csa.c
上传用户:riyaled888
上传日期:2009-03-27
资源大小:7338k
文件大小:17k
源码类别:

多媒体

开发平台:

MultiPlatform

  1. /*****************************************************************************
  2.  * libcsa.c: CSA scrambler/descrambler
  3.  *****************************************************************************
  4.  * Copyright (C) 2004 Laurent Aimar
  5.  * $Id: csa.c 7156 2004-03-24 10:17:50Z massiot $
  6.  *
  7.  * Authors: Laurent Aimar <fenrir@via.ecp.fr>
  8.  *
  9.  * This program is free software; you can redistribute it and/or modify
  10.  * it under the terms of the GNU General Public License as published by
  11.  * the Free Software Foundation; either version 2 of the License, or
  12.  * (at your option) any later version.
  13.  *
  14.  * This program is distributed in the hope that it will be useful,
  15.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17.  * GNU General Public License for more details.
  18.  *
  19.  * You should have received a copy of the GNU General Public License
  20.  * along with this program; if not, write to the Free Software
  21.  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111, USA.
  22.  *****************************************************************************/
  23. /*
  24.  * XXX: A great part is just a copy/past of deCSA but I can't find the
  25.  * author and the license. If there is a problem with it please e-mail me.
  26.  */
  27. #include <stdlib.h>
  28. #include <vlc/vlc.h>
  29. #include "csa.h"
  30. struct csa_t
  31. {
  32.     /* odd and even keys */
  33.     uint8_t o_ck[8];
  34.     uint8_t e_ck[8];
  35.     uint8_t o_kk[57];
  36.     uint8_t e_kk[57];
  37.     /* cypher state */
  38.     int     A[11];
  39.     int     B[11];
  40.     int     X, Y, Z;
  41.     int     D, E, F;
  42.     int     p, q, r;
  43. };
  44. static void csa_ComputeKey( uint8_t kk[57], uint8_t ck[8] );
  45. static void csa_StreamCypher( csa_t *c, int b_init, uint8_t *ck, uint8_t *sb, uint8_t *cb );
  46. static void csa_BlockDecypher( uint8_t kk[57], uint8_t ib[8], uint8_t bd[8] );
  47. static void csa_BlockCypher( uint8_t kk[57], uint8_t bd[8], uint8_t ib[8] );
  48. /*****************************************************************************
  49.  * csa_New:
  50.  *****************************************************************************/
  51. csa_t *csa_New()
  52. {
  53.     csa_t *c = malloc( sizeof( csa_t ) );
  54.     memset( c, 0, sizeof( csa_t ) );
  55.     return c;
  56. }
  57. /*****************************************************************************
  58.  * csa_Delete:
  59.  *****************************************************************************/
  60. void   csa_Delete( csa_t *c )
  61. {
  62.     free( c );
  63. }
  64. /*****************************************************************************
  65.  * csa_SetCW:
