millerrabin.c
上传用户:qaz666999
上传日期:2022-08-06
资源大小:2570k
文件大小:3k
- /* mpz_millerrabin(n,reps) -- An implementation of the probabilistic primality
- test found in Knuth's Seminumerical Algorithms book. If the function
- mpz_millerrabin() returns 0 then n is not prime. If it returns 1, then n is
- 'probably' prime. The probability of a false positive is (1/4)**reps, where
- reps is the number of internal passes of the probabilistic algorithm. Knuth
- indicates that 25 passes are reasonable.
- THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST
- CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
- FUTURE GNU MP RELEASES.
- Copyright 1991, 1993, 1994, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2005 Free
- Software Foundation, Inc. Contributed by John Amanatides.
- This file is part of the GNU MP Library.
- The GNU MP Library is free software; you can redistribute it and/or modify
- it under the terms of the GNU Lesser General Public License as published by
- the Free Software Foundation; either version 3 of the License, or (at your
- option) any later version.
- The GNU MP Library is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
- License for more details.
- You should have received a copy of the GNU Lesser General Public License
- along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
- #include "gmp.h"
- #include "gmp-impl.h"
- static int millerrabin __GMP_PROTO ((mpz_srcptr, mpz_srcptr,
- mpz_ptr, mpz_ptr,
- mpz_srcptr, unsigned long int));
- int
- mpz_millerrabin (mpz_srcptr n, int reps)
- {
- int r;
- mpz_t nm1, nm3, x, y, q;
- unsigned long int k;
- gmp_randstate_t rstate;
- int is_prime;
- TMP_DECL;
- TMP_MARK;
- MPZ_TMP_INIT (nm1, SIZ (n) + 1);
- mpz_sub_ui (nm1, n, 1L);
- MPZ_TMP_INIT (x, SIZ (n) + 1);
- MPZ_TMP_INIT (y, 2 * SIZ (n)); /* mpz_powm_ui needs excessive memory!!! */
- /* Perform a Fermat test. */
- mpz_set_ui (x, 210L);
- mpz_powm (y, x, nm1, n);
- if (mpz_cmp_ui (y, 1L) != 0)
- {
- TMP_FREE;
- return 0;
- }
- MPZ_TMP_INIT (q, SIZ (n));
- /* Find q and k, where q is odd and n = 1 + 2**k * q. */
- k = mpz_scan1 (nm1, 0L);
- mpz_tdiv_q_2exp (q, nm1, k);
- /* n-3 */
- MPZ_TMP_INIT (nm3, SIZ (n) + 1);
- mpz_sub_ui (nm3, n, 3L);
- ASSERT (mpz_cmp_ui (nm3, 1L) >= 0);
- gmp_randinit_default (rstate);
- is_prime = 1;
- for (r = 0; r < reps && is_prime; r++)
- {
- /* 2 to n-2 inclusive, don't want 1, 0 or -1 */
- mpz_urandomm (x, rstate, nm3);
- mpz_add_ui (x, x, 2L);
- is_prime = millerrabin (n, nm1, x, y, q, k);
- }
- gmp_randclear (rstate);
- TMP_FREE;
- return is_prime;
- }
- static int
- millerrabin (mpz_srcptr n, mpz_srcptr nm1, mpz_ptr x, mpz_ptr y,
- mpz_srcptr q, unsigned long int k)
- {
- unsigned long int i;
- mpz_powm (y, x, q, n);
- if (mpz_cmp_ui (y, 1L) == 0 || mpz_cmp (y, nm1) == 0)
- return 1;
- for (i = 1; i < k; i++)
- {
- mpz_powm_ui (y, y, 2L, n);
- if (mpz_cmp (y, nm1) == 0)
- return 1;
- if (mpz_cmp_ui (y, 1L) == 0)
- return 0;
- }
- return 0;
- }