (1.3586e-2-1.375e-3*x1)*c2x7*c2x3-
- (1.3667e-2-1.239e-3*x1)*sx7*c2x3+
- (1.4861e-2+1.136e-3*x1)*cx7*c2x3-
- (1.3064e-2+1.628e-3*x1)*c2x7*c2x3;
- dm = dml-(degToRad(dp)/s);
- da = 572*sx5-1590*s2x7*cx3+2933*cx5-647*s3x7*cx3+33629*cx7-
- 344*s4x7*cx3-3081*c2x7+2885*cx7*cx3-1423*c3x7+
- (2172+102*x1)*c2x7*cx3-671*c4x7+296*c3x7*cx3-320*c5x7-
- 267*s2x7*s2x3+1098*sx3-778*cx7*s2x3-2812*sx7*sx3;
- da += 495*c2x7*s2x3+688*s2x7*sx3+250*c3x7*s2x3-393*s3x7*sx3-
- 856*sx7*c2x3-228*s4x7*sx3+441*s2x7*c2x3+2138*cx7*sx3+
- 296*c2x7*c2x3-999*c2x7*sx3+211*c3x7*c2x3-642*c3x7*sx3-
- 427*sx7*s3x3-325*c4x7*sx3+398*s3x7*s3x3-890*cx3+
- 344*cx7*c3x3+2206*sx7*cx3-427*c3x7*c3x3;
- da *= 1e-6;
- dhl = 7.47e-4*cx7*sx3+1.069e-3*cx7*cx3+2.108e-3*s2x7*s2x3+
- 1.261e-3*c2x7*s2x3+1.236e-3*s2x7*c2x3-2.075e-3*c2x7*c2x3;
- dhl = degToRad(dhl);
- computePlanetCoords(p, map, da, dhl, dl, dm, dml, dr, ds,
- eclLong, eclLat, distance);
- //Corrections for internal coordinate system
- eclLat -= (PI/2);
- eclLong += PI;
- return Point3d(cos(eclLong) * sin(eclLat) * distance,
- cos(eclLat) * distance,
- -sin(eclLong) * sin(eclLat) * distance);
- };
- double getPeriod() const
- {
- return 10759.42493;
- };
- double getBoundingRadius() const
- {
- return 1.50e+9 * BoundingRadiusSlack;
- };
- };
- class UranusOrbit : public CachingOrbit
- {
- public:
- virtual ~UranusOrbit() {};
- Point3d computePosition(double jd) const
- {
- const int p = 5; //Planet 5
- vector<int> pList(1, p);
- double t, map;
- double dl, dr, dml, ds, dm, da, dhl, s;
- double dp;
- double x1, x2, x3, x4, x5, x6;
- double x8, x9, x10, x11, x12;
- double sx4, cx4, s2x4, c2x4;
- double sx9, cx9, s2x9, c2x9;
- double sx11, cx11;
- double eclLong, eclLat, distance; //heliocentric longitude, latitude, distance
- dl = dr = dml = ds = dm = da = dhl = 0.0;
- //Calculate the Julian centuries elapsed since 1900
- t = (jd - 2415020.0)/36525.0;
- computePlanetElements(t, pList);
- map = degToRad(gPlanetElements[p][0] - gPlanetElements[p][2]);
- //Compute perturbations
- s = gPlanetElements[p][3];
- auxJSun(t, &x1, &x2, &x3, &x4, &x5, &x6);
- x8 = pfmod(1.46205+3.81337*t, TWOPI);
- x9 = 2*x8-x4;
- sx9 = sin(x9);
- cx9 = cos(x9);
- s2x9 = sin(2*x9);
- c2x9 = cos(2*x9);
- x10 = x4-x2;
- x11 = x4-x3;
- x12 = x8-x4;
- dml = (8.64319e-1-1.583e-3*x1)*sx9+(8.2222e-2-6.833e-3*x1)*cx9+
- 3.6017e-2*s2x9-3.019e-3*c2x9+8.122e-3*sin(x6);
- dml = degToRad(dml);
- dp = 1.20303e-1*sx9+6.197e-3*s2x9+(1.9472e-2-9.47e-4*x1)*cx9;
- dm = dml-(degToRad(dp)/s);
- ds = (163*x1-3349)*sx9+20981*cx9+1311*c2x9;
- ds *= 1e-7;
- da = -3.825e-3*cx9;
- dl = (1.0122e-2-9.88e-4*x1)*sin(x4+x11)+
- (-3.8581e-2+(2.031e-3-1.91e-3*x1)*x1)*cos(x4+x11)+
- (3.4964e-2-(1.038e-3-8.68e-4*x1)*x1)*cos(2*x4+x11)+
- 5.594e-3*sin(x4+3*x12)-1.4808e-2*sin(x10)-
- 5.794e-3*sin(x11)+2.347e-3*cos(x11)+9.872e-3*sin(x12)+
- 8.803e-3*sin(2*x12)-4.308e-3*sin(3*x12);
- sx11 = sin(x11);
- cx11 = cos(x11);
- sx4 = sin(x4);
- cx4 = cos(x4);
- s2x4 = sin(2*x4);
- c2x4 = cos(2*x4);
- dhl = (4.58e-4*sx11-6.42e-4*cx11-5.17e-4*cos(4*x12))*sx4-
- (3.47e-4*sx11+8.53e-4*cx11+5.17e-4*sin(4*x11))*cx4+
- 4.03e-4*(cos(2*x12)*s2x4+sin(2*x12)*c2x4);
- dhl = degToRad(dhl);
- dr = -25948+4985*cos(x10)-1230*cx4+3354*cos(x11)+904*cos(2*x12)+
- 894*(cos(x12)-cos(3*x12))+(5795*cx4-1165*sx4+1388*c2x4)*sx11+
- (1351*cx4+5702*sx4+1388*s2x4)*cos(x11);
- dr *= 1e-6;
- computePlanetCoords(p, map, da, dhl, dl, dm, dml, dr, ds,
- eclLong, eclLat, distance);
- //Corrections for internal coordinate system
- eclLat -= (PI/2);
- eclLong += PI;
- return Point3d(cos(eclLong) * sin(eclLat) * distance,
- cos(eclLat) * distance,
- -sin(eclLong) * sin(eclLat) * distance);
- };
- double getPeriod() const
- {
- return 30686.07698;
- };
- double getBoundingRadius() const
- {
- return 3.01e+9 * BoundingRadiusSlack;
- };
- };
- class NeptuneOrbit : public CachingOrbit
- {
- public:
- virtual ~NeptuneOrbit() {};
- Point3d computePosition(double jd) const
- {
- const int p = 6; //Planet 6
- vector<int> pList(1, p);
- double t, map;
- double dl, dr, dml, ds, dm, da, dhl, s;
- double dp;
- double x1, x2, x3, x4, x5, x6;
- double x8, x9, x10, x11, x12;
- double sx8, cx8;
- double sx9, cx9, s2x9, c2x9;
- double s2x12, c2x12;
- double eclLong, eclLat, distance; //heliocentric longitude, latitude, distance
- dl = dr = dml = ds = dm = da = dhl = 0.0;
- //Calculate the Julian centuries elapsed since 1900
- t = (jd - 2415020.0)/36525.0;
- computePlanetElements(t, pList);
- map = degToRad(gPlanetElements[p][0] - gPlanetElements[p][2]);
- //Compute perturbations
- s = gPlanetElements[p][3];
- auxJSun(t, &x1, &x2, &x3, &x4, &x5, &x6);
- x8 = pfmod(1.46205+3.81337*t, TWOPI);
- x9 = 2*x8-x4;
- sx9 = sin(x9);
- cx9 = cos(x9);
- s2x9 = sin(2*x9);
- c2x9 = cos(2*x9);
- x10 = x8-x2;
- x11 = x8-x3;
- x12 = x8-x4;
- dml = (1.089e-3*x1-5.89833e-1)*sx9+(4.658e-3*x1-5.6094e-2)*cx9-
- 2.4286e-2*s2x9;
- dml = degToRad(dml);
- dp = 2.4039e-2*sx9-2.5303e-2*cx9+6.206e-3*s2x9-5.992e-3*c2x9;
- dm = dml-(degToRad(dp)/s);
- ds = 4389*sx9+1129*s2x9+4262*cx9+1089*c2x9;
- ds *= 1e-7;
- da = 8189*cx9-817*sx9+781*c2x9;
- da *= 1e-6;
- s2x12 = sin(2*x12);
- c2x12 = cos(2*x12);
- sx8 = sin(x8);
- cx8 = cos(x8);
- dl = -9.556e-3*sin(x10)-5.178e-3*sin(x11)+2.572e-3*s2x12-
- 2.972e-3*c2x12*sx8-2.833e-3*s2x12*cx8;
- dhl = 3.36e-4*c2x12*sx8+3.64e-4*s2x12*cx8;
- dhl = degToRad(dhl);
- dr = -40596+4992*cos(x10)+2744*cos(x11)+2044*cos(x12)+1051*c2x12;
- dr *= 1e-6;
- computePlanetCoords(p, map, da, dhl, dl, dm, dml, dr, ds,
- eclLong, eclLat, distance);
- //Corrections for internal coordinate system
- eclLat -= (PI/2);
- eclLong += PI;
- return Point3d(cos(eclLong) * sin(eclLat) * distance,
- cos(eclLat) * distance,
- -sin(eclLong) * sin(eclLat) * distance);
- };
- double getPeriod() const
- {
- return 60190.64325;
- };
- double getBoundingRadius() const
- {
- return 4.54e+9 * BoundingRadiusSlack;
- };
- };
- class PlutoOrbit : public CachingOrbit
- {
- public:
- virtual ~PlutoOrbit() {};
- Point3d computePosition(double jd) const
- {
- const int p = 7; //Planet 7
- vector<int> pList(1, p);
- double t, map;
- double dl, dr, dml, ds, dm, da, dhl;
- double eclLong, eclLat, distance; //heliocentric longitude, latitude, distance
- dl = dr = dml = ds = dm = da = dhl = 0.0;
- //Calculate the Julian centuries elapsed since 1900
- t = (jd - 2415020.0)/36525.0;
- computePlanetElements(t, pList);
- map = degToRad(gPlanetElements[p][0] - gPlanetElements[p][2]);
- computePlanetCoords(p, map, da, dhl, dl, dm, dml, dr, ds,
- eclLong, eclLat, distance);
- //Corrections for internal coordinate system
- eclLat -= PI / 2;
- eclLong += PI;
- return Point3d(cos(eclLong) * sin(eclLat) * distance,
- cos(eclLat) * distance,
- -sin(eclLong) * sin(eclLat) * distance);
- };
- double getPeriod() const
- {
- return 90779.235;
- };
- double getBoundingRadius() const
- {
- return 7.38e+9 * BoundingRadiusSlack;
- };
- };
- // Compute for mean anomaly M the point on the ellipse with
- // semimajor axis a and eccentricity e. This helper function assumes
- // a low eccentricity; orbit.cpp has functions appropriate for solving
- // Kepler's equation for larger values of e.
- static Point3d ellipsePosition(double a, double e, double M)
- {
- // Solve Kepler's equation--for a low eccentricity orbit, just a few
- // iterations is enough.