  66.  *****************************************************************************/
  67. void csa_SetCW( csa_t *c, uint8_t o_ck[8], uint8_t e_ck[8] )
  68. {
  69.     memcpy( c->o_ck, o_ck, 8 );
  70.     csa_ComputeKey( c->o_kk, o_ck );
  71.     memcpy( c->e_ck, e_ck, 8 );
  72.     csa_ComputeKey( c->e_kk, e_ck );
  73. }
  74. /*****************************************************************************
  75.  * csa_Decrypt:
  76.  *****************************************************************************/
  77. void csa_Decrypt( csa_t *c, uint8_t *pkt )
  78. {
  79.     uint8_t *ck;
  80.     uint8_t *kk;
  81.     uint8_t  ib[8], stream[8], block[8];
  82.     int     i_hdr, i_residue;
  83.     int     i, j, n;
  84.     /* transport scrambling control */
  85.     if( (pkt[3]&0x80) == 0 )
  86.     {
  87.         /* not scrambled */
  88.         return;
  89.     }
  90.     if( pkt[3]&0x40 )
  91.     {
  92.         ck = c->o_ck;
  93.         kk = c->o_kk;
  94.     }
  95.     else
  96.     {
  97.         ck = c->e_ck;
  98.         kk = c->e_kk;
  99.     }
  100.     /* clear transport scrambling control */
  101.     pkt[3] &= 0x3f;
  102.     i_hdr = 4;
  103.     if( pkt[3]&0x20 )
  104.     {
  105.         /* skip adaption field */
  106.         i_hdr += pkt[4] + 1;
  107.     }
  108.     /* init csa state */
  109.     csa_StreamCypher( c, 1, ck, &pkt[i_hdr], ib );
  110.     /* */
  111.     n = (188 - i_hdr) / 8;
  112.     i_residue = (188 - i_hdr) % 8;
  113.     for( i = 1; i < n + 1; i++ )
  114.     {
  115.         csa_BlockDecypher( kk, ib, block );
  116.         if( i != n )
  117.         {
  118.             csa_StreamCypher( c, 0, ck, NULL, stream );
  119.             for( j = 0; j < 8; j++ )
  120.             {
  121.                 /* xor ib with stream */
  122.                 ib[j] = pkt[i_hdr+8*i+j] ^ stream[j];
  123.             }
  124.         }
  125.         else
  126.         {
  127.             /* last block */
  128.             for( j = 0; j < 8; j++ )
  129.             {
  130.                 ib[j] = 0;
  131.             }
  132.         }
  133.         /* xor ib with block */
  134.         for( j = 0; j < 8; j++ )
  135.         {
  136.             pkt[i_hdr+8*(i-1)+j] = ib[j] ^ block[j];
  137.         }
  138.     }
  139.     if( i_residue > 0 )
  140.     {
  141.         csa_StreamCypher( c, 0, ck, NULL, stream );
  142.         for( j = 0; j < i_residue; j++ )
  143.         {
  144.             pkt[188 - i_residue + j] ^= stream[j];
  145.         }
  146.     }
  147. }
  148. /*****************************************************************************
  149.  * csa_Encrypt:
  150.  *****************************************************************************/
  151. void csa_Encrypt( csa_t *c, uint8_t *pkt, int b_odd )
  152. {
  153.     uint8_t *ck;
  154.     uint8_t *kk;
  155.     int i, j;
