statlib.c
上传用户:qaz666999
上传日期:2022-08-06
资源大小:2570k
文件大小:20k
- /* statlib.c -- Statistical functions for testing the randomness of
- number sequences. */
- /*
- Copyright 1999, 2000 Free Software Foundation, Inc.
- This file is part of the GNU MP Library.
- The GNU MP Library is free software; you can redistribute it and/or modify
- it under the terms of the GNU Lesser General Public License as published by
- the Free Software Foundation; either version 3 of the License, or (at your
- option) any later version.
- The GNU MP Library is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
- License for more details.
- You should have received a copy of the GNU Lesser General Public License
- along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
- /* The theories for these functions are taken from D. Knuth's "The Art
- of Computer Programming: Volume 2, Seminumerical Algorithms", Third
- Edition, Addison Wesley, 1998. */
- /* Implementation notes.
- The Kolmogorov-Smirnov test.
- Eq. (13) in Knuth, p. 50, says that if X1, X2, ..., Xn are independent
- observations arranged into ascending order
- Kp = sqr(n) * max(j/n - F(Xj)) for all 1<=j<=n
- Km = sqr(n) * max(F(Xj) - (j-1)/n)) for all 1<=j<=n
- where F(x) = Pr(X <= x) = probability that (X <= x), which for a
- uniformly distributed random real number between zero and one is
- exactly the number itself (x).
- The answer to exercise 23 gives the following implementation, which
- doesn't need the observations to be sorted in ascending order:
- for (k = 0; k < m; k++)
- a[k] = 1.0
- b[k] = 0.0
- c[k] = 0
- for (each observation Xj)
- Y = F(Xj)
- k = floor (m * Y)
- a[k] = min (a[k], Y)
- b[k] = max (b[k], Y)
- c[k] += 1
- j = 0
- rp = rm = 0
- for (k = 0; k < m; k++)
- if (c[k] > 0)
- rm = max (rm, a[k] - j/n)
- j += c[k]
- rp = max (rp, j/n - b[k])
- Kp = sqr (n) * rp
- Km = sqr (n) * rm
- */
- #include <stdio.h>
- #include <stdlib.h>
- #include <math.h>
- #include "gmp.h"
- #include "gmpstat.h"
- /* ks (Kp, Km, X, P, n) -- Perform a Kolmogorov-Smirnov test on the N
- real numbers between zero and one in vector X. P is the
- distribution function, called for each entry in X, which should
- calculate the probability of X being greater than or equal to any
- number in the sequence. (For a uniformly distributed sequence of
- real numbers between zero and one, this is simply equal to X.) The
- result is put in Kp and Km. */
- void
- ks (mpf_t Kp,
- mpf_t Km,
- mpf_t X[],
- void (P) (mpf_t, mpf_t),
- unsigned long int n)
- {
- mpf_t Kt; /* temp */
- mpf_t f_x;
- mpf_t f_j; /* j */
- mpf_t f_jnq; /* j/n or (j-1)/n */
- unsigned long int j;
- /* Sort the vector in ascending order. */
- qsort (X, n, sizeof (__mpf_struct), mpf_cmp);
- /* K-S test. */
- /* Kp = sqr(n) * max(j/n - F(Xj)) for all 1<=j<=n
- Km = sqr(n) * max(F(Xj) - (j-1)/n)) for all 1<=j<=n
- */
- mpf_init (Kt); mpf_init (f_x); mpf_init (f_j); mpf_init (f_jnq);
- mpf_set_ui (Kp, 0); mpf_set_ui (Km, 0);
- for (j = 1; j <= n; j++)
- {
- P (f_x, X[j-1]);
- mpf_set_ui (f_j, j);
- mpf_div_ui (f_jnq, f_j, n);
- mpf_sub (Kt, f_jnq, f_x);
- if (mpf_cmp (Kt, Kp) > 0)
- mpf_set (Kp, Kt);
- if (g_debug > DEBUG_2)
- {
- printf ("j=%lu ", j);
- printf ("P()="); mpf_out_str (stdout, 10, 2, f_x); printf ("t");