- double E = M;
- for (int k = 0; k < 3; k++)
- E = M + e * sin(E);
- return Point3d(a * (cos(E) - e),
- 0.0,
- a * sqrt(1 - square(e)) * -sin(E));
- }
- class PhobosOrbit : public CachingOrbit
- {
- public:
- virtual ~PhobosOrbit() {};
- Point3d computePosition(double jd) const
- {
- double epoch = 2433283.0 - 0.5; // 00:00 1 Jan 1950
- double a = 9380.0;
- double e = 0.0151;
- double w0 = 150.247;
- double M0 = 92.474;
- double i = 1.075;
- double node0 = 164.931;
- double n = 1128.8444155;
- double Pw = 1.131;
- double Pnode = 2.262;
- double refplane_RA = 317.724;
- double refplane_Dec = 52.924;
- double marspole_RA = 317.681;
- double marspole_Dec = 52.886;
- double t = jd - epoch;
- t += 10.5 / 1440.0; // light time correction?
- double T = t / 365.25;
- double dnode = 360.0 / Pnode;
- double dw = 360.0 / Pw;
- double node = degToRad(node0 + T * dnode);
- double w = degToRad(w0 + T * dw - T * dnode);
- double M = degToRad(M0 + t * n - T * dw);
- Point3d p = ellipsePosition(a, e, M);
- // Orientation of the orbital plane with respect to the Laplacian plane
- Mat3d Rorbit = (Mat3d::yrotation(node) *
- Mat3d::xrotation(degToRad(i)) *
- Mat3d::yrotation(w));
- // Rotate to the Earth's equatorial plane
- double N = degToRad(refplane_RA);
- double J = degToRad(90 - refplane_Dec);
- Mat3d RLaplacian = (Mat3d::yrotation( N) *
- Mat3d::xrotation( J) *
- Mat3d::yrotation(-N));
- // Rotate to the Martian equatorial plane
- N = degToRad(marspole_RA);
- J = degToRad(90 - marspole_Dec);
- Mat3d RMars_eq = (Mat3d::yrotation( N) *
- Mat3d::xrotation(-J) *
- Mat3d::yrotation(-N));
- return RMars_eq * (RLaplacian * (Rorbit * p));
- }
- double getPeriod() const
- {
- return 0.319;
- }
- double getBoundingRadius() const
- {
- return 9380 * BoundingRadiusSlack;
- }
- };
- class DeimosOrbit : public CachingOrbit
- {
- public:
- virtual ~DeimosOrbit() {};
- Point3d computePosition(double jd) const
- {
- double epoch = 2433283.0 - 0.5;
- double a = 23460.0;
- double e = 0.0002;
- double w0 = 290.496;
- double M0 = 296.230;
- double i = 1.793;
- double node0 = 339.600;
- double n = 285.1618919;
- double Pw = 26.892;
- double Pnode = 54.536;
- double refplane_RA = 316.700;
- double refplane_Dec = 53.564;
- double marspole_RA = 317.681;
- double marspole_Dec = 52.886;
- double t = jd - epoch;
- t += 10.5 / 1440.0; // light time correction?
- double T = t / 365.25;
- double dnode = 360.0 / Pnode;
- double dw = 360.0 / Pw;
- double node = degToRad(node0 + T * dnode);
- double w = degToRad(w0 + T * dw - T * dnode);
- double M = degToRad(M0 + t * n - T * dw);
- Point3d p = ellipsePosition(a, e, M);
- // Orientation of the orbital plane with respect to the Laplacian plane
- Mat3d Rorbit = (Mat3d::yrotation(node) *
- Mat3d::xrotation(degToRad(i)) *
- Mat3d::yrotation(w));
- // Rotate to the Earth's equatorial plane
- double N = degToRad(refplane_RA);
- double J = degToRad(90 - refplane_Dec);
- Mat3d RLaplacian = (Mat3d::yrotation( N) *
- Mat3d::xrotation( J) *
- Mat3d::yrotation(-N));
- // Rotate to the Martian equatorial plane
- N = degToRad(marspole_RA);
- J = degToRad(90 - marspole_Dec);
- Mat3d RMars_eq = (Mat3d::yrotation( N) *
- Mat3d::xrotation(-J) *
- Mat3d::yrotation(-N));
- return RMars_eq * (RLaplacian * (Rorbit * p));
- }
- #if 0
- // More accurate orbit calculation for Mars from _Explanatory
- // Supplement to the Astronomical Almanac_ There's still a bug in
- // this routine however.
- Point3d computePosition(double jd) const
- {
- double d = jd - 2441266.5; // days since 11 Nov 1971
- double D = d / 365.25; // years
- double a = 1.56828e-4 * KM_PER_AU;
- double n = 285.161888;
- double e = 0.0004;
- double gamma = degToRad(1.79);
- double theta = degToRad(240.38 - 0.01801 * d);
- double h = degToRad(196.55 - 0.01801 * d);
- double L = degToRad(28.96 + n * d - 0.27 * sin(h));
- double P = degToRad(111.7 + 0.01798 * d);
- // N and J give the orientation of the Laplacian plane with respect
- // to the Earth's equator and equinox.
- // N - longitude of ascending node
- // J - inclination
- double N = degToRad(46.37 - 0.0014 * D);
- double J = degToRad(36.62 + 0.0008 * D);
- // Compute the mean anomaly
- double M = L - P;
- // Solve Kepler's equation--for a low eccentricity orbit, just a few
- // iterations is enough.
- double E = M;
- for (int i = 0; i < 3; i++)
- E = M + e * sin(E);
- // Compute the position in the orbital plane (y = 0)
- double x = a * (cos(E) - e);
- double z = a * sqrt(1 - square(e)) * -sin(E);
- // Orientation of the orbital plane with respect to the Laplacian plane
- Mat3d Rorbit = (Mat3d::yrotation(theta) *
- Mat3d::xrotation(gamma) *
- Mat3d::yrotation(P - theta));
- Mat3d RLaplacian = (Mat3d::yrotation( N) *
- Mat3d::xrotation(-J) *
- Mat3d::yrotation(-N));
- double marspole_RA = 317.681;
- double marspole_Dec = 52.886;
- double Nm = degToRad(marspole_RA + 90);
- double Jm = degToRad(90 - marspole_Dec);
- Mat3d RMars_eq = (Mat3d::yrotation( Nm) *
- Mat3d::xrotation( Jm) *
- Mat3d::yrotation(-Nm));
- // Celestia wants the position of a satellite with respect to the
- // equatorial plane of the planet it orbits.
- // to Laplacian...
- Point3d p = Rorbit * Point3d(x, 0.0, z);
- // to Earth equatorial...
- p = RLaplacian * p;
- // to Mars equatorial...
- return RMars_eq * p;
- }
- #endif
- double getPeriod() const
- {
- return 1.262441;
- }
- double getBoundingRadius() const
- {
- return 23462 * BoundingRadiusSlack;
- }
- };
- // static const double JupAscendingNode = degToRad(20.453422);
- static const double JupAscendingNode = degToRad(22.203);
- class IoOrbit : public CachingOrbit
- {
- public:
- virtual ~IoOrbit() {};
- Point3d computePosition(double jd) const
- {
- //Computation will yield latitude(L), longitude(B) and distance(R) relative to Jupiter
- double t;
- double l1, l2, l3, l4;
- double p1, p2, p3, p4;
- double w1, w2, w3, w4;
- double gamma, phi, psi, G, Gp;
- double sigma, L, B, R;
- double T, P;
- // Epoch for Galilean satellites is 1976.0 Aug 10
- t = jd - 2443000.5;
- ComputeGalileanElements(t,
- l1, l2, l3, l4,
- p1, p2, p3, p4,
- w1, w2, w3, w4,
- gamma, phi, psi, G, Gp);
- // Calculate periodic terms for longitude
- sigma = 0.47259*sin(2*(l1 - l2)) - 0.03478*sin(p3 - p4)
- + 0.01081*sin(l2 - 2*l3 + p3) + 7.38e-3*sin(phi)
- + 7.13e-3*sin(l2 - 2*l3 + p2) - 6.74e-3*sin(p1 + p3 - 2*LPEJ - 2*G)
- + 6.66e-3*sin(l2 - 2*l3 + p4) + 4.45e-3*sin(l1 - p3)
- - 3.54e-3*sin(l1 - l2) - 3.17e-3*sin(2*(psi - LPEJ))
- + 2.65e-3*sin(l1 - p4) - 1.86e-3*sin(G)
- + 1.62e-3*sin(p2 - p3) + 1.58e-3*sin(4*(l1 - l2))
- - 1.55e-3*sin(l1 - l3) - 1.38e-3*sin(psi + w3 - 2*LPEJ - 2*G)
- - 1.15e-3*sin(2*(l1 - 2*l2 + w2)) + 8.9e-4*sin(p2 - p4)
- + 8.5e-4*sin(l1 + p3 - 2*LPEJ - 2*G) + 8.3e-4*sin(w2 - w3)
- + 5.3e-4*sin(psi - w2);
- sigma = pfmod(sigma, 360.0);
- sigma = degToRad(sigma);
- L = l1 + sigma;
- // Calculate periodic terms for the tangent of the latitude
- B = 6.393e-4*sin(L - w1) + 1.825e-4*sin(L - w2)
- + 3.29e-5*sin(L - w3) - 3.11e-5*sin(L - psi)
- + 9.3e-6*sin(L - w4) + 7.5e-6*sin(3*L - 4*l2 - 1.9927*sigma + w2)
- + 4.6e-6*sin(L + psi - 2*LPEJ - 2*G);
- B = atan(B);
- // Calculate the periodic terms for distance
- R = -4.1339e-3*cos(2*(l1 - l2)) - 3.87e-5*cos(l1 - p3)
- - 2.14e-5*cos(l1 - p4) + 1.7e-5*cos(l1 - l2)
- - 1.31e-5*cos(4*(l1 - l2)) + 1.06e-5*cos(l1 - l3)
- - 6.6e-6*cos(l1 + p3 - 2*LPEJ - 2*G);
- R = 5.90569 * JupiterRadius * (1 + R);
- T = (jd - 2433282.423) / 36525.0;
- P = 1.3966626*T + 3.088e-4*T*T;
- L += degToRad(P);