  156.     int i_hdr;
  157.     uint8_t  ib[184/8+2][8], stream[8], block[8];
  158.     int n, i_residue;
  159.     /* set transport scrambling control */
  160.     pkt[3] |= 0x80;
  161.     if( b_odd )
  162.     {
  163.         pkt[3] |= 0x40;
  164.     }
  165.     if( b_odd )
  166.     {
  167.         ck = c->o_ck;
  168.         kk = c->o_kk;
  169.     }
  170.     else
  171.     {
  172.         ck = c->e_ck;
  173.         kk = c->e_kk;
  174.     }
  175.     /* hdr len */
  176.     i_hdr = 4;
  177.     if( pkt[3]&0x20 )
  178.     {
  179.         /* skip adaption field */
  180.         i_hdr += pkt[4] + 1;
  181.     }
  182.     n = (188 - i_hdr) / 8;
  183.     i_residue = (188 - i_hdr) % 8;
  184.     if( n == 0 )
  185.     {
  186.         pkt[3] &= 0x3f;
  187.         return;
  188.     }
  189.     /* */
  190.     for( i = 0; i < 8; i++ )
  191.     {
  192.         ib[n+1][i] = 0;
  193.     }
  194.     for( i = n; i  > 0; i-- )
  195.     {
  196.         for( j = 0; j < 8; j++ )
  197.         {
  198.             block[j] = pkt[i_hdr+8*(i-1)+j] ^ib[i+1][j];
  199.         }
  200.         csa_BlockCypher( kk, block, ib[i] );
  201.     }
  202.     /* init csa state */
  203.     csa_StreamCypher( c, 1, ck, ib[1], stream );
  204.     for( i = 0; i < 8; i++ )
  205.     {
  206.         pkt[i_hdr+i] = ib[1][i];
  207.     }
  208.     for( i = 2; i < n+1; i++ )
  209.     {
  210.         csa_StreamCypher( c, 0, ck, NULL, stream );
  211.         for( j = 0; j < 8; j++ )
  212.         {
  213.             pkt[i_hdr+8*(i-1)+j] = ib[i][j] ^ stream[j];
  214.         }
  215.     }
  216.     if( i_residue > 0 )
  217.     {
  218.         csa_StreamCypher( c, 0, ck, NULL, stream );
  219.         for( j = 0; j < i_residue; j++ )
  220.         {
  221.             pkt[188 - i_residue + j] ^= stream[j];
  222.         }
  223.     }
  224. }
  225. /*****************************************************************************
  226.  * Divers
  227.  *****************************************************************************/
  228. static const uint8_t key_perm[0x40] =
  229. {
  230.     0x12,0x24,0x09,0x07,0x2A,0x31,0x1D,0x15,0x1C,0x36,0x3E,0x32,0x13,0x21,0x3B,0x40,
  231.     0x18,0x14,0x25,0x27,0x02,0x35,0x1B,0x01,0x22,0x04,0x0D,0x0E,0x39,0x28,0x1A,0x29,
  232.     0x33,0x23,0x34,0x0C,0x16,0x30,0x1E,0x3A,0x2D,0x1F,0x08,0x19,0x17,0x2F,0x3D,0x11,
  233.     0x3C,0x05,0x38,0x2B,0x0B,0x06,0x0A,0x2C,0x20,0x3F,0x2E,0x0F,0x03,0x26,0x10,0x37,
  234. };
  235. static void csa_ComputeKey( uint8_t kk[57], uint8_t ck[8] )
  236. {
  237.     int i,j,k;
  238.     int bit[64];
  239.     int newbit[64];
  240.     int kb[9][8];
  241.     /* from a cw create 56 key bytes, here kk[1..56] */
  242.     /* load ck into kb[7][1..8] */
  243.     for( i = 0; i < 8; i++ )
  244.     {
  245.         kb[7][i+1] = ck[i];