- printf ("jnq="); mpf_out_str (stdout, 10, 2, f_jnq); printf (" ");
- printf ("diff="); mpf_out_str (stdout, 10, 2, Kt); printf (" ");
- printf ("Kp="); mpf_out_str (stdout, 10, 2, Kp); printf ("t");
- }
- mpf_sub_ui (f_j, f_j, 1);
- mpf_div_ui (f_jnq, f_j, n);
- mpf_sub (Kt, f_x, f_jnq);
- if (mpf_cmp (Kt, Km) > 0)
- mpf_set (Km, Kt);
- if (g_debug > DEBUG_2)
- {
- printf ("jnq="); mpf_out_str (stdout, 10, 2, f_jnq); printf (" ");
- printf ("diff="); mpf_out_str (stdout, 10, 2, Kt); printf (" ");
- printf ("Km="); mpf_out_str (stdout, 10, 2, Km); printf (" ");
- printf ("n");
- }
- }
- mpf_sqrt_ui (Kt, n);
- mpf_mul (Kp, Kp, Kt);
- mpf_mul (Km, Km, Kt);
- mpf_clear (Kt); mpf_clear (f_x); mpf_clear (f_j); mpf_clear (f_jnq);
- }
- /* ks_table(val, n) -- calculate probability for Kp/Km less than or
- equal to VAL with N observations. See [Knuth section 3.3.1] */
- void
- ks_table (mpf_t p, mpf_t val, const unsigned int n)
- {
- /* We use Eq. (27), Knuth p.58, skipping O(1/n) for simplicity.
- This shortcut will result in too high probabilities, especially
- when n is small.
- Pr(Kp(n) <= s) = 1 - pow(e, -2*s^2) * (1 - 2/3*s/sqrt(n) + O(1/n)) */
- /* We have 's' in variable VAL and store the result in P. */
- mpf_t t1, t2;
- mpf_init (t1); mpf_init (t2);
- /* t1 = 1 - 2/3 * s/sqrt(n) */
- mpf_sqrt_ui (t1, n);
- mpf_div (t1, val, t1);
- mpf_mul_ui (t1, t1, 2);
- mpf_div_ui (t1, t1, 3);
- mpf_ui_sub (t1, 1, t1);
- /* t2 = pow(e, -2*s^2) */
- #ifndef OLDGMP
- mpf_pow_ui (t2, val, 2); /* t2 = s^2 */
- mpf_set_d (t2, exp (-(2.0 * mpf_get_d (t2))));
- #else
- /* hmmm, gmp doesn't have pow() for floats. use doubles. */
- mpf_set_d (t2, pow (M_E, -(2 * pow (mpf_get_d (val), 2))));
- #endif
- /* p = 1 - t1 * t2 */
- mpf_mul (t1, t1, t2);
- mpf_ui_sub (p, 1, t1);
- mpf_clear (t1); mpf_clear (t2);
- }
- static double x2_table_X[][7] = {
- { -2.33, -1.64, -.674, 0.0, 0.674, 1.64, 2.33 }, /* x */
- { 5.4289, 2.6896, .454276, 0.0, .454276, 2.6896, 5.4289} /* x^2 */
- };
- #define _2D3 ((double) .6666666666)
- /* x2_table (t, v, n) -- return chi-square table row for V in T[]. */
- void
- x2_table (double t[],
- unsigned int v)
- {
- int f;
- /* FIXME: Do a table lookup for v <= 30 since the following formula
- [Knuth, vol 2, 3.3.1] is only good for v > 30. */
- /* value = v + sqrt(2*v) * X[p] + (2/3) * X[p]^2 - 2/3 + O(1/sqrt(t) */
- /* NOTE: The O() term is ignored for simplicity. */
- for (f = 0; f < 7; f++)
- t[f] =
- v +
- sqrt (2 * v) * x2_table_X[0][f] +
- _2D3 * x2_table_X[1][f] - _2D3;
- }
- /* P(p, x) -- Distribution function. Calculate the probability of X
- being greater than or equal to any number in the sequence. For a
- random real number between zero and one given by a uniformly
- distributed random number generator, this is simply equal to X. */
- static void
- P (mpf_t p, mpf_t x)
- {
- mpf_set (p, x);
- }
- /* mpf_freqt() -- Frequency test using KS on N real numbers between zero
- and one. See [Knuth vol 2, p.61]. */
- void
- mpf_freqt (mpf_t Kp,
- mpf_t Km,
- mpf_t X[],
- const unsigned long int n)
- {
- ks (Kp, Km, X, P, n);
- }
- /* The Chi-square test. Eq. (8) in Knuth vol. 2 says that if Y[]
- holds the observations and p[] is the probability for.. (to be
- continued!)