- L += JupAscendingNode;
- // Corrections for internal coordinate system
- B -= (PI/2);
- L += PI;
- return Point3d(cos(L) * sin(B) * R,
- cos(B) * R,
- -sin(L) * sin(B) * R);
- };
- double getPeriod() const
- {
- return 1.769138;
- };
- double getBoundingRadius() const
- {
- return 423329 * BoundingRadiusSlack;
- };
- };
- class EuropaOrbit : public CachingOrbit
- {
- public:
- virtual ~EuropaOrbit() {};
- Point3d computePosition(double jd) const
- {
- // Computation will yield latitude(L), longitude(B) and distance(R) relative to Jupiter
- double t;
- double l1, l2, l3, l4;
- double p1, p2, p3, p4;
- double w1, w2, w3, w4;
- double gamma, phi, psi, G, Gp;
- double sigma, L, B, R;
- double T, P;
- // Epoch for Galilean satellites is 1976 Aug 10
- t = jd - 2443000.5;
- ComputeGalileanElements(t,
- l1, l2, l3, l4,
- p1, p2, p3, p4,
- w1, w2, w3, w4,
- gamma, phi, psi, G, Gp);
- // Calculate periodic terms for longitude
- sigma = 1.06476*sin(2*(l2 - l3)) + 0.04256*sin(l1 - 2*l2 + p3)
- + 0.03581*sin(l2 - p3) + 0.02395*sin(l1 - 2*l2 + p4)
- + 0.01984*sin(l2 - p4) - 0.01778*sin(phi)
- + 0.01654*sin(l2 - p2) + 0.01334*sin(l2 - 2*l3 + p2)
- + 0.01294*sin(p3 - p4) - 0.01142*sin(l2 - l3)
- - 0.01057*sin(G) - 7.75e-3*sin(2*(psi - LPEJ))
- + 5.24e-3*sin(2*(l1 - l2)) - 4.6e-3*sin(l1 - l3)
- + 3.16e-3*sin(psi - 2*G + w3 - 2*LPEJ) - 2.03e-3*sin(p1 + p3 - 2*LPEJ - 2*G)
- + 1.46e-3*sin(psi - w3) - 1.45e-3*sin(2*G)
- + 1.25e-3*sin(psi - w4) - 1.15e-3*sin(l1 - 2*l3 + p3)
- - 9.4e-4*sin(2*(l2 - w2)) + 8.6e-4*sin(2*(l1 - 2*l2 + w2))
- - 8.6e-4*sin(5*Gp - 2*G + 0.9115) - 7.8e-4*sin(l2 - l4)
- - 6.4e-4*sin(3*l3 - 7*l4 + 4*p4) + 6.4e-4*sin(p1 - p4)
- - 6.3e-4*sin(l1 - 2*l3 + p4) + 5.8e-4*sin(w3 - w4)
- + 5.6e-4*sin(2*(psi - LPEJ - G)) + 5.6e-4*sin(2*(l2 - l4))
- + 5.5e-4*sin(2*(l1 - l3)) + 5.2e-4*sin(3*l3 - 7*l4 + p3 +3*p4)
- - 4.3e-4*sin(l1 - p3) + 4.1e-4*sin(5*(l2 - l3))
- + 4.1e-4*sin(p4 - LPEJ) + 3.2e-4*sin(w2 - w3)
- + 3.2e-4*sin(2*(l3 - G - LPEJ));
- sigma = pfmod(sigma, 360.0);
- sigma = degToRad(sigma);
- L = l2 + sigma;
- // Calculate periodic terms for the tangent of the latitude
- B = 8.1004e-3*sin(L - w2) + 4.512e-4*sin(L - w3)
- - 3.284e-4*sin(L - psi) + 1.160e-4*sin(L - w4)
- + 2.72e-5*sin(l1 - 2*l3 + 1.0146*sigma + w2) - 1.44e-5*sin(L - w1)
- + 1.43e-5*sin(L + psi - 2*LPEJ - 2*G) + 3.5e-6*sin(L - psi + G)
- - 2.8e-6*sin(l1 - 2*l3 + 1.0146*sigma + w3);
- B = atan(B);
- // Calculate the periodic terms for distance
- R = 9.3848e-3*cos(l1 - l2) - 3.116e-4*cos(l2 - p3)
- - 1.744e-4*cos(l2 - p4) - 1.442e-4*cos(l2 - p2)
- + 5.53e-5*cos(l2 - l3) + 5.23e-5*cos(l1 - l3)
- - 2.9e-5*cos(2*(l1 - l2)) + 1.64e-5*cos(2*(l2 - w2))
- + 1.07e-5*cos(l1 - 2*l3 + p3) - 1.02e-5*cos(l2 - p1)
- - 9.1e-6*cos(2*(l1 - l3));
- R = 9.39657 * JupiterRadius * (1 + R);
- T = (jd - 2433282.423) / 36525.0;
- P = 1.3966626*T + 3.088e-4*T*T;
- L += degToRad(P);
- L += JupAscendingNode;
- // Corrections for internal coordinate system
- B -= (PI/2);
- L += PI;
- return Point3d(cos(L) * sin(B) * R,
- cos(B) * R,
- -sin(L) * sin(B) * R);
- };
- double getPeriod() const
- {
- return 3.5511810791;
- };
- double getBoundingRadius() const
- {
- return 678000 * BoundingRadiusSlack;
- };
- };
- class GanymedeOrbit : public CachingOrbit
- {
- public:
- virtual ~GanymedeOrbit() {};
- Point3d computePosition(double jd) const
- {
- //Computation will yield latitude(L), longitude(B) and distance(R) relative to Jupiter
- double t;
- double l1, l2, l3, l4;
- double p1, p2, p3, p4;
- double w1, w2, w3, w4;
- double gamma, phi, psi, G, Gp;
- double sigma, L, B, R;
- double T, P;
- //Epoch for Galilean satellites is 1976 Aug 10
- t = jd - 2443000.5;
- ComputeGalileanElements(t,
- l1, l2, l3, l4,
- p1, p2, p3, p4,
- w1, w2, w3, w4,
- gamma, phi, psi, G, Gp);
- //Calculate periodic terms for longitude
- sigma = 0.1649*sin(l3 - p3) + 0.09081*sin(l3 - p4)
- - 0.06907*sin(l2 - l3) + 0.03784*sin(p3 - p4)
- + 0.01846*sin(2*(l3 - l4)) - 0.01340*sin(G)
- - 0.01014*sin(2*(psi - LPEJ)) + 7.04e-3*sin(l2 - 2*l3 + p3)
- - 6.2e-3*sin(l2 - 2*l3 + p2) - 5.41e-3*sin(l3 - l4)
- + 3.81e-3*sin(l2 - 2*l3 + p4) + 2.35e-3*sin(psi - w3)
- + 1.98e-3*sin(psi - w4) + 1.76e-3*sin(phi)
- + 1.3e-3*sin(3*(l3 - l4)) + 1.25e-3*sin(l1 - l3)
- - 1.19e-3*sin(5*Gp - 2*G + 0.9115) + 1.09e-3*sin(l1 - l2)
- - 1.0e-3*sin(3*l3 - 7*l4 + 4*p4) + 9.1e-4*sin(w3 - w4)
- + 8.0e-4*sin(3*l3 - 7*l4 + p3 + 3*p4) - 7.5e-4*sin(2*l2 - 3*l3 + p3)
- + 7.2e-4*sin(p1 + p3 - 2*LPEJ - 2*G) + 6.9e-4*sin(p4 - LPEJ)
- - 5.8e-4*sin(2*l3 - 3*l4 + p4) - 5.7e-4*sin(l3 - 2*l4 + p4)
- + 5.6e-4*sin(l3 + p3 - 2*LPEJ - 2*G) - 5.2e-4*sin(l2 - 2*l3 + p1)
- - 5.0e-4*sin(p2 - p3) + 4.8e-4*sin(l3 - 2*l4 + p3)
- - 4.5e-4*sin(2*l2 - 3*l3 + p4) - 4.1e-4*sin(p2 - p4)
- - 3.8e-4*sin(2*G) - 3.7e-4*sin(p3 - p4 + w3 - w4)
- - 3.2e-4*sin(3*l3 - 7*l4 + 2*p3 + 2*p4) + 3.0e-4*sin(4*(l3 - l4))
- + 2.9e-4*sin(l3 + p4 - 2*LPEJ - 2*G) - 2.8e-4*sin(w3 + psi - 2*LPEJ - 2*G)
- + 2.6e-4*sin(l3 - LPEJ - G) + 2.4e-4*sin(l2 - 3*l3 + 2*l4)
- + 2.1e-4*sin(2*(l3 - LPEJ - G)) - 2.1e-4*sin(l3 - p2)
- + 1.7e-4*sin(l3 - p3);
- sigma = pfmod(sigma, 360.0);
- sigma = degToRad(sigma);
- L = l3 + sigma;
- //Calculate periodic terms for the tangent of the latitude
- B = 3.2402e-3*sin(L - w3) - 1.6911e-3*sin(L - psi)
- + 6.847e-4*sin(L - w4) - 2.797e-4*sin(L - w2)
- + 3.21e-5*sin(L + psi - 2*LPEJ - 2*G) + 5.1e-6*sin(L - psi + G)
- - 4.5e-6*sin(L - psi - G) - 4.5e-6*sin(L + psi - 2*LPEJ)
- + 3.7e-6*sin(L + psi - 2*LPEJ - 3*G) + 3.0e-6*sin(2*l2 - 3*L + 4.03*sigma + w2)
- - 2.1e-6*sin(2*l2 - 3*L + 4.03*sigma + w3);
- B = atan(B);
- //Calculate the periodic terms for distance
- R = -1.4388e-3*cos(l3 - p3) - 7.919e-4*cos(l3 - p4)
- + 6.342e-4*cos(l2 - l3) - 1.761e-4*cos(2*(l3 - l4))
- + 2.94e-5*cos(l3 - l4) - 1.56e-5*cos(3*(l3 - l4))
- + 1.56e-5*cos(l1 - l3) - 1.53e-5*cos(l1 - l2)
- + 7.0e-6*cos(2*l2 - 3*l3 + p3) - 5.1e-6*cos(l3 + p3 - 2*LPEJ - 2*G);
- R = 14.98832 * JupiterRadius * (1 + R);
- T = (jd - 2433282.423) / 36525.0;
- P = 1.3966626*T + 3.088e-4*T*T;
- L += degToRad(P);
- L += JupAscendingNode;
- //Corrections for internal coordinate system
- B -= (PI/2);
- L += PI;
- return Point3d(cos(L) * sin(B) * R,
- cos(B) * R,
- -sin(L) * sin(B) * R);
- };
- double getPeriod() const
- {
- return 7.154553;
- };
- double getBoundingRadius() const
- {
- return 1070000 * BoundingRadiusSlack;
- };
- };
- class CallistoOrbit : public CachingOrbit
- {
- public:
- virtual ~CallistoOrbit() {};
- Point3d computePosition(double jd) const
- {
- //Computation will yield latitude(L), longitude(B) and distance(R) relative to Jupiter
- double t;
- double l1, l2, l3, l4;
- double p1, p2, p3, p4;
- double w1, w2, w3, w4;
- double gamma, phi, psi, G, Gp;
- double sigma, L, B, R;
- double T, P;
- //Epoch for Galilean satellites is 1976 Aug 10
- t = jd - 2443000.5;
- ComputeGalileanElements(t,
- l1, l2, l3, l4,
- p1, p2, p3, p4,
- w1, w2, w3, w4,
- gamma, phi, psi, G, Gp);
- //Calculate periodic terms for longitude
- sigma =
- 0.84287*sin(l4 - p4)
- + 0.03431*sin(p4 - p3)
- - 0.03305*sin(2*(psi - LPEJ))
- - 0.03211*sin(G)
- - 0.01862*sin(l4 - p3)
- + 0.01186*sin(psi - w4)
- + 6.23e-3*sin(l4 + p4 - 2*G - 2*LPEJ)
- + 3.87e-3*sin(2*(l4 - p4))
- - 2.84e-3*sin(5*Gp - 2*G + 0.9115)
- - 2.34e-3*sin(2*(psi - p4))
- - 2.23e-3*sin(l3 - l4)
- - 2.08e-3*sin(l4 - LPEJ)
- + 1.78e-3*sin(psi + w4 - 2*p4)
- + 1.34e-3*sin(p4 - LPEJ)
- + 1.25e-3*sin(2*(l4 - G - LPEJ))
- - 1.17e-3*sin(2*G)
- - 1.12e-3*sin(2*(l3 - l4))
- + 1.07e-3*sin(3*l3 - 7*l4 + 4*p4)