  246.     }
  247.     /* calculate all kb[6..1][*] */
  248.     for( i = 0; i < 7; i++ )
  249.     {
  250.         /* do a 64 bit perm on kb */
  251.         for( j = 0; j < 8; j++ )
  252.         {
  253.             for( k = 0; k < 8; k++ )
  254.             {
  255.                 bit[j*8+k] = (kb[7-i][1+j] >> (7-k)) & 1;
  256.                 newbit[key_perm[j*8+k]-1] = bit[j*8+k];
  257.             }
  258.         }
  259.         for( j = 0; j < 8; j++ )
  260.         {
  261.             kb[6-i][1+j] = 0;
  262.             for( k = 0; k < 8; k++ )
  263.             {
  264.                 kb[6-i][1+j] |= newbit[j*8+k] << (7-k);
  265.             }
  266.         }
  267.     }
  268.     /* xor to give kk */
  269.     for( i = 0; i < 7; i++ )
  270.     {
  271.         for( j = 0; j < 8; j++ )
  272.         {
  273.             kk[1+i*8+j] = kb[1+i][1+j] ^ i;
  274.         }
  275.     }
  276. }
  277. static const int sbox1[0x20] = {2,0,1,1,2,3,3,0, 3,2,2,0,1,1,0,3, 0,3,3,0,2,2,1,1, 2,2,0,3,1,1,3,0};
  278. static const int sbox2[0x20] = {3,1,0,2,2,3,3,0, 1,3,2,1,0,0,1,2, 3,1,0,3,3,2,0,2, 0,0,1,2,2,1,3,1};
  279. static const int sbox3[0x20] = {2,0,1,2,2,3,3,1, 1,1,0,3,3,0,2,0, 1,3,0,1,3,0,2,2, 2,0,1,2,0,3,3,1};
  280. static const int sbox4[0x20] = {3,1,2,3,0,2,1,2, 1,2,0,1,3,0,0,3, 1,0,3,1,2,3,0,3, 0,3,2,0,1,2,2,1};
  281. static const int sbox5[0x20] = {2,0,0,1,3,2,3,2, 0,1,3,3,1,0,2,1, 2,3,2,0,0,3,1,1, 1,0,3,2,3,1,0,2};
  282. static const int sbox6[0x20] = {0,1,2,3,1,2,2,0, 0,1,3,0,2,3,1,3, 2,3,0,2,3,0,1,1, 2,1,1,2,0,3,3,0};
  283. static const int sbox7[0x20] = {0,3,2,2,3,0,0,1, 3,0,1,3,1,2,2,1, 1,0,3,3,0,1,1,2, 2,3,1,0,2,3,0,2};
  284. static void csa_StreamCypher( csa_t *c, int b_init, uint8_t *ck, uint8_t *sb, uint8_t *cb )
  285. {
  286.     int i,j, k;
  287.     int extra_B;
  288.     int s1,s2,s3,s4,s5,s6,s7;
  289.     int next_A1;
  290.     int next_B1;
  291.     int next_E;
  292.     if( b_init )
  293.     {
  294.         // load first 32 bits of CK into A[1]..A[8]
  295.         // load last  32 bits of CK into B[1]..B[8]
  296.         // all other regs = 0
  297.         for( i = 0; i < 4; i++ )
  298.         {
  299.             c->A[1+2*i+0] = ( ck[i] >> 4 )&0x0f;
  300.             c->A[1+2*i+1] = ( ck[i] >> 0 )&0x0f;
  301.             c->B[1+2*i+0] = ( ck[4+i] >> 4 )&0x0f;
  302.             c->B[1+2*i+1] = ( ck[4+i] >> 0 )&0x0f;
  303.         }
  304.         c->A[9] = c->A[10] = 0;
  305.         c->B[9] = c->B[10] = 0;
  306.         c->X = c->Y = c->Z = 0;
  307.         c->D = c->E = c->F = 0;
  308.         c->p = c->q = c->r = 0;
  309.     }
  310.     // 8 bytes per operation
  311.     for( i = 0; i < 8; i++ )
  312.     {
  313.         int op = 0;
  314.         int in1 = 0;    /* gcc warn */
  315.         int in2 = 0;
  316.         if( b_init )
  317.         {
