sqrmod_bnm1.c
上传用户:qaz666999
上传日期:2022-08-06
资源大小:2570k
文件大小:8k
- /* sqrmod_bnm1.c -- squaring mod B^n-1.
- Contributed to the GNU project by Niels M鰈ler, Torbjorn Granlund and
- Marco Bodrato.
- THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY
- SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST
- GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
- Copyright 2009, 2010 Free Software Foundation, Inc.
- This file is part of the GNU MP Library.
- The GNU MP Library is free software; you can redistribute it and/or modify
- it under the terms of the GNU Lesser General Public License as published by
- the Free Software Foundation; either version 3 of the License, or (at your
- option) any later version.
- The GNU MP Library is distributed in the hope that it will be useful, but
- WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
- License for more details.
- You should have received a copy of the GNU Lesser General Public License
- along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
- #include "gmp.h"
- #include "gmp-impl.h"
- #include "longlong.h"
- /* Input is {ap,rn}; output is {rp,rn}, computation is
- mod B^rn - 1, and values are semi-normalised; zero is represented
- as either 0 or B^n - 1. Needs a scratch of 2rn limbs at tp.
- tp==rp is allowed. */
- static void
- mpn_bc_sqrmod_bnm1 (mp_ptr rp, mp_srcptr ap, mp_size_t rn, mp_ptr tp)
- {
- mp_limb_t cy;
- ASSERT (0 < rn);
- mpn_sqr (tp, ap, rn);
- cy = mpn_add_n (rp, tp, tp + rn, rn);
- /* If cy == 1, then the value of rp is at most B^rn - 2, so there can
- * be no overflow when adding in the carry. */
- MPN_INCR_U (rp, rn, cy);
- }
- /* Input is {ap,rn+1}; output is {rp,rn+1}, in
- semi-normalised representation, computation is mod B^rn + 1. Needs
- a scratch area of 2rn + 2 limbs at tp; tp == rp is allowed.
- Output is normalised. */
- static void
- mpn_bc_sqrmod_bnp1 (mp_ptr rp, mp_srcptr ap, mp_size_t rn, mp_ptr tp)
- {
- mp_limb_t cy;
- ASSERT (0 < rn);
- mpn_sqr (tp, ap, rn + 1);
- ASSERT (tp[2*rn+1] == 0);
- ASSERT (tp[2*rn] < GMP_NUMB_MAX);
- cy = tp[2*rn] + mpn_sub_n (rp, tp, tp+rn, rn);
- rp[rn] = 0;
- MPN_INCR_U (rp, rn+1, cy );
- }
- /* Computes {rp,MIN(rn,2an)} <- {ap,an}^2 Mod(B^rn-1)
- *
- * The result is expected to be ZERO if and only if the operand
- * already is. Otherwise the class [0] Mod(B^rn-1) is represented by
- * B^rn-1.
- * It should not be a problem if sqrmod_bnm1 is used to
- * compute the full square with an <= 2*rn, because this condition
- * implies (B^an-1)^2 < (B^rn-1) .
- *
- * Requires rn/4 < an <= rn
- * Scratch need: rn/2 + (need for recursive call OR rn + 3). This gives
- *
- * S(n) <= rn/2 + MAX (rn + 4, S(n/2)) <= 3/2 rn + 4
- */
- void
- mpn_sqrmod_bnm1 (mp_ptr rp, mp_size_t rn, mp_srcptr ap, mp_size_t an, mp_ptr tp)
- {
- ASSERT (0 < an);
- ASSERT (an <= rn);
- if ((rn & 1) != 0 || BELOW_THRESHOLD (rn, SQRMOD_BNM1_THRESHOLD))
- {
- if (UNLIKELY (an < rn))
- {
- if (UNLIKELY (2*an <= rn))
- {
- mpn_sqr (rp, ap, an);
- }
- else
- {
- mp_limb_t cy;
- mpn_sqr (tp, ap, an);
- cy = mpn_add (rp, tp, rn, tp + rn, 2*an - rn);
- MPN_INCR_U (rp, rn, cy);
- }
- }
- else
- mpn_bc_sqrmod_bnm1 (rp, ap, rn, tp);
- }
- else
- {
- mp_size_t n;
- mp_limb_t cy;
- mp_limb_t hi;
- n = rn >> 1;
- ASSERT (2*an > n);
- /* Compute xm = a^2 mod (B^n - 1), xp = a^2 mod (B^n + 1)
- and crt together as
- x = -xp * B^n + (B^n + 1) * [ (xp + xm)/2 mod (B^n-1)]
- */
- #define a0 ap
- #define a1 (ap + n)
- #define xp tp /* 2n + 2 */
- /* am1 maybe in {xp, n} */
- #define sp1 (tp + 2*n + 2)
- /* ap1 maybe in {sp1, n + 1} */
- {
- mp_srcptr am1;
- mp_size_t anm;
- mp_ptr so;
- if (LIKELY (an > n))
- {
- so = xp + n;
- am1 = xp;
- cy = mpn_add (xp, a0, n, a1, an - n);
- MPN_INCR_U (xp, n, cy);
- anm = n;
- }
- else
- {
- so = xp;
- am1 = a0;
- anm = an;
- }
- mpn_sqrmod_bnm1 (rp, n, am1, anm, so);
- }
- {
- int k;
- mp_srcptr ap1;
- mp_size_t anp;
- if (LIKELY (an > n)) {
- ap1 = sp1;
- cy = mpn_sub (sp1, a0, n, a1, an - n);
- sp1[n] = 0;
- MPN_INCR_U (sp1, n + 1, cy);
- anp = n + ap1[n];
- } else {
- ap1 = a0;
- anp = an;
- }
- if (BELOW_THRESHOLD (n, MUL_FFT_MODF_THRESHOLD))
- k=0;
- else
- {
- int mask;
- k = mpn_fft_best_k (n, 1);
- mask = (1<<k) -1;
- while (n & mask) {k--; mask >>=1;};
- }
- if (k >= FFT_FIRST_K)
- xp[n] = mpn_mul_fft (xp, n, ap1, anp, ap1, anp, k);
- else if (UNLIKELY (ap1 == a0))
- {
- ASSERT (anp <= n);
- ASSERT (2*anp > n);
- mpn_sqr (xp, a0, an);
- anp = 2*an - n;
- cy = mpn_sub (xp, xp, n, xp + n, anp);
- xp[n] = 0;
- MPN_INCR_U (xp, n+1, cy);
- }
- else
- mpn_bc_sqrmod_bnp1 (xp, ap1, n, xp);
- }
- /* Here the CRT recomposition begins.