- + 1.02e-3*sin(l4 - G - LPEJ)
- + 9.6e-4*sin(2*l4 - psi - w4)
- + 8.7e-4*sin(2*(psi - w4))
- - 8.5e-4*sin(3*l3 - 7*l4 + p3 + 3*p4)
- + 8.5e-4*sin(l3 - 2*l4 + p4)
- - 8.1e-4*sin(2*(l4 - psi))
- + 7.1e-4*sin(l4 + p4 - 2*LPEJ - 3*G)
- + 6.1e-4*sin(l1 - l4)
- - 5.6e-4*sin(psi - w3)
- - 5.4e-4*sin(l3 - 2*l4 + p3)
- + 5.1e-4*sin(l2 - l4)
- + 4.2e-4*sin(2*(psi - G - LPEJ))
- + 3.9e-4*sin(2*(p4 - w4))
- + 3.6e-4*sin(psi + LPEJ - p4 - w4)
- + 3.5e-4*sin(2*Gp - G + 3.2877)
- - 3.5e-4*sin(l4 - p4 + 2*LPEJ - 2*psi)
- - 3.2e-4*sin(l4 + p4 - 2*LPEJ - G)
- + 3.0e-4*sin(2*Gp - 2*G + 2.6032)
- + 2.9e-4*sin(3*l3 - 7*l4 + 2*p3 + 2*p4)
- + 2.8e-4*sin(l4 - p4 + 2*psi - 2*LPEJ)
- - 2.8e-4*sin(2*(l4 - w4))
- - 2.7e-4*sin(p3 - p4 + w3 - w4)
- - 2.6e-4*sin(5*Gp - 3*G + 3.2877)
- + 2.5e-4*sin(w4 - w3)
- - 2.5e-4*sin(l2 - 3*l3 + 2*l4)
- - 2.3e-4*sin(3*(l3 - l4))
- + 2.1e-4*sin(2*l4 - 2*LPEJ - 3*G)
- - 2.1e-4*sin(2*l3 - 3*l4 + p4)
- + 1.9e-4*sin(l4 - p4 - G)
- - 1.9e-4*sin(2*l4 - p3 - p4)
- - 1.8e-4*sin(l4 - p4 + G)
- - 1.6e-4*sin(l4 + p3 - 2*LPEJ - 2*G);
- sigma = pfmod(sigma, 360.0);
- sigma = degToRad(sigma);
- L = l4 + sigma;
- //Calculate periodic terms for the tangent of the latitude
- B =
- - 7.6579e-3 * sin(L - psi)
- + 4.4134e-3 * sin(L - w4)
- - 5.112e-4 * sin(L - w3)
- + 7.73e-5 * sin(L + psi - 2*LPEJ - 2*G)
- + 1.04e-5 * sin(L - psi + G)
- - 1.02e-5 * sin(L - psi - G)
- + 8.8e-6 * sin(L + psi - 2*LPEJ - 3*G)
- - 3.8e-6 * sin(L + psi - 2*LPEJ - G);
- B = atan(B);
- //Calculate the periodic terms for distance
- R =
- - 7.3546e-3 * cos(l4 - p4)
- + 1.621e-4 * cos(l4 - p3)
- + 9.74e-5 * cos(l3 - l4)
- - 5.43e-5 * cos(l4 + p4 - 2*LPEJ - 2*G)
- - 2.71e-5 * cos(2*(l4 - p4))
- + 1.82e-5 * cos(l4 - LPEJ)
- + 1.77e-5 * cos(2*(l3 - l4))
- - 1.67e-5 * cos(2*l4 - psi - w4)
- + 1.67e-5 * cos(psi - w4)
- - 1.55e-5 * cos(2*(l4 - LPEJ - G))
- + 1.42e-5 * cos(2*(l4 - psi))
- + 1.05e-5 * cos(l1 - l4)
- + 9.2e-6 * cos(l2 - l4)
- - 8.9e-6 * cos(l4 - LPEJ -G)
- - 6.2e-6 * cos(l4 + p4 - 2*LPEJ - 3*G)
- + 4.8e-6 * cos(2*(l4 - w4));
- R = 26.36273 * JupiterRadius * (1 + R);
- T = (jd - 2433282.423) / 36525.0;
- P = 1.3966626*T + 3.088e-4*T*T;
- L += degToRad(P);
- L += JupAscendingNode;
- //Corrections for internal coordinate system
- B -= (PI/2);
- L += PI;
- return Point3d(cos(L) * sin(B) * R,
- cos(B) * R,
- -sin(L) * sin(B) * R);
- };
- double getPeriod() const
- {
- return 16.689018;
- };
- double getBoundingRadius() const
- {
- return 1890000 * BoundingRadiusSlack;
- };
- };
- static const double SatAscendingNode = 168.8112;
- static const double SatTilt = 28.0817;
- // static const double SatAscendingNode = 169.530;
- // static const double SatTilt = 28.049;
- // Calculations for the orbits of Mimas, Enceladus, Tethys, Dione, Rhea,
- // Titan, Hyperion, and Iapetus are from Jean Meeus's Astronomical Algorithms,
- // and were originally derived by Gerard Dourneau.
- void ComputeSaturnianElements(double t,
- double& t1, double& t2, double& t3,
- double& t4, double& t5, double& t6,
- double& t7, double& t8, double& t9,
- double& t10, double& t11,
- double& W0, double& W1, double& W2,
- double& W3, double& W4, double& W5,
- double& W6, double& W7, double& W8)
- {
- t1 = t - 2411093.0;
- t2 = t1 / 365.25;
- t3 = (t - 2433282.423) / 365.25 + 1950.0;
- t4 = t - 2411368.0;
- t5 = t4 / 365.25;
- t6 = t - 2415020.0;
- t7 = t6 / 36525;
- t8 = t6 / 365.25;
- t9 = (t - 2442000.5) / 365.25;
- t10 = t - 2409786.0;
- t11 = t10 / 36525;
- W0 = 5.095 * (t3 - 1866.39);
- W1 = 74.4 + 32.39 * t2;
- W2 = 134.3 + 92.62 * t2;
- W3 = 42.0 - 0.5118 * t5;
- W4 = 276.59 + 0.5118 * t5;
- W5 = 267.2635 + 1222.1136 * t7;
- W6 = 175.4762 + 1221.5515 * t7;
- W7 = 2.4891 + 0.002435 * t7;
- W8 = 113.35 - 0.2597 * t7;
- }
- static Point3d SaturnMoonPosition(double lam, double gam, double Om, double r)
- {
- double u = lam - Om;
- double w = Om - SatAscendingNode;
- u = degToRad(u);
- w = degToRad(w);
- gam = -degToRad(gam);
- r = r * SaturnRadius;
- // Corrections for Celestia's coordinate system
- u = -u;
- w = -w;
- double x = r * (cos(u) * cos(w) - sin(u) * sin(w) * cos(gam));
- double y = r * sin(u) * sin(gam);
- double z = r * (sin(u) * cos(w) * cos(gam) + cos(u) * sin(w));
- return Point3d(x, y, z);
- }
- static void OuterSaturnMoonParams(double a, double e, double i,
- double Om_, double M, double lam_,
- double& lam, double& gam,
- double& r, double& w)
- {
- double s1 = sinD(SatTilt);
- double c1 = cosD(SatTilt);
- double e_2 = e * e;
- double e_3 = e_2 * e;
- double e_4 = e_3 * e;
- double e_5 = e_4 * e;
- double C = (2 * e - 0.25 * e_3 + 0.0520833333 * e_5) * sinD(M) +
- (1.25 * e_2 - 0.458333333 * e_4) * sinD(2 * M) +
- (1.083333333 * e_3 - 0.671875 * e_5) * sinD(3 * M) +
- 1.072917 * e_4 * sinD(4 * M) + 1.142708 * e_5 * sinD(5 * M);
- double g = Om_ - SatAscendingNode;
- double a1 = sinD(i) * sinD(g);
- double a2 = c1 * sinD(i) * cosD(g) - s1 * cosD(i);
- double u = radToDeg(atan2(a1, a2));
- double h = c1 * sinD(i) - s1 * cosD(i) * cosD(g);
- double psi = radToDeg(atan2(s1 * sinD(g), h));
- C = radToDeg(C);
- lam = lam_ + C + u - g - psi;
- gam = radToDeg(asin(sqrt(square(a1) + square(a2))));
- r = a * (1 - e * e) / (1 + e * cosD(M + C));
- w = SatAscendingNode + u;
- }
- class MimasOrbit : public CachingOrbit
- {
- public:
- virtual ~MimasOrbit() {};
- Point3d computePosition(double jd) const
- {
- // Computation will yield latitude(L), longitude(B) and distance(R)
- // relative to Saturn.
- double t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11;
- double W0, W1, W2, W3, W4, W5, W6, W7, W8;
- ComputeSaturnianElements(jd,
- t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11,
- W0, W1, W2, W3, W4, W5, W6, W7, W8);
- double L = 127.64 + 381.994497 * t1 - 43.57 * sinD(W0) -
- 0.720 * sinD( 3 * W0) - 0.02144 * sinD(5 * W0);
- double p = 106.1 + 365.549 * t2;
- double M = L - p;
- double C = 2.18287 * sinD(M) + 0.025988 * sinD(2 * M) +
- 0.00043 * sinD(3 * M);
- double lam = L + C;
- double r = 3.06879 / (1 + 0.01905 * cosD(M + C));
- double gam = 1.563;
- double Om = 54.5 - 365.072 * t2;
- return SaturnMoonPosition(lam, gam, Om, r);
- };
- double getPeriod() const
- {
- return 0.9424218;
- };
- double getBoundingRadius() const
- {
- return 189000 * BoundingRadiusSlack;
- };
- };
- class EnceladusOrbit : public CachingOrbit
- {
- public:
- virtual ~EnceladusOrbit() {};
- Point3d computePosition(double jd) const
- {
- // Computation will yield latitude(L), longitude(B) and distance(R)
- // relative to Saturn.
- double t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11;
- double W0, W1, W2, W3, W4, W5, W6, W7, W8;
- ComputeSaturnianElements(jd,
- t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11,
- W0, W1, W2, W3, W4, W5, W6, W7, W8);
- double L = 200.317 + 262.7319002 * t1 + 0.25667 * sinD(W1) +
- 0.20883 * sinD(W2);
- double p = 309.107 + 123.44121 * t2;
- double M = L - p;
- double C = 0.55577 * sinD(M) + 0.00168 * sinD(2 * M);
- double lam = L + C;
- double r = 3.94118 / (1 + 0.00485 * cosD(M + C));
- double gam = 0.0262;
- double Om = 348 - 151.95 * t2;
- return SaturnMoonPosition(lam, gam, Om, r);
- };
- double getPeriod() const
- {
- return 1.370218;
- };
- double getBoundingRadius() const
- {
- return 239000 * BoundingRadiusSlack;
- };
- };
- class TethysOrbit : public CachingOrbit
- {
- public:
- virtual ~TethysOrbit() {};
- Point3d computePosition(double jd) const
- {
- // Computation will yield latitude(L), longitude(B) and distance(R)
- // relative to Saturn.