  318.             in1 = ( sb[i] >> 4 )&0x0f;
  319.             in2 = ( sb[i] >> 0 )&0x0f;
  320.         }
  321.         // 2 bits per iteration
  322.         for( j = 0; j < 4; j++ )
  323.         {
  324.             // from A[1]..A[10], 35 bits are selected as inputs to 7 s-boxes
  325.             // 5 bits input per s-box, 2 bits output per s-box
  326.             s1 = sbox1[ (((c->A[4]>>0)&1)<<4) | (((c->A[1]>>2)&1)<<3) | (((c->A[6]>>1)&1)<<2) | (((c->A[7]>>3)&1)<<1) | (((c->A[9]>>0)&1)<<0) ];
  327.             s2 = sbox2[ (((c->A[2]>>1)&1)<<4) | (((c->A[3]>>2)&1)<<3) | (((c->A[6]>>3)&1)<<2) | (((c->A[7]>>0)&1)<<1) | (((c->A[9]>>1)&1)<<0) ];
  328.             s3 = sbox3[ (((c->A[1]>>3)&1)<<4) | (((c->A[2]>>0)&1)<<3) | (((c->A[5]>>1)&1)<<2) | (((c->A[5]>>3)&1)<<1) | (((c->A[6]>>2)&1)<<0) ];
  329.             s4 = sbox4[ (((c->A[3]>>3)&1)<<4) | (((c->A[1]>>1)&1)<<3) | (((c->A[2]>>3)&1)<<2) | (((c->A[4]>>2)&1)<<1) | (((c->A[8]>>0)&1)<<0) ];
  330.             s5 = sbox5[ (((c->A[5]>>2)&1)<<4) | (((c->A[4]>>3)&1)<<3) | (((c->A[6]>>0)&1)<<2) | (((c->A[8]>>1)&1)<<1) | (((c->A[9]>>2)&1)<<0) ];
  331.             s6 = sbox6[ (((c->A[3]>>1)&1)<<4) | (((c->A[4]>>1)&1)<<3) | (((c->A[5]>>0)&1)<<2) | (((c->A[7]>>2)&1)<<1) | (((c->A[9]>>3)&1)<<0) ];
  332.             s7 = sbox7[ (((c->A[2]>>2)&1)<<4) | (((c->A[3]>>0)&1)<<3) | (((c->A[7]>>1)&1)<<2) | (((c->A[8]>>2)&1)<<1) | (((c->A[8]>>3)&1)<<0) ];
  333.             /* use 4x4 xor to produce extra nibble for T3 */
  334.             extra_B = ( ((c->B[3]&1)<<3) ^ ((c->B[6]&2)<<2) ^ ((c->B[7]&4)<<1) ^ ((c->B[9]&8)>>0) ) |
  335.                       ( ((c->B[6]&1)<<2) ^ ((c->B[8]&2)<<1) ^ ((c->B[3]&8)>>1) ^ ((c->B[4]&4)>>0) ) |
  336.                       ( ((c->B[5]&8)>>2) ^ ((c->B[8]&4)>>1) ^ ((c->B[4]&1)<<1) ^ ((c->B[5]&2)>>0) ) |
  337.                       ( ((c->B[9]&4)>>2) ^ ((c->B[6]&8)>>3) ^ ((c->B[3]&2)>>1) ^ ((c->B[8]&1)>>0) ) ;
  338.             // T1 = xor all inputs
  339.             // in1,in2, D are only used in T1 during initialisation, not generation
  340.             next_A1 = c->A[10] ^ c->X;
  341.             if( b_init ) next_A1 = next_A1 ^ c->D ^ ((j % 2) ? in2 : in1);
  342.             // T2 =  xor all inputs
  343.             // in1,in2 are only used in T1 during initialisation, not generation
  344.             // if p=0, use this, if p=1, rotate the result left
  345.             next_B1 = c->B[7] ^ c->B[10] ^ c->Y;
  346.             if( b_init) next_B1 = next_B1 ^ ((j % 2) ? in1 : in2);
  347.             // if p=1, rotate left
  348.             if( c->p ) next_B1 = ( (next_B1 << 1) | ((next_B1 >> 3) & 1) ) & 0xf;
  349.             // T3 = xor all inputs
  350.             c->D = c->E ^ c->Z ^ extra_B;
  351.             // T4 = sum, carry of Z + E + r
  352.             next_E = c->F;
  353.             if( c->q )
  354.             {
  355.                 c->F = c->Z + c->E + c->r;