- V = 1/n * sum((s=1 to k) Y[s]^2 / p[s]) - n */
- void
- x2 (mpf_t V, /* result */
- unsigned long int X[], /* data */
- unsigned int k, /* #of categories */
- void (P) (mpf_t, unsigned long int, void *), /* probability func */
- void *x, /* extra user data passed to P() */
- unsigned long int n) /* #of samples */
- {
- unsigned int f;
- mpf_t f_t, f_t2; /* temp floats */
- mpf_init (f_t); mpf_init (f_t2);
- mpf_set_ui (V, 0);
- for (f = 0; f < k; f++)
- {
- if (g_debug > DEBUG_2)
- fprintf (stderr, "%u: P()=", f);
- mpf_set_ui (f_t, X[f]);
- mpf_mul (f_t, f_t, f_t); /* f_t = X[f]^2 */
- P (f_t2, f, x); /* f_t2 = Pr(f) */
- if (g_debug > DEBUG_2)
- mpf_out_str (stderr, 10, 2, f_t2);
- mpf_div (f_t, f_t, f_t2);
- mpf_add (V, V, f_t);
- if (g_debug > DEBUG_2)
- {
- fprintf (stderr, "tV=");
- mpf_out_str (stderr, 10, 2, V);
- fprintf (stderr, "t");
- }
- }
- if (g_debug > DEBUG_2)
- fprintf (stderr, "n");
- mpf_div_ui (V, V, n);
- mpf_sub_ui (V, V, n);
- mpf_clear (f_t); mpf_clear (f_t2);
- }
- /* Pzf(p, s, x) -- Probability for category S in mpz_freqt(). It's
- 1/d for all S. X is a pointer to an unsigned int holding 'd'. */
- static void
- Pzf (mpf_t p, unsigned long int s, void *x)
- {
- mpf_set_ui (p, 1);
- mpf_div_ui (p, p, *((unsigned int *) x));
- }
- /* mpz_freqt(V, X, imax, n) -- Frequency test on integers. [Knuth,
- vol 2, 3.3.2]. Keep IMAX low on this one, since we loop from 0 to
- IMAX. 128 or 256 could be nice.
- X[] must not contain numbers outside the range 0 <= X <= IMAX.
- Return value is number of observations actually used, after
- discarding entries out of range.
- Since X[] contains integers between zero and IMAX, inclusive, we
- have IMAX+1 categories.
- Note that N should be at least 5*IMAX. Result is put in V and can
- be compared to output from x2_table (v=IMAX). */
- unsigned long int
- mpz_freqt (mpf_t V,
- mpz_t X[],
- unsigned int imax,
- const unsigned long int n)
- {
- unsigned long int *v; /* result */
- unsigned int f;
- unsigned int d; /* number of categories = imax+1 */
- unsigned int uitemp;
- unsigned long int usedn;
- d = imax + 1;
- v = (unsigned long int *) calloc (imax + 1, sizeof (unsigned long int));
- if (NULL == v)
- {
- fprintf (stderr, "mpz_freqt(): out of memoryn");
- exit (1);
- }
- /* count */
- usedn = n; /* actual number of observations */
- for (f = 0; f < n; f++)
- {
- uitemp = mpz_get_ui(X[f]);
- if (uitemp > imax) /* sanity check */
- {
- if (g_debug)
- fprintf (stderr, "mpz_freqt(): warning: input insanity: %u, "
- "ignored.n", uitemp);
- usedn--;
- continue;
- }
- v[uitemp]++;
- }
- if (g_debug > DEBUG_2)
- {