- xm <- (xp + xm)/2 = (xp + xm)B^n/2 mod (B^n-1)
- Division by 2 is a bitwise rotation.
- Assumes xp normalised mod (B^n+1).
- The residue class [0] is represented by [B^n-1]; except when
- both input are ZERO.
- */
- #if HAVE_NATIVE_mpn_rsh1add_n || HAVE_NATIVE_mpn_rsh1add_nc
- #if HAVE_NATIVE_mpn_rsh1add_nc
- cy = mpn_rsh1add_nc(rp, rp, xp, n, xp[n]); /* B^n = 1 */
- hi = cy << (GMP_NUMB_BITS - 1);
- cy = 0;
- /* next update of rp[n-1] will set cy = 1 only if rp[n-1]+=hi
- overflows, i.e. a further increment will not overflow again. */
- #else /* ! _nc */
- cy = xp[n] + mpn_rsh1add_n(rp, rp, xp, n); /* B^n = 1 */
- hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */
- cy >>= 1;
- /* cy = 1 only if xp[n] = 1 i.e. {xp,n} = ZERO, this implies that
- the rsh1add was a simple rshift: the top bit is 0. cy=1 => hi=0. */
- #endif
- #if GMP_NAIL_BITS == 0
- add_ssaaaa(cy, rp[n-1], cy, rp[n-1], 0, hi);
- #else
- cy += (hi & rp[n-1]) >> (GMP_NUMB_BITS-1);
- rp[n-1] ^= hi;
- #endif
- #else /* ! HAVE_NATIVE_mpn_rsh1add_n */
- #if HAVE_NATIVE_mpn_add_nc
- cy = mpn_add_nc(rp, rp, xp, n, xp[n]);
- #else /* ! _nc */
- cy = xp[n] + mpn_add_n(rp, rp, xp, n); /* xp[n] == 1 implies {xp,n} == ZERO */
- #endif
- cy += (rp[0]&1);
- mpn_rshift(rp, rp, n, 1);
- ASSERT (cy <= 2);
- hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */
- cy >>= 1;
- /* We can have cy != 0 only if hi = 0... */
- ASSERT ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0);
- rp[n-1] |= hi;
- /* ... rp[n-1] + cy can not overflow, the following INCR is correct. */
- #endif
- ASSERT (cy <= 1);
- /* Next increment can not overflow, read the previous comments about cy. */
- ASSERT ((cy == 0) || ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0));
- MPN_INCR_U(rp, n, cy);
- /* Compute the highest half:
- ([(xp + xm)/2 mod (B^n-1)] - xp ) * B^n
- */
- if (UNLIKELY (2*an < rn))
- {
- /* Note that in this case, the only way the result can equal
- zero mod B^{rn} - 1 is if the input is zero, and
- then the output of both the recursive calls and this CRT
- reconstruction is zero, not B^{rn} - 1. */
- cy = mpn_sub_n (rp + n, rp, xp, 2*an - n);
- /* FIXME: This subtraction of the high parts is not really
- necessary, we do it to get the carry out, and for sanity
- checking. */
- cy = xp[n] + mpn_sub_nc (xp + 2*an - n, rp + 2*an - n,
- xp + 2*an - n, rn - 2*an, cy);
- ASSERT (mpn_zero_p (xp + 2*an - n+1, rn - 1 - 2*an));
- cy = mpn_sub_1 (rp, rp, 2*an, cy);
- ASSERT (cy == (xp + 2*an - n)[0]);
- }
- else
- {
- cy = xp[n] + mpn_sub_n (rp + n, rp, xp, n);
- /* cy = 1 only if {xp,n+1} is not ZERO, i.e. {rp,n} is not ZERO.
- DECR will affect _at most_ the lowest n limbs. */
- MPN_DECR_U (rp, 2*n, cy);
- }
- #undef a0
- #undef a1
- #undef xp
- #undef sp1
- }
- }
- mp_size_t
- mpn_sqrmod_bnm1_next_size (mp_size_t n)
- {
- mp_size_t nh;
- if (BELOW_THRESHOLD (n, SQRMOD_BNM1_THRESHOLD))
- return n;
- if (BELOW_THRESHOLD (n, 4 * (SQRMOD_BNM1_THRESHOLD - 1) + 1))
- return (n + (2-1)) & (-2);
- if (BELOW_THRESHOLD (n, 8 * (SQRMOD_BNM1_THRESHOLD - 1) + 1))
- return (n + (4-1)) & (-4);
- nh = (n + 1) >> 1;
- if (BELOW_THRESHOLD (nh, SQR_FFT_MODF_THRESHOLD))
- return (n + (8-1)) & (-8);
- return 2 * mpn_fft_next_size (nh, mpn_fft_best_k (nh, 1));
- }