  356.                 // r is the carry
  357.                 c->r = (c->F >> 4) & 1;
  358.                 c->F = c->F & 0x0f;
  359.             }
  360.             else
  361.             {
  362.                 c->F = c->E;
  363.             }
  364.             c->E = next_E;
  365.             for( k = 10; k > 1; k-- )
  366.             {
  367.                 c->A[k] = c->A[k-1];
  368.                 c->B[k] = c->B[k-1];
  369.             }
  370.             c->A[1] = next_A1;
  371.             c->B[1] = next_B1;
  372.             c->X = ((s4&1)<<3) | ((s3&1)<<2) | (s2&2) | ((s1&2)>>1);
  373.             c->Y = ((s6&1)<<3) | ((s5&1)<<2) | (s4&2) | ((s3&2)>>1);
  374.             c->Z = ((s2&1)<<3) | ((s1&1)<<2) | (s6&2) | ((s5&2)>>1);
  375.             c->p = (s7&2)>>1;
  376.             c->q = (s7&1);
  377.             // require 4 loops per output byte
  378.             // 2 output bits are a function of the 4 bits of D
  379.             // xor 2 by 2
  380.             op = (op << 2)^ ( (((c->D^(c->D>>1))>>1)&2) | ((c->D^(c->D>>1))&1) );
  381.         }
  382.         // return input data during init
  383.         cb[i] = b_init ? sb[i] : op;
  384.     }
  385. }
  386. // block - sbox
  387. static const uint8_t block_sbox[256] =
  388. {
  389.     0x3A,0xEA,0x68,0xFE,0x33,0xE9,0x88,0x1A,0x83,0xCF,0xE1,0x7F,0xBA,0xE2,0x38,0x12,
  390.     0xE8,0x27,0x61,0x95,0x0C,0x36,0xE5,0x70,0xA2,0x06,0x82,0x7C,0x17,0xA3,0x26,0x49,
  391.     0xBE,0x7A,0x6D,0x47,0xC1,0x51,0x8F,0xF3,0xCC,0x5B,0x67,0xBD,0xCD,0x18,0x08,0xC9,
  392.     0xFF,0x69,0xEF,0x03,0x4E,0x48,0x4A,0x84,0x3F,0xB4,0x10,0x04,0xDC,0xF5,0x5C,0xC6,
  393.     0x16,0xAB,0xAC,0x4C,0xF1,0x6A,0x2F,0x3C,0x3B,0xD4,0xD5,0x94,0xD0,0xC4,0x63,0x62,
  394.     0x71,0xA1,0xF9,0x4F,0x2E,0xAA,0xC5,0x56,0xE3,0x39,0x93,0xCE,0x65,0x64,0xE4,0x58,
  395.     0x6C,0x19,0x42,0x79,0xDD,0xEE,0x96,0xF6,0x8A,0xEC,0x1E,0x85,0x53,0x45,0xDE,0xBB,
  396.     0x7E,0x0A,0x9A,0x13,0x2A,0x9D,0xC2,0x5E,0x5A,0x1F,0x32,0x35,0x9C,0xA8,0x73,0x30,
  397.     0x29,0x3D,0xE7,0x92,0x87,0x1B,0x2B,0x4B,0xA5,0x57,0x97,0x40,0x15,0xE6,0xBC,0x0E,
  398.     0xEB,0xC3,0x34,0x2D,0xB8,0x44,0x25,0xA4,0x1C,0xC7,0x23,0xED,0x90,0x6E,0x50,0x00,
  399.     0x99,0x9E,0x4D,0xD9,0xDA,0x8D,0x6F,0x5F,0x3E,0xD7,0x21,0x74,0x86,0xDF,0x6B,0x05,
  400.     0x8E,0x5D,0x37,0x11,0xD2,0x28,0x75,0xD6,0xA7,0x77,0x24,0xBF,0xF0,0xB0,0x02,0xB7,
  401.     0xF8,0xFC,0x81,0x09,0xB1,0x01,0x76,0x91,0x7D,0x0F,0xC8,0xA0,0xF2,0xCB,0x78,0x60,
  402.     0xD1,0xF7,0xE0,0xB5,0x98,0x22,0xB3,0x20,0x1D,0xA6,0xDB,0x7B,0x59,0x9F,0xAE,0x31,
  403.     0xFB,0xD3,0xB6,0xCA,0x43,0x72,0x07,0xF4,0xD8,0x41,0x14,0x55,0x0D,0x54,0x8B,0xB9,
  404.     0xAD,0x46,0x0B,0xAF,0x80,0x52,0x2C,0xFA,0x8C,0x89,0x66,0xFD,0xB2,0xA9,0x9B,0xC0,
  405. };
  406. // block - perm
  407. static const uint8_t block_perm[256] =
  408. {