- double t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11;
- double W0, W1, W2, W3, W4, W5, W6, W7, W8;
- ComputeSaturnianElements(jd,
- t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11,
- W0, W1, W2, W3, W4, W5, W6, W7, W8);
- double lam = 285.306 + 190.69791226 * t1 + 2.063 * sinD(W0) +
- 0.03409 * sinD(3 * W0) + 0.001015 * sinD(5 * W0);
- double r = 4.880998;
- double gam = 1.0976;
- double Om = 111.33 - 72.2441 * t2;
- return SaturnMoonPosition(lam, gam, Om, r);
- };
- double getPeriod() const
- {
- return 1.887802;
- };
- double getBoundingRadius() const
- {
- return 295000 * BoundingRadiusSlack;
- };
- };
- class DioneOrbit : public CachingOrbit
- {
- public:
- virtual ~DioneOrbit() {};
- Point3d computePosition(double jd) const
- {
- // Computation will yield latitude(L), longitude(B) and distance(R)
- // relative to Saturn.
- double t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11;
- double W0, W1, W2, W3, W4, W5, W6, W7, W8;
- ComputeSaturnianElements(jd,
- t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11,
- W0, W1, W2, W3, W4, W5, W6, W7, W8);
- double L = 254.712 + 131.53493193 * t1 - 0.0215 * sinD(W1) -
- 0.01733 * sinD(W2);
- double p = 174.8 + 30.820 * t2;
- double M = L - p;
- double C = 0.24717 * sinD(M) + 0.00033 * sinD(2 * M);
- double lam = L + C;
- double r = 6.24871 / (1 + 0.002157 * cosD(M + C));
- double gam = 0.0139;
- double Om = 232 - 30.27 * t2;
- // cout << "Dione: " << pfmod(lam, 360.0) << ',' << gam << ',' << pfmod(Om, 360.0) << ',' << r << 'n';
- return SaturnMoonPosition(lam, gam, Om, r);
- };
- double getPeriod() const
- {
- return 2.736915;
- };
- double getBoundingRadius() const
- {
- return 378000 * BoundingRadiusSlack;
- };
- };
- class RheaOrbit : public CachingOrbit
- {
- public:
- virtual ~RheaOrbit() {};
- Point3d computePosition(double jd) const
- {
- // Computation will yield latitude(L), longitude(B) and distance(R)
- // relative to Saturn.
- double t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11;
- double W0, W1, W2, W3, W4, W5, W6, W7, W8;
- ComputeSaturnianElements(jd,
- t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11,
- W0, W1, W2, W3, W4, W5, W6, W7, W8);
- /*double e1 = 0.05589 - 0.000346 * t7; Unused*/
- double p_ = 342.7 + 10.057 * t2;
- double a1 = 0.000265 * sinD(p_) + 0.01 * sinD(W4);
- double a2 = 0.000265 * cosD(p_) + 0.01 * cosD(W4);
- double e = sqrt(square(a1) + square(a2));
- double p = radToDeg(atan2(a1, a2));
- double N = 345 - 10.057 * t2;
- double lam_ = 359.244 + 79.69004720 * t1 + 0.086754 * sinD(N);
- double i = 28.0362 + 0.346898 * cosD(N) + 0.01930 * cosD(W3);
- double Om = 168.8034 + 0.736936 * sinD(N) + 0.041 * sinD(W3);
- double a = 8.725924;
- double lam, gam, r, w;
- OuterSaturnMoonParams(a, e, i, Om, lam_ - p, lam_,
- lam, gam, r, w);
- // cout << "Rhea (intermediate): " << e << ',' << pfmod(lam_, 360.0) << ',' << pfmod(i, 360.0) << ',' << pfmod(Om, 360.0) << 'n';
- // cout << "Rhea: " << pfmod(lam, 360.0) << ',' << gam << ',' << pfmod(w, 360.0) << ',' << r << 'n';
- return SaturnMoonPosition(lam, gam, w, r);
- };
- double getPeriod() const
- {
- return 4.517500;
- };
- double getBoundingRadius() const
- {
- return 528000 * BoundingRadiusSlack;
- };
- };
- class TitanOrbit : public CachingOrbit
- {
- public:
- virtual ~TitanOrbit() {};
- Point3d computePosition(double jd) const
- {
- // Computation will yield latitude(L), longitude(B) and distance(R)
- // relative to Saturn.
- double t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11;
- double W0, W1, W2, W3, W4, W5, W6, W7, W8;
- ComputeSaturnianElements(jd,
- t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11,
- W0, W1, W2, W3, W4, W5, W6, W7, W8);
- double e1 = 0.05589 - 0.000346 * t7;
- double L = 261.1582 + 22.57697855 * t4 + 0.074025 * sinD(W3);
- double i_ = 27.45141 + 0.295999 * cosD(W3);
- double Om_ = 168.66925 + 0.628808 * sinD(W3);
- double a1 = sinD(W7) * sinD(Om_ - W8);
- double a2 = cosD(W7) * sinD(i_) - sinD(W7) * cosD(i_) * cosD(Om_ - W8);
- double g0 = 102.8623;
- double psi = radToDeg(atan2(a1, a2));
- double s = sqrt(square(a1) + square(a2));
- double g = W4 - Om_ - psi;
- // Three successive approximations will always be enough
- double om;
- for (int n = 0; n < 3; n++)
- {
- om = W4 + 0.37515 * (sinD(2 * g) - sinD(2 * g0));
- g = om - Om_ - psi;
- }
- double e_ = 0.029092 + 0.00019048 * (cosD(2 * g) - cosD(2 * g0));
- double q = 2 * (W5 - om);
- double b1 = sinD(i_) * sinD(Om_ - W8);
- double b2 = cosD(W7) * sinD(i_) * cosD(Om_ - W8) - sinD(W7) * cosD(i_);
- double theta = radToDeg(atan2(b1, b2)) + W8;
- double e = e_ + 0.002778797 * e_ * cosD(q);
- double p = om + 0.159215 * sinD(q);
- double u = 2 * W5 - 2 * theta + psi;
- double h = 0.9375 * square(e_) * sinD(q) + 0.1875 * square(s) * sinD(2 * (W5 - theta));
- double lam_ = L - 0.254744 * (e1 * sinD(W6) + 0.75 * square(e1) * sinD(2 * W6) + h);
- double i = i_ + 0.031843 * s * cosD(u);
- double Om = Om_ + (0.031843 * s * sinD(u)) / sinD(i_);
- double a = 20.216193;
- double lam, gam, r, w;
- OuterSaturnMoonParams(a, e, i, Om, lam_ - p, lam_,
- lam, gam, r, w);
- return SaturnMoonPosition(lam, gam, w, r);
- };
- double getPeriod() const
- {
- return 15.94544758;
- };
- double getBoundingRadius() const
- {
- return 1260000 * BoundingRadiusSlack;
- };
- };
- class HyperionOrbit : public CachingOrbit
- {
- public:
- virtual ~HyperionOrbit() {};
- Point3d computePosition(double jd) const
- {
- // Computation will yield latitude(L), longitude(B) and distance(R)
- // relative to Saturn.
- double t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11;
- double W0, W1, W2, W3, W4, W5, W6, W7, W8;
- ComputeSaturnianElements(jd,
- t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11,
- W0, W1, W2, W3, W4, W5, W6, W7, W8);
- double eta = 92.39 + 0.5621071 * t6;
- double zeta = 148.19 - 19.18 * t8;
- double theta = 184.8 - 35.41 * t9;
- double theta_ = theta - 7.5;
- double as = 176 + 12.22 * t8;
- double bs = 8 + 24.44 * t8;
- double cs = bs + 5;
- double om = 68.898 - 18.67088 * t8;
- double phi = 2 * (om - W5);
- double chi = 94.9 - 2.292 * t8;
- double a = 24.50601 -
- 0.08686 * cosD(eta) -
- 0.00166 * cosD(zeta + eta) +
- 0.00175 * cosD(zeta - eta);
- double e = 0.103458 -
- 0.004099 * cosD(eta) -
- 0.000167 * cosD(zeta + eta) +
- 0.000235 * cosD(zeta - eta) +
- 0.02303 * cosD(zeta) -
- 0.00212 * cosD(2 * zeta) +
- 0.000151 * cosD(3 * zeta) +
- 0.00013 * sinD(phi);
- double p = om +
- 0.15648 * sinD(chi) -
- 0.4457 * sinD(eta) -
- 0.2657 * sinD(zeta + eta) -
- 0.3573 * sinD(zeta - eta) -
- 12.872 * sinD(zeta) +
- 1.668 * sinD(2 * zeta) -
- 0.2419 * sinD(3 * zeta) -
- 0.07 * sinD(phi);
- double lam_ = 177.047 +
- 16.91993829 * t6 +
- 0.15648 * sinD(chi) +
- 9.142 * sinD(eta) +
- 0.007 * sinD(2 * eta) -
- 0.014 * sinD(3 * eta) +
- 0.2275 * sinD(zeta + eta) +
- 0.2112 * sinD(zeta - eta) -
- 0.26 * sinD(zeta) -
- 0.0098 * sinD(2 * zeta) -
- 0.013 * sinD(as) +
- 0.017 * sinD(bs) -
- 0.0303 * sinD(phi);
- double i = 27.3347 + 0.643486 * cosD(chi) + 0.315 * cosD(W3) +
- 0.018 * cosD(theta) - 0.018 * cosD(cs);
- double Om = 168.6812 + 1.40136 * cosD(chi) + 0.68599 * sinD(W3) -
- 0.0392 * sinD(cs) + 0.0366 * sinD(theta_);
- double lam, gam, r, w;
- OuterSaturnMoonParams(a, e, i, Om, lam_ - p, lam_,
- lam, gam, r, w);
- return SaturnMoonPosition(lam, gam, w, r);
- };
- double getPeriod() const
- {
- return 21.276609;
- };
- double getBoundingRadius() const
- {
- return 1640000 * BoundingRadiusSlack;
- };
- };
- class IapetusOrbit : public CachingOrbit
- {
- public:
- virtual ~IapetusOrbit() {};
- Point3d computePosition(double jd) const
- {
- // Computation will yield latitude(L), longitude(B) and distance(R)
- // relative to Saturn.
