NLequationCalculatorDlg.cpp
上传用户:weigute
上传日期:2007-03-02
资源大小:1287k
文件大小:14k
源码类别:
数学计算
开发平台:
Visual C++
- // NLequationCalculatorDlg.cpp : implementation file
- //
- #include "stdafx.h"
- #include "NLequationCalculator.h"
- #include "NLequationCalculatorDlg.h"
- #include "NLequation.h"
- #ifdef _DEBUG
- #define new DEBUG_NEW
- #undef THIS_FILE
- static char THIS_FILE[] = __FILE__;
- #endif
- /////////////////////////////////////////////////////////////////////////////
- // CAboutDlg dialog used for App About
- class CAboutDlg : public CDialog
- {
- public:
- CAboutDlg();
- // Dialog Data
- //{{AFX_DATA(CAboutDlg)
- enum { IDD = IDD_ABOUTBOX };
- //}}AFX_DATA
- // ClassWizard generated virtual function overrides
- //{{AFX_VIRTUAL(CAboutDlg)
- protected:
- virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
- //}}AFX_VIRTUAL
- // Implementation
- protected:
- //{{AFX_MSG(CAboutDlg)
- //}}AFX_MSG
- DECLARE_MESSAGE_MAP()
- };
- CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
- {
- //{{AFX_DATA_INIT(CAboutDlg)
- //}}AFX_DATA_INIT
- }
- void CAboutDlg::DoDataExchange(CDataExchange* pDX)
- {
- CDialog::DoDataExchange(pDX);
- //{{AFX_DATA_MAP(CAboutDlg)
- //}}AFX_DATA_MAP
- }
- BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
- //{{AFX_MSG_MAP(CAboutDlg)
- // No message handlers
- //}}AFX_MSG_MAP
- END_MESSAGE_MAP()
- /////////////////////////////////////////////////////////////////////////////
- // CNLequationCalculatorDlg dialog
- CNLequationCalculatorDlg::CNLequationCalculatorDlg(CWnd* pParent /*=NULL*/)
- : CDialog(CNLequationCalculatorDlg::IDD, pParent)
- {
- //{{AFX_DATA_INIT(CNLequationCalculatorDlg)
- // NOTE: the ClassWizard will add member initialization here
- //}}AFX_DATA_INIT
- // Note that LoadIcon does not require a subsequent DestroyIcon in Win32
- m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
- }
- void CNLequationCalculatorDlg::DoDataExchange(CDataExchange* pDX)
- {
- CDialog::DoDataExchange(pDX);
- //{{AFX_DATA_MAP(CNLequationCalculatorDlg)
- // NOTE: the ClassWizard will add DDX and DDV calls here
- //}}AFX_DATA_MAP
- }
- BEGIN_MESSAGE_MAP(CNLequationCalculatorDlg, CDialog)
- //{{AFX_MSG_MAP(CNLequationCalculatorDlg)
- ON_WM_SYSCOMMAND()
- ON_WM_PAINT()
- ON_WM_QUERYDRAGICON()
- ON_BN_CLICKED(IDC_BUTTON1, OnButton1)
- ON_BN_CLICKED(IDC_BUTTON2, OnButton2)
- ON_BN_CLICKED(IDC_BUTTON3, OnButton3)
- ON_BN_CLICKED(IDC_BUTTON4, OnButton4)
- ON_BN_CLICKED(IDC_BUTTON5, OnButton5)
- ON_BN_CLICKED(IDC_BUTTON6, OnButton6)
- ON_BN_CLICKED(IDC_BUTTON7, OnButton7)
- ON_BN_CLICKED(IDC_BUTTON8, OnButton8)
- ON_BN_CLICKED(IDC_BUTTON9, OnButton9)
- ON_BN_CLICKED(IDC_BUTTON10, OnButton10)
- ON_BN_CLICKED(IDC_BUTTON11, OnButton11)
- ON_BN_CLICKED(IDC_BUTTON12, OnButton12)
- ON_BN_CLICKED(IDC_BUTTON13, OnButton13)
- //}}AFX_MSG_MAP
- END_MESSAGE_MAP()
- /////////////////////////////////////////////////////////////////////////////
- // CNLequationCalculatorDlg message handlers
- BOOL CNLequationCalculatorDlg::OnInitDialog()
- {
- CDialog::OnInitDialog();
- // Add "About..." menu item to system menu.