- fprintf (stderr, "counts:n");
- for (f = 0; f <= imax; f++)
- fprintf (stderr, "%u:t%lun", f, v[f]);
- }
- /* chi-square with k=imax+1 and P(x)=1/(imax+1) for all x.*/
- x2 (V, v, d, Pzf, (void *) &d, usedn);
- free (v);
- return (usedn);
- }
- /* debug dummy to drag in dump funcs */
- void
- foo_debug ()
- {
- if (0)
- {
- mpf_dump (0);
- #ifndef OLDGMP
- mpz_dump (0);
- #endif
- }
- }
- /* merit (rop, t, v, m) -- calculate merit for spectral test result in
- dimension T, see Knuth p. 105. BUGS: Only valid for 2 <= T <=
- 6. */
- void
- merit (mpf_t rop, unsigned int t, mpf_t v, mpz_t m)
- {
- int f;
- mpf_t f_m, f_const, f_pi;
- mpf_init (f_m);
- mpf_set_z (f_m, m);
- mpf_init_set_d (f_const, M_PI);
- mpf_init_set_d (f_pi, M_PI);
- switch (t)
- {
- case 2: /* PI */
- break;
- case 3: /* PI * 4/3 */
- mpf_mul_ui (f_const, f_const, 4);
- mpf_div_ui (f_const, f_const, 3);
- break;
- case 4: /* PI^2 * 1/2 */
- mpf_mul (f_const, f_const, f_pi);
- mpf_div_ui (f_const, f_const, 2);
- break;
- case 5: /* PI^2 * 8/15 */
- mpf_mul (f_const, f_const, f_pi);
- mpf_mul_ui (f_const, f_const, 8);
- mpf_div_ui (f_const, f_const, 15);
- break;
- case 6: /* PI^3 * 1/6 */
- mpf_mul (f_const, f_const, f_pi);
- mpf_mul (f_const, f_const, f_pi);
- mpf_div_ui (f_const, f_const, 6);
- break;
- default:
- fprintf (stderr,
- "spect (merit): can't calculate merit for dimensions > 6n");
- mpf_set_ui (f_const, 0);
- break;
- }
- /* rop = v^t */
- mpf_set (rop, v);
- for (f = 1; f < t; f++)
- mpf_mul (rop, rop, v);
- mpf_mul (rop, rop, f_const);
- mpf_div (rop, rop, f_m);
- mpf_clear (f_m);
- mpf_clear (f_const);
- mpf_clear (f_pi);
- }
- double
- merit_u (unsigned int t, mpf_t v, mpz_t m)
- {
- mpf_t rop;
- double res;
- mpf_init (rop);
- merit (rop, t, v, m);
- res = mpf_get_d (rop);
- mpf_clear (rop);
- return res;
- }
- /* f_floor (rop, op) -- Set rop = floor (op). */
- void
- f_floor (mpf_t rop, mpf_t op)
- {
- mpz_t z;
- mpz_init (z);
- /* No mpf_floor(). Convert to mpz and back. */
- mpz_set_f (z, op);
- mpf_set_z (rop, z);
- mpz_clear (z);
- }
- /* vz_dot (rop, v1, v2, nelem) -- compute dot product of z-vectors V1,
- V2. N is number of elements in vectors V1 and V2. */
- void
- vz_dot (mpz_t rop, mpz_t V1[], mpz_t V2[], unsigned int n)
- {
- mpz_t t;
- mpz_init (t);
- mpz_set_ui (rop, 0);
- while (n--)
- {
- mpz_mul (t, V1[n], V2[n]);
- mpz_add (rop, rop, t);
- }
- mpz_clear (t);
- }
- void
- spectral_test (mpf_t rop[], unsigned int T, mpz_t a, mpz_t m)
- {
- /* Knuth "Seminumerical Algorithms, Third Edition", section 3.3.4
- (pp. 101-103). */
- /* v[t] = min { sqrt (x[1]^2 + ... + x[t]^2) |