- double t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11;
- double W0, W1, W2, W3, W4, W5, W6, W7, W8;
- ComputeSaturnianElements(jd,
- t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11,
- W0, W1, W2, W3, W4, W5, W6, W7, W8);
- double L = 261.1582 + 22.57697855 * t4;
- double om_ = 91.796 + 0.562 * t7;
- double psi = 4.367 - 0.195 * t7;
- double theta = 146.819 - 3.198 * t7;
- double phi = 60.470 + 1.521 * t7;
- double Phi = 205.055 - 2.091 * t7;
- double e_ = 0.028298 + 0.001156 * t11;
- double om0 = 352.91 + 11.71 * t11;
- double mu = 76.3852 + 4.53795125 * t10;
- double i_ = 18.4602 - 0.9518 * t11 - 0.072 * square(t11) +
- 0.0054 * cube(t11);
- double Om_ = 143.198 - 3.919 * t11 + 0.116 * square(t11) +
- 0.008 * cube(t11);
- double l = mu - om0;
- double g = om0 - Om_ - psi;
- double g1 = om0 - Om_ - phi;
- double ls = W5 - om_;
- double gs = om_ - theta;
- double lT = L - W4;
- double gT = W4 - Phi;
- double u1 = 2 * (l + g - (ls + gs));
- double u2 = l + g1 - (lT + gT);
- double u3 = l + 2 * (g - (ls + gs));
- double u4 = lT + gT - g1;
- double u5 = 2 * (ls + gs);
- double a = 58.935028 + 0.004638 * cosD(u1) + 0.058222 * cosD(u2);
- double e = e_ -
- 0.0014097 * cosD(g1 - gT) +
- 0.0003733 * cosD(u5 - 2 * g) +
- 0.0001180 * cosD(u3) +
- 0.0002408 * cosD(l) +
- 0.0002849 * cosD(l + u2) +
- 0.0006190 * cosD(u4);
- double W = 0.08077 * sinD(g1 - gT) +
- 0.02139 * sinD(u5 - 2 * g) -
- 0.00676 * sinD(u3) +
- 0.01380 * sinD(l) +
- 0.01632 * sinD(l + u2) +
- 0.03547 * sinD(u4);
- double p = om0 + W / e_;
- double lam_ = mu -
- 0.04299 * sinD(u2) -
- 0.00789 * sinD(u1) -
- 0.06312 * sinD(ls) -
- 0.00295 * sinD(2 * ls) -
- 0.02231 * sinD(u5) +
- 0.00650 * sinD(u5 + psi);
- double sum = l + g1 + lT + gT + phi;
- double i = i_ +
- 0.04204 * cosD(u5 + psi) +
- 0.00235 * cosD(sum) +
- 0.00360 * cosD(u2 + phi);
- double w_ = 0.04204 * sinD(u5 + psi) +
- 0.00235 * sinD(sum) +
- 0.00358 * sinD(u2 + phi);
- double Om = Om_ + w_ / sinD(i_);
- double lam, gam, r, w;
- OuterSaturnMoonParams(a, e, i, Om, lam_ - p, lam_,
- lam, gam, r, w);
- return SaturnMoonPosition(lam, gam, w, r);
- };
- double getPeriod() const
- {
- return 79.330183;
- };
- double getBoundingRadius() const
- {
- return 3660000 * BoundingRadiusSlack;
- };
- };
- class PhoebeOrbit : public CachingOrbit
- {
- public:
- virtual ~PhoebeOrbit() {};
- Point3d computePosition(double jd) const
- {
- double t = jd - 2433282.5;
- double T = t / 365.25;
- double a = astro::AUtoKilometers(0.0865752f) / SaturnRadius;
- double lam_ = 277.872 - 0.6541068 * t - 90;
- double e = 0.16326;
- double pi = 280.165 - 0.19586 * T;
- double i = 173.949 - 0.020 * T;
- double Om = 245.998 - 0.41353 * T;
- double lam, gam, r, w;
- OuterSaturnMoonParams(a, e, i, Om, lam_ - pi, lam_,
- lam, gam, r, w);
- return SaturnMoonPosition(lam, gam, w, r);
- };
- double getPeriod() const
- {
- return 548.2122790;
- };
- double getBoundingRadius() const
- {
- return 15100000 * BoundingRadiusSlack;
- };
- };
- class UranianSatelliteOrbit : public CachingOrbit
- {
- private:
- double a;
- double n;
- double L0;
- double L1;
- double *L_k, *L_theta, *L_phi;
- int LTerms;
- double *z_k, *z_theta, *z_phi;
- int zTerms;
- double *zeta_k, *zeta_theta, *zeta_phi;
- int zetaTerms;
- public:
- UranianSatelliteOrbit(double _a,
- double _n,
- double _L0, double _L1,
- int _LTerms, int _zTerms, int _zetaTerms,
- double* _L_k, double* _L_theta, double* _L_phi,
- double* _z_k, double* _z_theta, double* _z_phi,
- double* _zeta_k, double* _zeta_theta,
- double* _zeta_phi) :
- a(_a), n(_n), L0(_L0), L1(_L1),
- L_k(_L_k), L_theta(_L_theta), L_phi(_L_phi),
- LTerms(_LTerms),
- z_k(_z_k), z_theta(_z_theta), z_phi(_z_phi),
- zTerms(_zTerms),
- zeta_k(_zeta_k), zeta_theta(_zeta_theta), zeta_phi(_zeta_phi),
- zetaTerms(_zetaTerms)
- {
- };
- virtual ~UranianSatelliteOrbit() {};
- double getPeriod() const
- {
- return 2 * PI / n;
- }
- double getBoundingRadius() const
- {
- // Not quite correct, but should work since e is pretty low
- // for most of the Uranian moons.
- return a * BoundingRadiusSlack;
- }
- Point3d computePosition(double jd) const
- {
- double t = jd - 2444239.5;
- int i;
- double L = L0 + L1 * t;
- for (i = 0; i < LTerms; i++)
- L += L_k[i] * sin(L_theta[i] * t + L_phi[i]);
- double a0 = 0.0;
- double a1 = 0.0;
- for (i = 0; i < zTerms; i++)
- {
- double w = z_theta[i] * t + z_phi[i];
- a0 += z_k[i] * cos(w);
- a1 += z_k[i] * sin(w);
- }
- double b0 = 0.0;
- double b1 = 0.0;
- for (i = 0; i < zetaTerms; i++)
- {
- double w = zeta_theta[i] * t + zeta_phi[i];
- b0 += zeta_k[i] * cos(w);
- b1 += zeta_k[i] * sin(w);
- }
- double e = sqrt(square(a0) + square(a1));
- double p = atan2(a1, a0);
- double gamma = 2.0 * asin(sqrt(square(b0) + square(b1)));
- double theta = atan2(b1, b0);
- L += degToRad(174.99);
- // Now that we have all the orbital elements, compute the position
- double M = L - p;
- // Iterate a few times to compute the eccentric anomaly from the
- // mean anomaly.
- double ecc = M;
- for (i = 0; i < 4; i++)
- ecc = M + e * sin(ecc);
- double x = a * (cos(ecc) - e);
- double z = a * sqrt(1 - square(e)) * -sin(ecc);
- Mat3d R = (Mat3d::yrotation(theta) *
- Mat3d::xrotation(gamma) *
- Mat3d::yrotation(p - theta));
- return R * Point3d(x, 0, z);
- }
- };
- static double uran_n[5] =
- { 4.44352267, 2.49254257, 1.51595490, 0.72166316, 0.46658054 };
- static double uran_a[5] =
- { 129800, 191200, 266000, 435800, 583600 };
- static double uran_L0[5] =
- { -0.23805158, 3.09804641, 2.28540169, 0.85635879, -0.91559180 };
- static double uran_L1[5] =
- { 4.44519055, 2.49295252, 1.51614811, 0.72171851, 0.46669212 };
- static double uran_L_k[5][3] = {
- { 0.02547217, -0.00308831, -3.181e-4 },
- { -1.86050e-3, 2.1999e-4, 0 },
- { 6.6057e-4, 0, 0 },
- { 0, 0, 0 },
- { 0, 0, 0 }
- };
- static double uran_L_theta[5][3] = {
- { -2.18167e-4, -4.36336e-4, -6.54502e-4 },
- { -2.18167e-4, -4.36336e-4, 0 },
- { -2.18167e-4, 0, 0 },
- { 0, 0, 0 },
- { 0, 0, 0 }
- };
- static double uran_L_phi[5][3] = {
- { 1.32, 2.64, 3.97 },
- { 1.32, 2.64, 0 },
- { 1.32, 0, 0 },
- { 0, 0, 0 },
- { 0, 0, 0 },
- };
- static double uran_z_k[5][5] = {
- { 1.31238e-3, -1.2331e-4, -1.9410e-4, 0, 0 },
- { 1.18763e-3, 8.6159e-4, 0, 0, 0 },
- { -2.2795e-4, 3.90496e-3, 3.0917e-4, 2.2192e-4, 5.4923e-4 },
- { 9.3281e-4, 1.12089e-3, 7.9343e-4, 0, 0 },
- { -7.5868e-4, 1.39734e-3, -9.8726e-4, 0, 0 }
- };
- static double uran_z_theta[5][5] = {
- { 1.5273e-4, 0.08606, 0.709, 0, 0 },
- { 4.727824e-5, 2.179316e-5, 0, 0, 0 },
- { 4.727824e-5, 2.179132e-5, 1.580524e-5, 2.9363068e-6, -0.01157 },
- { 1.580524e-5, 2.9363068e-6, -6.9008e-3, 0, 0 },
- { 1.580524e-5, 2.9363068e-6, -6.9008e-3, 0, 0 }
- };
- static double uran_z_phi[5][5] = {
- { 0.61, 0.15, 6.04, 0, 0 },
- { 2.41, 2.07, 0, 0, 0 },
- { 2.41, 2.07, 0.74, 0.43, 5.71 },
- { 0.74, 0.43, 1.82, 0, 0 },
- { 0.74, 0.43, 1.82, 0, 0 }
- };
- static double uran_zeta_k[5][2] = {
- { 0.03787171, 0 },
- { 3.5825e-4, 2.9008e-4 },
- { 1.11336e-3, 3.5014e-4 },
- { 6.8572e-4, 3.7832e-4 },
- { -5.9633e-4, 4.5169e-4 }
- };
- static double uran_zeta_theta[5][2] = {
- { -1.54449e-4, 0 },
- { -4.782474e-5, -2.156628e-5 },
- { -2.156628e-5, -1.401373e-5 },
- { -1.401373e-5, -1.9713918e-6 },
- { -1.401373e-5, -1.9713918e-6 }
- };
- static double uran_zeta_phi[5][2] = {
- { 5.70, 0 },
- { 0.40, 0.59 },
- { 0.59, 1.75 },
- { 1.75, 4.21 },
- { 1.75, 4.21 },
- };
- static UranianSatelliteOrbit* CreateUranianSatelliteOrbit(int n)
- {
- assert(n >= 1 && n <= 5);
- n--;
- return new UranianSatelliteOrbit(uran_a[n], uran_n[n],
- uran_L0[n], uran_L1[n],
- 3, 5, 2,
- uran_L_k[n], uran_L_theta[n],
- uran_L_phi[n], uran_z_k[n],
- uran_z_theta[n], uran_z_phi[n],
- uran_zeta_k[n], uran_zeta_theta[n],
- uran_zeta_phi[n]);
- };
- /*! Orbit of Triton, from Seidelmann, _Explanatory Supplement to the
- * Astronomical Almanac_ (1992), p.373-374. The position of Triton
- * is calculated in Neptunocentric coordinates referred to the
- * Earth equator/equinox of J2000.0.
- */
- class TritonOrbit : public CachingOrbit
- {
- public:
- virtual ~TritonOrbit() {};
- Point3d computePosition(double jd) const
- {
- double epoch = 2433282.5;
- double t = jd - epoch;
- // Compute the position of Triton in its orbital plane
- double a = 354800; // Semi-major axis (488.49")
- double n = degToRad(61.2588532); // mean motion
- double L0 = degToRad(200.913);
- double L = L0 + n * t;
- double E = L; // Triton's orbit is circular, so E = mean anomaly
- Point3d p(a * cos(E), a * sin(E), 0.0);
- // Transform to the invariable plane:
- // gamma is the inclination of the orbital plane on the invariable plane
- // theta is the angle from the intersection of the invariable plane
- // with the Earth equatorial plane of 1950.0 to the ascending node
- // of the orbit on the invariable plane.