- // IDM_ABOUTBOX must be in the system command range.
- ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
- ASSERT(IDM_ABOUTBOX < 0xF000);
- CMenu* pSysMenu = GetSystemMenu(FALSE);
- if (pSysMenu != NULL)
- {
- CString strAboutMenu;
- strAboutMenu.LoadString(IDS_ABOUTBOX);
- if (!strAboutMenu.IsEmpty())
- {
- pSysMenu->AppendMenu(MF_SEPARATOR);
- pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
- }
- }
- // Set the icon for this dialog. The framework does this automatically
- // when the application's main window is not a dialog
- SetIcon(m_hIcon, TRUE); // Set big icon
- SetIcon(m_hIcon, FALSE); // Set small icon
- // TODO: Add extra initialization here
- return TRUE; // return TRUE unless you set the focus to a control
- }
- void CNLequationCalculatorDlg::OnSysCommand(UINT nID, LPARAM lParam)
- {
- if ((nID & 0xFFF0) == IDM_ABOUTBOX)
- {
- CAboutDlg dlgAbout;
- dlgAbout.DoModal();
- }
- else
- {
- CDialog::OnSysCommand(nID, lParam);
- }
- }
- // If you add a minimize button to your dialog, you will need the code below
- // to draw the icon. For MFC applications using the document/view model,
- // this is automatically done for you by the framework.
- void CNLequationCalculatorDlg::OnPaint()
- {
- if (IsIconic())
- {
- CPaintDC dc(this); // device context for painting
- SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);
- // Center icon in client rectangle
- int cxIcon = GetSystemMetrics(SM_CXICON);
- int cyIcon = GetSystemMetrics(SM_CYICON);
- CRect rect;
- GetClientRect(&rect);
- int x = (rect.Width() - cxIcon + 1) / 2;
- int y = (rect.Height() - cyIcon + 1) / 2;
- // Draw the icon
- dc.DrawIcon(x, y, m_hIcon);
- }
- else
- {
- CDialog::OnPaint();
- }
- }
- // The system calls this to obtain the cursor to display while the user drags
- // the minimized window.
- HCURSOR CNLequationCalculatorDlg::OnQueryDragIcon()
- {
- return (HCURSOR) m_hIcon;
- }
- // 求非线性方程实根的对分法
- void CNLequationCalculatorDlg::OnButton1()
- {
- // 建立CNLequation的子类,在其中重载函数Func
- class CNLeq : public CNLequation
- {
- double Func(double x)
- {
- double z = (((((x-5.0)*x+3.0)*x+1.0)*x-7.0)*x+7.0)*x-20.0;
- return z;
- }
- };
- // 求解
- CNLeq nleq;
- double x[6];
- int n = nleq.GetRootBisect(6, x, -2, 5, 0.2);
- // 显示结果
- CString sMsg;
- sMsg.Format("求得如下 %d 个根:nn", n);
- CString ss;
- for (int i=0; i<=n-1; i++)
- {
- ss.Format("x(%d) = %fn",i,x[i]);
- sMsg += ss;
- }
- AfxMessageBox(sMsg, MB_OK|MB_ICONINFORMATION);
- }
- // 求非线性方程一个实根的牛顿法
- void CNLequationCalculatorDlg::OnButton2()
- {