- x[1] + a*x[2] + ... + pow (a, t-1) * x[t] is congruent to 0 (mod m) } */
- /* Variables. */
- unsigned int ui_t;
- unsigned int ui_i, ui_j, ui_k, ui_l;
- mpf_t f_tmp1, f_tmp2;
- mpz_t tmp1, tmp2, tmp3;
- mpz_t U[GMP_SPECT_MAXT][GMP_SPECT_MAXT],
- V[GMP_SPECT_MAXT][GMP_SPECT_MAXT],
- X[GMP_SPECT_MAXT],
- Y[GMP_SPECT_MAXT],
- Z[GMP_SPECT_MAXT];
- mpz_t h, hp, r, s, p, pp, q, u, v;
- /* GMP inits. */
- mpf_init (f_tmp1);
- mpf_init (f_tmp2);
- for (ui_i = 0; ui_i < GMP_SPECT_MAXT; ui_i++)
- {
- for (ui_j = 0; ui_j < GMP_SPECT_MAXT; ui_j++)
- {
- mpz_init_set_ui (U[ui_i][ui_j], 0);
- mpz_init_set_ui (V[ui_i][ui_j], 0);
- }
- mpz_init_set_ui (X[ui_i], 0);
- mpz_init_set_ui (Y[ui_i], 0);
- mpz_init (Z[ui_i]);
- }
- mpz_init (tmp1);
- mpz_init (tmp2);
- mpz_init (tmp3);
- mpz_init (h);
- mpz_init (hp);
- mpz_init (r);
- mpz_init (s);
- mpz_init (p);
- mpz_init (pp);
- mpz_init (q);
- mpz_init (u);
- mpz_init (v);
- /* Implementation inits. */
- if (T > GMP_SPECT_MAXT)
- T = GMP_SPECT_MAXT; /* FIXME: Lazy. */
- /* S1 [Initialize.] */
- ui_t = 2 - 1; /* NOTE: `t' in description == ui_t + 1
- for easy indexing */
- mpz_set (h, a);
- mpz_set (hp, m);
- mpz_set_ui (p, 1);
- mpz_set_ui (pp, 0);
- mpz_set (r, a);
- mpz_pow_ui (s, a, 2);
- mpz_add_ui (s, s, 1); /* s = 1 + a^2 */
- /* S2 [Euclidean step.] */
- while (1)
- {
- if (g_debug > DEBUG_1)
- {
- mpz_mul (tmp1, h, pp);
- mpz_mul (tmp2, hp, p);
- mpz_sub (tmp1, tmp1, tmp2);
- if (mpz_cmpabs (m, tmp1))
- {
- printf ("***BUG***: h*pp - hp*p = ");
- mpz_out_str (stdout, 10, tmp1);
- printf ("n");
- }
- }
- if (g_debug > DEBUG_2)
- {
- printf ("hp = ");
- mpz_out_str (stdout, 10, hp);
- printf ("nh = ");
- mpz_out_str (stdout, 10, h);
- printf ("n");
- fflush (stdout);
- }
- if (mpz_sgn (h))
- mpz_tdiv_q (q, hp, h); /* q = floor(hp/h) */
- else
- mpz_set_ui (q, 1);
- if (g_debug > DEBUG_2)
- {
- printf ("q = ");
- mpz_out_str (stdout, 10, q);
- printf ("n");
- fflush (stdout);
- }
- mpz_mul (tmp1, q, h);
- mpz_sub (u, hp, tmp1); /* u = hp - q*h */
- mpz_mul (tmp1, q, p);
- mpz_sub (v, pp, tmp1); /* v = pp - q*p */
- mpz_pow_ui (tmp1, u, 2);
- mpz_pow_ui (tmp2, v, 2);
- mpz_add (tmp1, tmp1, tmp2);
- if (mpz_cmp (tmp1, s) < 0)
- {
- mpz_set (s, tmp1); /* s = u^2 + v^2 */
- mpz_set (hp, h); /* hp = h */
- mpz_set (h, u); /* h = u */
- mpz_set (pp, p); /* pp = p */
- mpz_set (p, v); /* p = v */
- }
- else
- break;
- }
- /* S3 [Compute v2.] */
- mpz_sub (u, u, h);
- mpz_sub (v, v, p);
- mpz_pow_ui (tmp1, u, 2);
- mpz_pow_ui (tmp2, v, 2);
- mpz_add (tmp1, tmp1, tmp2);
- if (mpz_cmp (tmp1, s) < 0)
- {
- mpz_set (s, tmp1); /* s = u^2 + v^2 */
- mpz_set (hp, u);