- double gamma = degToRad(158.996);
- double theta = degToRad(151.401 + 0.57806 * t / 365.25);
- Quatd toInvariable = Quatd::xrotation(-gamma) * Quatd::zrotation(-theta);
- // Compute the RA and declination of the pole of the fixed reference plane
- // (epoch is J2000.0)
- double T = (jd - astro::J2000) / 36525;
- double N = degToRad(359.28 + 54.308 * T);
- double refplane_RA = 298.72 + 2.58 * sin(N) - 0.04 * sin(2 * N);
- double refplane_Dec = 42.63 - 1.90 * cos(N) - 0.01 * cos(2 * N);
- // Rotate to the Earth's equatorial plane
- double Nr = degToRad(refplane_RA - 90.0);
- double Jr = degToRad(90.0 - refplane_Dec);
- Quatd toEarthEq = Quatd::xrotation(Jr) * Quatd::zrotation(Nr);
- Quatd q = toEarthEq * toInvariable;
- //Quatd q = toInvariable * toEarthEq;
- p = q.toMatrix3() * p;
- // Convert to Celestia's coordinate system
- return Point3d(p.x, p.z, -p.y);
- }
- double getPeriod() const
- {
- return 5.877;
- }
- double getBoundingRadius() const
- {
- return 354800 * BoundingRadiusSlack;
- }
- };
- /*! Ephemeris for Helene, Telesto, and Calypso, from
- * "An upgraded theory for Helene, Telesto, and Calypso"
- * Oberti P., Vienne A., 2002, A&A
- * Translated to C++ by Chris Laurel from FORTRAN source available at:
- * ftp://ftp.imcce.fr/pub/ephem/satel/htc20
- *
- * Coordinates are Saturnocentric and referred to the ecliptic
- * and equinox of J2000.0.
- */
- static const double HeleneTerms[24*5] =
- {
- 0,0,0,0,1,
- 1,0,0,0,1,
- 1,1,0,0,1,
- 0,0,1,0,1,
- 1,0,1,0,1,
- 0,0,2,0,1,
- 1,0,2,0,1,
- 0,0,3,0,1,
- 0,1,0,0,-1,
- 1,1,0,0,-1,
- 0,0,1,0,-1,
- 1,0,1,0,-1,
- 0,0,2,0,-1,
- 1,0,2,0,-1,
- 0,0,3,0,-1,
- 1,0,0,1,0,
- 0,1,0,0,1,
- 1,0,3,0,1,
- 1,0,3,0,-1,
- 1,1,1,0,1,
- 1,1,-1,0,1,
- 0,0,0,1,0,
- 0,1,1,0,1,
- 0,1,-1,0,1,
- };
- static const double HeleneAmps[24*6] =
- {
- -0.002396,-0.000399,0.000442,0.001278,-0.004939,0.002466,
- 0.000557,-0.002152,0.001074,0.005500,0.000916,-0.001015,-0.000003,
- 0.,0.,0.000003,-0.000011,0.000006,-0.000066,0.000265,-0.000133,
- -0.000676,-0.000107,0.000122,-0.000295,-0.000047,0.000053,
- 0.000151,-0.000607,0.000303,0.000015,0.000017,-0.000010,-0.000044,
- 0.000033,-0.000013,-0.000019,0.000014,-0.000006,-0.000035,
- -0.000038,0.000023,0.000002,0.,0.,-0.000002,0.000004,-0.000002,
- -0.000002,0.000008,-0.000004,0.,0.,0.,0.000009,0.,-0.000002,0.,0.,
- 0.,-0.000067,0.000264,-0.000132,-0.000677,-0.000110,0.000123,
- 0.000294,0.000048,-0.000053,-0.000154,0.000608,-0.000304,0.000015,
- 0.000016,-0.000010,-0.000044,0.000033,-0.000013,0.000019,
- -0.000014,0.000006,0.000035,0.000038,-0.000023,0.000002,0.,0.,
- -0.000002,0.000004,-0.000002,0.,0.000005,0.000010,0.,0.,0.,0.,
- 0.000002,0.,-0.000013,-0.000002,0.000002,0.,0.000002,0.,-0.000004,
- -0.000002,0.,0.,-0.000002,0.,0.000004,0.000002,0.,0.,0.,0.,
- -0.000003,0.,0.,0.,0.,0.,-0.000003,0.,0.,0.,0.,0.,0.,0.000005,
- 0.000010,0.,0.,0.,0.,0.000003,0.,0.,0.,0.,0.,0.000003,0.
- };
- static const double TelestoTerms[12*5] =
- {
- 1,0,0,1,0,
- 0,0,0,0,1,
- 1,0,0,0,1,
- 1,1,0,0,1,
- 0,0,1,0,1,
- 1,0,1,0,1,
- 1,1,0,0,-1,
- 0,0,1,0,-1,
- 1,0,1,0,-1,
- 0,1,0,0,1,
- 0,1,0,0,-1,
- 0,0,0,1,0
- };
- static const double TelestoAmps[12*6] =
- {
- 0.000002,0.000010,0.000019,0.,0.,0.,
- -0.001933,-0.000253,0.000320,0.001237,-0.005767,0.002904,
- 0.000372,-0.001733,0.000873,0.006432,0.000842,-0.001066,
- -0.000002,0.,0.,0.000003,-0.000014,0.000007,
- -0.000006,0.000029,-0.000015,-0.000108,-0.000014,0.000018,
- -0.000033,-0.000004,0.000005,0.000020,-0.000097,0.000049,
- 0.000007,0.,0.,0.,0.,0.,
- -0.000006,0.000029,-0.000015,-0.000108,-0.000014,0.000018,
- 0.000032,0.000004,-0.000005,-0.000021,0.000097,-0.000049,
- 0.,0.000002,0.,-0.000016,-0.000002,0.000003,
- 0.,0.000007,-0.000003,0.,0.,0.,
- 0.,0.,0.,0.000002,0.000010,0.000019
- };
- static const double CalypsoTerms[24*5] =
- {
- 1,0,0,1,0,
- 0,0,0,0,1,
- 0,1,0,0,1,
- 1,0,0,0,1,
- 1,1,0,0,1,
- 0,0,1,0,1,
- 1,0,1,0,1,
- 0,0,2,0,1,
- 0,1,0,0,-1,
- 0,0,1,0,-1,
- 1,0,1,0,-1,
- 0,0,2,0,-1,
- 1,0,2,0,1,
- 1,1,0,0,-1,
- 1,0,2,0,-1,
- 0,0,1,1,0,
- 0,0,1,-1,0,
- 0,0,0,1,0,
- 0,1,1,0,-1,
- 0,1,-1,0,-1,
- 1,1,1,0,-1,
- 1,1,-1,0,-1,
- 1,0,1,1,0,
- 1,0,1,-1,0
- };
- static const double CalypsoAmps[24*6] =
- {
- 0.000005,0.000027,0.000052,0.,0.,0.,0.000651,0.001615,
- -0.000910,-0.006145,0.002170,-0.000542,-0.000011,0.000004,0.,0.,
- 0.,0.,-0.001846,0.000652,-0.000163,-0.002166,-0.005375,0.003030,
- -0.000004,-0.000010,0.000006,0.,0.,0.,-0.000077,0.000028,
- -0.000007,-0.000092,-0.000225,0.000127,-0.000028,-0.000067,
- 0.000038,0.000257,-0.000092,0.000023,-0.000002,0.,0.,0.000004,
- -0.000006,0.000003,-0.000004,0.,0.,-0.000009,-0.000022,0.000012,
- -0.000078,0.000027,-0.000007,-0.000089,-0.000225,0.000127,
- 0.000027,0.000068,-0.000038,-0.000257,0.000089,-0.000022,
- -0.000002,0.,0.,0.000004,-0.000006,0.000003,0.,-0.000002,0.,
- 0.000007,0.000003,-0.000002,0.,0.000003,-0.000002,-0.000025,
- 0.000009,-0.000002,0.,0.000002,0.,-0.000007,-0.000003,0.000002,
- 0.,0.,-0.000002,0.,0.,0.,0.,0.,-0.000002,0.,0.,0.,0.,0.,0.,
- 0.000005,0.000027,0.000052,0.,0.,0.,0.000002,0.,0.,0.,0.,0.,
- 0.000002,0.,0.,0.,0.,0.,0.,-0.000002,0.,0.,0.,0.,0.,-0.000002,0.,
- 0.,0.,0.,0.,0.,0.000002,0.,0.,0.,0.,0.,-0.000002
- };
- struct HTC20Angles
- {
- double nu1;
- double nu2;
- double nu3;
- double lambda;
- double phi1;
- double phi2;
- double phi3;
- double theta;
- };
- static const HTC20Angles HeleneAngles =
- {
- 2.29427177,
- -0.00802443,
- 2.29714724,
- 2.29571726,
- 3.27342548,
- 1.30770422,
- 0.77232982,
- 3.07410251
- };
- static const HTC20Angles TelestoAngles =
- {
- 3.32489098,
- -0.00948045,
- 3.33170385,
- 3.32830561,
- 6.24233590,
- 4.62624497,
- 0.04769409,
- 3.24465053
- };
- static const HTC20Angles CalypsoAngles =
- {
- -3.32489617,
- 0.00946761,
- -3.33170262,
- 3.32830561,
- 5.41384760,
- 1.36874776,
- 5.64157287,
- 3.25074880
- };
- class HTC20Orbit : public CachingOrbit
- {
- public:
- HTC20Orbit(int _nTerms, const double* _args, const double* _amplitudes,
- const HTC20Angles& _angles,
- double _period, double _boundingRadius) :
- nTerms(_nTerms),
- args(_args),
- amplitudes(_amplitudes),
- angles(_angles),
- period(_period),
- boundingRadius(_boundingRadius)
- {
- }
- virtual ~HTC20Orbit() {};
- Point3d computePosition(double jd) const
- {
- double t = jd - astro::J2000 - (4156.0 / 86400.0);
- Point3d pos(0.0, 0.0, 0.0);
- for (int i = 0; i < nTerms; i++)
- {
- const double* row = args + i * 5;
- double ang = (row[1] * (angles.nu1 * t + angles.phi1) +
- row[2] * (angles.nu2 * t + angles.phi2) +
- row[3] * (angles.nu3 * t + angles.phi3) +
- row[4] * (angles.lambda * t + angles.theta));
- double u = row[0] == 0.0 ? cos(ang) : sin(ang);
- pos += Vec3d(amplitudes[i * 6], amplitudes[i * 6 + 1], amplitudes[i * 6 + 2]) * u;
- }
- // Convert to Celestia's coordinate system
- return Point3d(pos.x, pos.z, -pos.y) * astro::AUtoKilometers(1.0);
- }
- double getPeriod() const
- {
- return period;
- }
- double getBoundingRadius() const
- {
- return 354800 * BoundingRadiusSlack;
- }
- private:
- int nTerms;
- const double* args;
- const double* amplitudes;
- HTC20Angles angles;
- double period;
- double boundingRadius;
- public:
- static HTC20Orbit* CreateHeleneOrbit()
- {
- return new HTC20Orbit(24, HeleneTerms, HeleneAmps, HeleneAngles, 2.736915, 380000);
- }
- static HTC20Orbit* CreateTelestoOrbit()
- {
- return new HTC20Orbit(12, TelestoTerms, TelestoAmps, TelestoAngles, 1.887802, 300000);
- }
- static HTC20Orbit* CreateCalypsoOrbit()
- {
- return new HTC20Orbit(24, CalypsoTerms, CalypsoAmps, CalypsoAngles, 1.887803, 300000);
- }
- };
- class JPLEphOrbit : public CachingOrbit
- {
- public:
- JPLEphOrbit(const JPLEphemeris& e,
- JPLEphemItem _target,
- JPLEphemItem _center,
- double _period, double _boundingRadius) :
- ephem(e),
- target(_target),
- center(_center),
- period(_period),
- boundingRadius(_boundingRadius)
- {
- };
- virtual ~JPLEphOrbit() {};
- double getPeriod() const
- {
- return period;
- }
- double getBoundingRadius() const
- {
- return boundingRadius;
- }
- Point3d computePosition(double tjd) const
- {
- // Get the position relative to the Earth (for the Moon) or
- // the solar system barycenter.