- // 建立CNLequation的子类,在其中重载函数Func
- class CNLeq : public CNLequation
- {
- void Func(double x, double y[])
- {
- y[0]=x*x*(x-1.0)-1.0;
- y[1]=3.0*x*x-2.0*x;
- }
- };
- // 求解
- CNLeq nleq;
- double x = 1.5;
- int bRet = nleq.GetRootNewton(&x);
- // 显示结果
- CString sMsg;
- if (bRet)
- sMsg.Format("求得的一个实根为:nnx = %fn", x);
- else
- sMsg = "求解失败";
- AfxMessageBox(sMsg, MB_OK|MB_ICONINFORMATION);
- }
- // 求非线性方程一个实根的埃特金迭代法
- void CNLequationCalculatorDlg::OnButton3()
- {
- // 建立CNLequation的子类,在其中重载函数Func
- class CNLeq : public CNLequation
- {
- double Func(double x)
- {
- double y = 6.0-x*x;
- return y;
- }
- };
- // 求解
- CNLeq nleq;
- double x = 0.0;
- int bRet = nleq.GetRootAitken(&x);
- // 显示结果
- CString sMsg;
- if (bRet)
- sMsg.Format("求得的一个实根为:nnx = %fn", x);
- else
- sMsg = "求解失败";
- AfxMessageBox(sMsg, MB_OK|MB_ICONINFORMATION);
- }
- // 求非线性方程一个实根的连分式解法
- void CNLequationCalculatorDlg::OnButton4()
- {
- // 建立CNLequation的子类,在其中重载函数Func
- class CNLeq : public CNLequation
- {
- double Func(double x)
- {
- double y = x*x*(x-1.0)-1.0;
- return y;
- }
- };
- // 求解
- CNLeq nleq;
- double x = 1.0;
- int bRet = nleq.GetRootPq(&x);
- // 显示结果
- CString sMsg;
- if (bRet)
- sMsg.Format("求得的一个实根为:nnx = %fn", x);
- else
- sMsg = "求解失败";
- AfxMessageBox(sMsg, MB_OK|MB_ICONINFORMATION);
- }
- // 求实系数代数方程全部根的QR方法
- void CNLequationCalculatorDlg::OnButton5()
- {
- // 求解
- CNLequation nleq;
- double xr[6], xi[6];
- double a[7] = {-30.0,10.5,-10.5,1.5,4.5,-7.5,1.5};
- int n = 6;
- int bRet = nleq.GetRootQr(n, a, xr, xi);
- // 显示结果
- CString sMsg;
- if (bRet)
- {
- sMsg.Format("求得的 %d 个根为:nn", n);
- for (int i=0; i<n; ++i)
- {
- CComplex root;
- root.SetReal(xr[i]);
- root.SetImag(xi[i]);
- CString ss;
- ss.Format("x(%d) = %sn", i, root.ToString());
- sMsg += ss;
- }
- }
- else
- sMsg = "求解失败";
- AfxMessageBox(sMsg, MB_OK|MB_ICONINFORMATION);
- }
- // 求实系数代数方程全部根的牛顿下山法
- void CNLequationCalculatorDlg::OnButton6()
- {
- // 求解
- CNLequation nleq;
- double xr[6], xi[6];
- double a[7] = {-20.0,7.0,-7.0,1.0,3.0,-5.0,1.0};
- int n = 6;
- int bRet = nleq.GetRootNewtonDownHill(n, a, xr, xi);
- // 显示结果
- CString sMsg;
- if (bRet)
- {
- sMsg.Format("求得的 %d 个根为:nn", n);
- for (int i=0; i<n; ++i)
- {
- CComplex root;
- root.SetReal(xr[i]);
- root.SetImag(xi[i]);
- CString ss;
- ss.Format("x(%d) = %sn", i, root.ToString());
- sMsg += ss;
- }
- }
- else
- sMsg = "求解失败";
- AfxMessageBox(sMsg, MB_OK|MB_ICONINFORMATION);
- }
- // 求复系数代数方程全部根的牛顿下山法
- void CNLequationCalculatorDlg::OnButton7()
- {
- // 求解
- CNLequation nleq;