- mpz_set (pp, v);
- }
- mpf_set_z (f_tmp1, s);
- mpf_sqrt (rop[ui_t - 1], f_tmp1);
- /* S4 [Advance t.] */
- mpz_neg (U[0][0], h);
- mpz_set (U[0][1], p);
- mpz_neg (U[1][0], hp);
- mpz_set (U[1][1], pp);
- mpz_set (V[0][0], pp);
- mpz_set (V[0][1], hp);
- mpz_neg (V[1][0], p);
- mpz_neg (V[1][1], h);
- if (mpz_cmp_ui (pp, 0) > 0)
- {
- mpz_neg (V[0][0], V[0][0]);
- mpz_neg (V[0][1], V[0][1]);
- mpz_neg (V[1][0], V[1][0]);
- mpz_neg (V[1][1], V[1][1]);
- }
- while (ui_t + 1 != T) /* S4 loop */
- {
- ui_t++;
- mpz_mul (r, a, r);
- mpz_mod (r, r, m);
- /* Add new row and column to U and V. They are initialized with
- all elements set to zero, so clearing is not necessary. */
- mpz_neg (U[ui_t][0], r); /* U: First col in new row. */
- mpz_set_ui (U[ui_t][ui_t], 1); /* U: Last col in new row. */
- mpz_set (V[ui_t][ui_t], m); /* V: Last col in new row. */
- /* "Finally, for 1 <= i < t,
- set q = round (vi1 * r / m),
- vit = vi1*r - q*m,
- and Ut=Ut+q*Ui */
- for (ui_i = 0; ui_i < ui_t; ui_i++)
- {
- mpz_mul (tmp1, V[ui_i][0], r); /* tmp1=vi1*r */
- zdiv_round (q, tmp1, m); /* q=round(vi1*r/m) */
- mpz_mul (tmp2, q, m); /* tmp2=q*m */
- mpz_sub (V[ui_i][ui_t], tmp1, tmp2);
- for (ui_j = 0; ui_j <= ui_t; ui_j++) /* U[t] = U[t] + q*U[i] */
- {
- mpz_mul (tmp1, q, U[ui_i][ui_j]); /* tmp=q*uij */
- mpz_add (U[ui_t][ui_j], U[ui_t][ui_j], tmp1); /* utj = utj + q*uij */
- }
- }
- /* s = min (s, zdot (U[t], U[t]) */
- vz_dot (tmp1, U[ui_t], U[ui_t], ui_t + 1);
- if (mpz_cmp (tmp1, s) < 0)
- mpz_set (s, tmp1);
- ui_k = ui_t;
- ui_j = 0; /* WARNING: ui_j no longer a temp. */
- /* S5 [Transform.] */
- if (g_debug > DEBUG_2)
- printf ("(t, k, j, q1, q2, ...)n");
- do
- {
- if (g_debug > DEBUG_2)
- printf ("(%u, %u, %u", ui_t + 1, ui_k + 1, ui_j + 1);
- for (ui_i = 0; ui_i <= ui_t; ui_i++)
- {
- if (ui_i != ui_j)
- {
- vz_dot (tmp1, V[ui_i], V[ui_j], ui_t + 1); /* tmp1=dot(Vi,Vj). */
- mpz_abs (tmp2, tmp1);
- mpz_mul_ui (tmp2, tmp2, 2); /* tmp2 = 2*abs(dot(Vi,Vj) */
- vz_dot (tmp3, V[ui_j], V[ui_j], ui_t + 1); /* tmp3=dot(Vj,Vj). */
- if (mpz_cmp (tmp2, tmp3) > 0)
- {
- zdiv_round (q, tmp1, tmp3); /* q=round(Vi.Vj/Vj.Vj) */
- if (g_debug > DEBUG_2)
- {
- printf (", ");
- mpz_out_str (stdout, 10, q);
- }
- for (ui_l = 0; ui_l <= ui_t; ui_l++)
- {
- mpz_mul (tmp1, q, V[ui_j][ui_l]);
- mpz_sub (V[ui_i][ui_l], V[ui_i][ui_l], tmp1); /* Vi=Vi-q*Vj */
- mpz_mul (tmp1, q, U[ui_i][ui_l]);
- mpz_add (U[ui_j][ui_l], U[ui_j][ui_l], tmp1); /* Uj=Uj+q*Ui */
- }
- vz_dot (tmp1, U[ui_j], U[ui_j], ui_t + 1); /* tmp1=dot(Uj,Uj) */
- if (mpz_cmp (tmp1, s) < 0) /* s = min(s,dot(Uj,Uj)) */
- mpz_set (s, tmp1);