- Point3d pos = ephem.getPlanetPosition(target, tjd);
- if (center == JPLEph_SSB && target != JPLEph_Moon)
- {
- // No translation necessary
- }
- else if (center == JPLEph_Earth && target == JPLEph_Moon)
- {
- // No translation necessary
- }
- else
- {
- Point3d centerPos = ephem.getPlanetPosition(center, tjd);
- if (target == JPLEph_Moon)
- {
- pos += (ephem.getPlanetPosition(JPLEph_Earth, tjd) - Point3d(0.0, 0.0, 0.0));
- }
- if (center == JPLEph_Moon)
- {
- centerPos += (ephem.getPlanetPosition(JPLEph_Earth, tjd) - Point3d(0.0, 0.0, 0.0));
- }
- // Compute the position of target relative to the center
- pos = Point3d(pos.x - centerPos.x,
- pos.y - centerPos.y,
- pos.z - centerPos.z);
- }
- // Rotate from the J2000 mean equator to the ecliptic
- pos = pos * Mat3d::xrotation(astro::J2000Obliquity);
- // Convert to Celestia's coordinate system
- return Point3d(pos.x, pos.z, -pos.y);
- }
- private:
- const JPLEphemeris& ephem;
- JPLEphemItem target;
- JPLEphemItem center;
- double period;
- double boundingRadius;
- };
- static Orbit* CreateJPLEphOrbit(JPLEphemItem target,
- JPLEphemItem center,
- double period,
- double boundingRadius)
- {
- if (jpleph == NULL)
- return NULL;
- Orbit* o = new JPLEphOrbit(*jpleph, target, center, period, boundingRadius);
- return new MixedOrbit(o,
- jpleph->getStartDate(),
- jpleph->getEndDate(),
- astro::SolarMass);
- }
- static double yearToJD(int year)
- {
- return (double) astro::Date(year, 1, 1);
- }
- Orbit* GetCustomOrbit(const string& name)
- {
- // Attempt to load JPL ephemeris data if we haven't tried already
- if (!jplephInitialized)
- {
- jplephInitialized = true;
- ifstream in("data/jpleph.dat", ios::in | ios::binary);
- if (in.good())
- jpleph = JPLEphemeris::load(in);
- if (jpleph != NULL)
- {
- clog << "Loaded DE" << jpleph->getDENumber() <<
- " ephemeris. Valid from JD" <<
- setprecision(8) <<
- jpleph->getStartDate() << " to JD" <<
- jpleph->getEndDate() << 'n';
- }
- }
- if (name == "mercury")
- return new MixedOrbit(new MercuryOrbit(), yearToJD(-4000), yearToJD(4000), astro::SolarMass);
- if (name == "venus")
- return new MixedOrbit(new VenusOrbit(), yearToJD(-4000), yearToJD(4000), astro::SolarMass);
- if (name == "earth")
- return new MixedOrbit(new EarthOrbit(), yearToJD(-4000), yearToJD(4000), astro::SolarMass);
- if (name == "moon")
- return new MixedOrbit(new LunarOrbit(), yearToJD(-2000), yearToJD(4000), astro::EarthMass + astro::LunarMass);
- if (name == "mars")
- return new MixedOrbit(new MarsOrbit(), yearToJD(-4000), yearToJD(4000), astro::SolarMass);
- if (name == "jupiter")
- return new MixedOrbit(new JupiterOrbit(), yearToJD(-4000), yearToJD(4000), astro::SolarMass);
- if (name == "saturn")
- return new MixedOrbit(new SaturnOrbit(), yearToJD(-4000), yearToJD(4000), astro::SolarMass);
- if (name == "uranus")
- return new MixedOrbit(new UranusOrbit(), yearToJD(-4000), yearToJD(4000), astro::SolarMass);
- if (name == "neptune")
- return new MixedOrbit(new NeptuneOrbit(), yearToJD(-4000), yearToJD(4000), astro::SolarMass);
- if (name == "pluto")
- return new MixedOrbit(new PlutoOrbit(), yearToJD(-4000), yearToJD(4000), astro::SolarMass);
- // Two styles of custom orbit name are permitted for JPL ephemeris orbits.
- // The preferred is <ephemeris>-<object>, e.g. jpl-mercury. But the reverse
- // form is still supported for backward compatibility.
- if (name == "jpl-mercury-sun" || name == "mercury-jpl")
- return CreateJPLEphOrbit(JPLEph_Mercury, JPLEph_Sun, 0.2408 * 365.25, 6.0e7);
- if (name == "jpl-venus-sun" || name == "venus-jpl")
- return CreateJPLEphOrbit(JPLEph_Venus, JPLEph_Sun, 0.6152 * 365.25, 1.0e8);
- if (name == "jpl-earth-sun" || name == "earth-jpl")
- return CreateJPLEphOrbit(JPLEph_Earth, JPLEph_Sun, 365.25, 1.6e8);
- if (name == "jpl-mars-sun" || name == "mars-jpl")
- return CreateJPLEphOrbit(JPLEph_Mars, JPLEph_Sun, 1.8809 * 365.25, 2.4e8);
- if (name == "jpl-jupiter-sun" || name == "jupiter-jpl")
- return CreateJPLEphOrbit(JPLEph_Jupiter, JPLEph_Sun, 11.86 * 365.25, 8.0e8);
- if (name == "jpl-saturn-sun" || name == "saturn-jpl")
- return CreateJPLEphOrbit(JPLEph_Saturn, JPLEph_Sun, 29.4577 * 365.25, 1.5e9);
- if (name == "jpl-uranus-sun" || name == "uranus-jpl")
- return CreateJPLEphOrbit(JPLEph_Uranus, JPLEph_Sun, 84.0139 * 365.25, 3.0e9);
- if (name == "jpl-neptune-sun" || name == "neptune-jpl")
- return CreateJPLEphOrbit(JPLEph_Neptune, JPLEph_Sun, 164.793 * 365.25, 4.7e9);
- if (name == "jpl-pluto-sun" || name == "pluto-jpl")
- return CreateJPLEphOrbit(JPLEph_Pluto, JPLEph_Sun, 248.54 * 365.25, 6.0e9);
- if (name == "jpl-mercury-ssb")
- return CreateJPLEphOrbit(JPLEph_Mercury, JPLEph_SSB, 0.2408 * 365.25, 6.0e7);
- if (name == "jpl-venus-ssb")
- return CreateJPLEphOrbit(JPLEph_Venus, JPLEph_SSB, 0.6152 * 365.25, 1.0e8);
- if (name == "jpl-earth-ssb")
- return CreateJPLEphOrbit(JPLEph_Earth, JPLEph_SSB, 365.25, 1.6e8);
- if (name == "jpl-mars-ssb")
- return CreateJPLEphOrbit(JPLEph_Mars, JPLEph_SSB, 1.8809 * 365.25, 2.4e8);
- if (name == "jpl-jupiter-ssb")
- return CreateJPLEphOrbit(JPLEph_Jupiter, JPLEph_SSB, 11.86 * 365.25, 8.0e8);
- if (name == "jpl-saturn-ssb")
- return CreateJPLEphOrbit(JPLEph_Saturn, JPLEph_SSB, 29.4577 * 365.25, 1.5e9);
- if (name == "jpl-uranus-ssb")
- return CreateJPLEphOrbit(JPLEph_Uranus, JPLEph_SSB, 84.0139 * 365.25, 3.0e9);
- if (name == "jpl-neptune-ssb")
- return CreateJPLEphOrbit(JPLEph_Neptune, JPLEph_SSB, 164.793 * 365.25, 4.7e9);
- if (name == "jpl-pluto-ssb")
- return CreateJPLEphOrbit(JPLEph_Pluto, JPLEph_SSB, 248.54 * 365.25, 6.0e9);
- // JPL ephemerides for Earth-Moon system
- if (name == "jpl-emb-sun") // Earth-Moon barycenter, heliocentric
- return CreateJPLEphOrbit(JPLEph_EarthMoonBary, JPLEph_Sun, 365.25, 1.6e8);
- if (name == "jpl-emb-ssb") // Earth-Moon barycenter, relative to ssb
- return CreateJPLEphOrbit(JPLEph_EarthMoonBary, JPLEph_SSB, 365.25, 1.6e8);
- if (name == "jpl-moon-emb") // Moon, barycentric
- return CreateJPLEphOrbit(JPLEph_Moon, JPLEph_EarthMoonBary, 27.321661, 5.0e5);
- if (name == "jpl-moon-earth") // Moon, geocentric
- return CreateJPLEphOrbit(JPLEph_Moon, JPLEph_Earth, 27.321661, 5.0e5);
- if (name == "jpl-earth-emb") // Earth, barycentric
- return CreateJPLEphOrbit(JPLEph_Earth, JPLEph_EarthMoonBary, 27.321, 1.0e5);
-
- if (name == "jpl-sun-ssb") // Position of Sun relative to SSB
- return CreateJPLEphOrbit(JPLEph_Sun, JPLEph_SSB, 11.861773 * 365.25, 2000000);
- // HTC2.0 ephemeris for Saturnian satellites in Lagrange points of Tethys and Dione
- if (name == "htc20-helene")
- return HTC20Orbit::CreateHeleneOrbit();
- if (name == "htc20-telesto")
- return HTC20Orbit::CreateTelestoOrbit();
- if (name == "htc20-calypso")
- return HTC20Orbit::CreateCalypsoOrbit();
- if (name == "phobos")
- return new PhobosOrbit();
- if (name == "deimos")
- return new DeimosOrbit();
- if (name == "io")
- return new IoOrbit();
- if (name == "europa")
- return new EuropaOrbit();
- if (name == "ganymede")
- return new GanymedeOrbit();
- if (name == "callisto")
- return new CallistoOrbit();
- if (name == "mimas")
- return new MimasOrbit();
- if (name == "enceladus")
- return new EnceladusOrbit();
- if (name == "tethys")
- return new TethysOrbit();
- if (name == "dione")
- return new DioneOrbit();
- if (name == "rhea")
- return new RheaOrbit();
- if (name == "titan")
- return new TitanOrbit();
- if (name == "hyperion")
- return new HyperionOrbit();
- if (name == "iapetus")
- return new IapetusOrbit();
- if (name == "phoebe")
- return new PhoebeOrbit();
- if (name == "miranda")
- return CreateUranianSatelliteOrbit(1);
- if (name == "ariel")
- return CreateUranianSatelliteOrbit(2);
- if (name == "umbriel")
- return CreateUranianSatelliteOrbit(3);
- if (name == "titania")
- return CreateUranianSatelliteOrbit(4);
- if (name == "oberon")
- return CreateUranianSatelliteOrbit(5);
- if (name == "triton")
- return new TritonOrbit();
- else
- return CreateVSOP87Orbit(name);
- }