- double xr[5], xi[5];
- double ar[6]={0.1,21.33,4.9,0.0,3.0,1.0};
- double ai[6]={-100.0,0.0,-19.0,-0.01,2.0,0.0};
- int n = 5;
- int bRet = nleq.GetRootNewtonDownHill(n, ar, ai, xr, xi);
- // 显示结果
- CString sMsg;
- if (bRet)
- {
- sMsg.Format("求得的 %d 个根为:nn", n);
- for (int i=0; i<n; ++i)
- {
- CComplex root;
- root.SetReal(xr[i]);
- root.SetImag(xi[i]);
- CString ss;
- ss.Format("x(%d) = %sn", i, root.ToString());
- sMsg += ss;
- }
- }
- else
- sMsg = "求解失败";
- AfxMessageBox(sMsg, MB_OK|MB_ICONINFORMATION);
- }
- // 求非线性方程一个实根的蒙特卡洛法
- void CNLequationCalculatorDlg::OnButton8()
- {
- // 建立CNLequation的子类,在其中重载函数Func
- class CNLeq : public CNLequation
- {
- double Func(double x)
- {
- double z = exp(-x*x*x)-sin(x)/cos(x)+800.0;
- return z;
- }
- };
- // 求解
- CNLeq nleq;
- double x=0.5;
- double b=1.0;
- int m=10;
- nleq.GetRootMonteCarlo(&x, b, m);
- // 显示结果
- CString sMsg;
- sMsg.Format("求得的一个根为:nnx = %f", x);
- AfxMessageBox(sMsg, MB_OK|MB_ICONINFORMATION);
- }
- // 求实函数或复函数方程一个复根的蒙特卡洛法
- void CNLequationCalculatorDlg::OnButton9()
- {
- // 建立CNLequation的子类,在其中重载函数Func
- class CNLeq : public CNLequation
- {
- double Func(double x, double y)
- {
- double u=x*x-y*y-6.0*x+13.0;
- double v=2.0*x*y-6.0*y;
- double z=sqrt(u*u+v*v);
- return z;
- }
- };
- // 求解
- CNLeq nleq;
- double x=0.5;
- double y=0.5;
- double b=1.0;
- int m=10;
- nleq.GetRootMonteCarlo(&x, &y, b, m);
- // 构造复数
- CComplex root(x, y);
- // 显示结果
- CString sMsg;
- sMsg.Format("求得的一个根为:nnx = %s", root.ToString());
- AfxMessageBox(sMsg, MB_OK|MB_ICONINFORMATION);
- }
- // 求非线性方程组一组实根的梯度法
- void CNLequationCalculatorDlg::OnButton10()
- {
- // 建立CNLequation的子类,在其中重载函数Func
- class CNLeq : public CNLequation
- {
- double Func(double x[], double y[])
- {
- double z,f1,f2,f3,df1,df2,df3;
- f1=x[0]-5.0*x[1]*x[1]+7.0*x[2]*x[2]+12.0;
- f2=3.0*x[0]*x[1]+x[0]*x[2]-11.0*x[0];
- f3=2.0*x[1]*x[2]+40.0*x[0];
- z=f1*f1+f2*f2+f3*f3;
- df1=1.0;
- df2=3.0*x[1]+x[2]-11.0;
- df3=40.0;
- y[0]=2.0*(f1*df1+f2*df2+f3*df3);
- df1=10.0*x[1];
- df2=3.0*x[0];
- df3=2.0*x[2];
- y[1]=2.0*(f1*df1+f2*df2+f3*df3);
- df1=14.0*x[2];
- df2=x[0];
- df3=2.0*x[1];
- y[2]=2.0*(f1*df1+f2*df2+f3*df3);
- return(z);
- }
- };
- // 求解
- CNLeq nleq;
- double x[3]={1.5,6.5,-5.0};
- int n = 3;
- int nMaxIt = 600;
- BOOL bRet = nleq.GetRootsetGrad(n, x, nMaxIt);
- // 显示结果
- CString sMsg;
- if (bRet)
- {
- sMsg.Format("求得的 %d 个根为:nn", n);
- for (int i=0; i<n; ++i)
- {
- CString ss;
- ss.Format("x(%d) = %fn", i, x[i]);
- sMsg += ss;
- }
- }
- else
- sMsg = "求解失败";