- ui_k = ui_j;
- }
- else if (g_debug > DEBUG_2)
- printf (", #"); /* 2|Vi.Vj| <= Vj.Vj */
- }
- else if (g_debug > DEBUG_2)
- printf (", *"); /* i == j */
- }
- if (g_debug > DEBUG_2)
- printf (")n");
- /* S6 [Advance j.] */
- if (ui_j == ui_t)
- ui_j = 0;
- else
- ui_j++;
- }
- while (ui_j != ui_k); /* S5 */
- /* From Knuth p. 104: "The exhaustive search in steps S8-S10
- reduces the value of s only rarely." */
- #ifdef DO_SEARCH
- /* S7 [Prepare for search.] */
- /* Find minimum in (x[1], ..., x[t]) satisfying condition
- x[k]^2 <= f(y[1], ...,y[t]) * dot(V[k],V[k]) */
- ui_k = ui_t;
- if (g_debug > DEBUG_2)
- {
- printf ("searching...");
- /*for (f = 0; f < ui_t*/
- fflush (stdout);
- }
- /* Z[i] = floor (sqrt (floor (dot(V[i],V[i]) * s / m^2))); */
- mpz_pow_ui (tmp1, m, 2);
- mpf_set_z (f_tmp1, tmp1);
- mpf_set_z (f_tmp2, s);
- mpf_div (f_tmp1, f_tmp2, f_tmp1); /* f_tmp1 = s/m^2 */
- for (ui_i = 0; ui_i <= ui_t; ui_i++)
- {
- vz_dot (tmp1, V[ui_i], V[ui_i], ui_t + 1);
- mpf_set_z (f_tmp2, tmp1);
- mpf_mul (f_tmp2, f_tmp2, f_tmp1);
- f_floor (f_tmp2, f_tmp2);
- mpf_sqrt (f_tmp2, f_tmp2);
- mpz_set_f (Z[ui_i], f_tmp2);
- }
- /* S8 [Advance X[k].] */
- do
- {
- if (g_debug > DEBUG_2)
- {
- printf ("X[%u] = ", ui_k);
- mpz_out_str (stdout, 10, X[ui_k]);
- printf ("tZ[%u] = ", ui_k);
- mpz_out_str (stdout, 10, Z[ui_k]);
- printf ("n");
- fflush (stdout);
- }
- if (mpz_cmp (X[ui_k], Z[ui_k]))
- {
- mpz_add_ui (X[ui_k], X[ui_k], 1);
- for (ui_i = 0; ui_i <= ui_t; ui_i++)
- mpz_add (Y[ui_i], Y[ui_i], U[ui_k][ui_i]);
- /* S9 [Advance k.] */
- while (++ui_k <= ui_t)
- {
- mpz_neg (X[ui_k], Z[ui_k]);
- mpz_mul_ui (tmp1, Z[ui_k], 2);
- for (ui_i = 0; ui_i <= ui_t; ui_i++)
- {
- mpz_mul (tmp2, tmp1, U[ui_k][ui_i]);
- mpz_sub (Y[ui_i], Y[ui_i], tmp2);
- }
- }
- vz_dot (tmp1, Y, Y, ui_t + 1);
- if (mpz_cmp (tmp1, s) < 0)
- mpz_set (s, tmp1);
- }
- }
- while (--ui_k);
- #endif /* DO_SEARCH */
- mpf_set_z (f_tmp1, s);
- mpf_sqrt (rop[ui_t - 1], f_tmp1);
- #ifdef DO_SEARCH
- if (g_debug > DEBUG_2)
- printf ("done.n");
- #endif /* DO_SEARCH */
- } /* S4 loop */
- /* Clear GMP variables. */
- mpf_clear (f_tmp1);
- mpf_clear (f_tmp2);
- for (ui_i = 0; ui_i < GMP_SPECT_MAXT; ui_i++)
- {
- for (ui_j = 0; ui_j < GMP_SPECT_MAXT; ui_j++)
- {
- mpz_clear (U[ui_i][ui_j]);
- mpz_clear (V[ui_i][ui_j]);
- }
- mpz_clear (X[ui_i]);
- mpz_clear (Y[ui_i]);
- mpz_clear (Z[ui_i]);
- }
- mpz_clear (tmp1);
- mpz_clear (tmp2);
- mpz_clear (tmp3);
- mpz_clear (h);
- mpz_clear (hp);
- mpz_clear (r);
- mpz_clear (s);
- mpz_clear (p);
- mpz_clear (pp);
- mpz_clear (q);
- mpz_clear (u);
- mpz_clear (v);
- return;
- }