- AfxMessageBox(sMsg, MB_OK|MB_ICONINFORMATION);
- }
- // 求非线性方程组一组实根的拟牛顿法
- void CNLequationCalculatorDlg::OnButton11()
- {
- // 建立CNLequation的子类,在其中重载函数Func
- class CNLeq : public CNLequation
- {
- double Func(double x[], double y[])
- {
- y[0]=x[0]*x[0]+x[1]*x[1]+x[2]*x[2]-1.0;
- y[1]=2.0*x[0]*x[0]+x[1]*x[1]-4.0*x[2];
- y[2]=3.0*x[0]*x[0]-4.0*x[1]+x[2]*x[2];
- return 0.0;
- }
- };
- // 求解
- CNLeq nleq;
- double x[3]={1.0,1.0,1.0};
- double t=0.1;
- double h=0.1;
- int n = 3;
- int nMaxIt = 100;
- BOOL bRet = nleq.GetRootsetNewton(n, x, t, h, nMaxIt);
- // 显示结果
- CString sMsg;
- if (bRet)
- {
- sMsg.Format("求得的 %d 个根为:nn", n);
- for (int i=0; i<n; ++i)
- {
- CString ss;
- ss.Format("x(%d) = %fn", i, x[i]);
- sMsg += ss;
- }
- }
- else
- sMsg = "求解失败";
- AfxMessageBox(sMsg, MB_OK|MB_ICONINFORMATION);
- }
- // 求非线性方程组最小二乘解的广义逆法
- void CNLequationCalculatorDlg::OnButton12()
- {
- // 建立CNLequation的子类,在其中重载函数Func
- class CNLeq : public CNLequation
- {
- double Func(double x[], double y[])
- {
- y[0]=x[0]*x[0]+7.0*x[0]*x[1]+3.0*x[1]*x[1]+0.5;
- y[1]=x[0]*x[0]-2.0*x[0]*x[1]+x[1]*x[1]-1.0;
- y[2]=x[0]+x[1]+1.0;
- return 0.0;
- }
- void FuncMJ(int n, double x[], double p[])
- {
- p[0*n+0]=2.0*x[0]+7.0*x[1];
- p[0*n+1]=7.0*x[0]+6.0*x[1];
- p[1*n+0]=2.0*x[0]-2.0*x[1];
- p[1*n+1]=-2.0*x[0]+2.0*x[1];
- p[2*n+0]=1.0;
- p[2*n+1]=1.0;
- }
- };
- // 求解
- CNLeq nleq;
- double eps1 = 0.000001;
- double eps2 = 0.000001;
- double x[2]={1.0,-1.0};
- int m=3;
- int n=2;
- BOOL bRet = nleq.GetRootsetGinv(m, n, x, eps1, eps2);
- // 显示结果
- CString sMsg;
- if (bRet)
- {
- sMsg.Format("求得的 %d 个根为:nn", n);
- for (int i=0; i<n; ++i)
- {
- CString ss;
- ss.Format("x(%d) = %fn", i, x[i]);
- sMsg += ss;
- }
- }
- else
- sMsg = "求解失败";
- AfxMessageBox(sMsg, MB_OK|MB_ICONINFORMATION);
- }
- // 求非线性方程组一组实根的蒙特卡洛法
- void CNLequationCalculatorDlg::OnButton13()
- {
- // 建立CNLequation的子类,在其中重载函数Func
- class CNLeq : public CNLequation
- {
- double Func(int n, double x[])
- {
- double f,f1,f2,f3;
- n=n;
- f1=3.0*x[0]+x[1]+2.0*x[2]*x[2]-3.0;
- f2=-3.0*x[0]+5.0*x[1]*x[1]+2.0*x[0]*x[2]-1.0;
- f3=25.0*x[0]*x[1]+20.0*x[2]+12.0;
- f=sqrt(f1*f1+f2*f2+f3*f3);
- return(f);
- }
- };
- // 求解
- CNLeq nleq;
- double x[3]={0.0,0.0,0.0};
- double b=2.0;
- int m=10;
- int n=3;
- double eps=0.000001;
- nleq.GetRootsetMonteCarlo(n, x, b, m, eps);
- // 显示结果
- CString sMsg;
- sMsg.Format("求得的 %d 个根为:nn", n);
- for (int i=0; i<n; ++i)
- {
- CString ss;
- ss.Format("x(%d) = %fn", i, x[i]);
- sMsg += ss;
- }
- AfxMessageBox(sMsg, MB_OK|MB_ICONINFORMATION);
- }