  409.     0x00,0x02,0x80,0x82,0x20,0x22,0xA0,0xA2, 0x10,0x12,0x90,0x92,0x30,0x32,0xB0,0xB2,
  410.     0x04,0x06,0x84,0x86,0x24,0x26,0xA4,0xA6, 0x14,0x16,0x94,0x96,0x34,0x36,0xB4,0xB6,
  411.     0x40,0x42,0xC0,0xC2,0x60,0x62,0xE0,0xE2, 0x50,0x52,0xD0,0xD2,0x70,0x72,0xF0,0xF2,
  412.     0x44,0x46,0xC4,0xC6,0x64,0x66,0xE4,0xE6, 0x54,0x56,0xD4,0xD6,0x74,0x76,0xF4,0xF6,
  413.     0x01,0x03,0x81,0x83,0x21,0x23,0xA1,0xA3, 0x11,0x13,0x91,0x93,0x31,0x33,0xB1,0xB3,
  414.     0x05,0x07,0x85,0x87,0x25,0x27,0xA5,0xA7, 0x15,0x17,0x95,0x97,0x35,0x37,0xB5,0xB7,
  415.     0x41,0x43,0xC1,0xC3,0x61,0x63,0xE1,0xE3, 0x51,0x53,0xD1,0xD3,0x71,0x73,0xF1,0xF3,
  416.     0x45,0x47,0xC5,0xC7,0x65,0x67,0xE5,0xE7, 0x55,0x57,0xD5,0xD7,0x75,0x77,0xF5,0xF7,
  417.     0x08,0x0A,0x88,0x8A,0x28,0x2A,0xA8,0xAA, 0x18,0x1A,0x98,0x9A,0x38,0x3A,0xB8,0xBA,
  418.     0x0C,0x0E,0x8C,0x8E,0x2C,0x2E,0xAC,0xAE, 0x1C,0x1E,0x9C,0x9E,0x3C,0x3E,0xBC,0xBE,
  419.     0x48,0x4A,0xC8,0xCA,0x68,0x6A,0xE8,0xEA, 0x58,0x5A,0xD8,0xDA,0x78,0x7A,0xF8,0xFA,
  420.     0x4C,0x4E,0xCC,0xCE,0x6C,0x6E,0xEC,0xEE, 0x5C,0x5E,0xDC,0xDE,0x7C,0x7E,0xFC,0xFE,
  421.     0x09,0x0B,0x89,0x8B,0x29,0x2B,0xA9,0xAB, 0x19,0x1B,0x99,0x9B,0x39,0x3B,0xB9,0xBB,
  422.     0x0D,0x0F,0x8D,0x8F,0x2D,0x2F,0xAD,0xAF, 0x1D,0x1F,0x9D,0x9F,0x3D,0x3F,0xBD,0xBF,
  423.     0x49,0x4B,0xC9,0xCB,0x69,0x6B,0xE9,0xEB, 0x59,0x5B,0xD9,0xDB,0x79,0x7B,0xF9,0xFB,
  424.     0x4D,0x4F,0xCD,0xCF,0x6D,0x6F,0xED,0xEF, 0x5D,0x5F,0xDD,0xDF,0x7D,0x7F,0xFD,0xFF,
  425. };
  426. static void csa_BlockDecypher( uint8_t kk[57], uint8_t ib[8], uint8_t bd[8] )
  427. {
  428.     int i;
  429.     int perm_out;
  430.     int R[9];
  431.     int next_R8;
  432.     for( i = 0; i < 8; i++ )
  433.     {
  434.         R[i+1] = ib[i];
  435.     }
  436.     // loop over kk[56]..kk[1]
  437.     for( i = 56; i > 0; i-- )
  438.     {
  439.         const int sbox_out = block_sbox[ kk[i]^R[7] ];
  440.         perm_out = block_perm[sbox_out];
  441.         next_R8 = R[7];
  442.         R[7] = R[6] ^ perm_out;
  443.         R[6] = R[5];
  444.         R[5] = R[4] ^ R[8] ^ sbox_out;
  445.         R[4] = R[3] ^ R[8] ^ sbox_out;
  446.         R[3] = R[2] ^ R[8] ^ sbox_out;
  447.         R[2] = R[1];
  448.         R[1] = R[8] ^ sbox_out;
  449.         R[8] = next_R8;
  450.     }
  451.     for( i = 0; i < 8; i++ )
  452.     {
  453.         bd[i] = R[i+1];
  454.     }
  455. }
  456. static void csa_BlockCypher( uint8_t kk[57], uint8_t bd[8], uint8_t ib[8] )
  457. {
  458.     int i;
  459.     int perm_out;
  460.     int R[9];
  461.     int next_R1;
  462.     for( i = 0; i < 8; i++ )
  463.     {
  464.         R[i+1] = bd[i];
  465.     }
  466.     // loop over kk[1]..kk[56]
  467.     for( i = 1; i <= 56; i++ )
  468.     {
  469.         const int sbox_out = block_sbox[ kk[i]^R[8] ];
  470.         perm_out = block_perm[sbox_out];
  471.         next_R1 = R[2];
  472.         R[2] = R[3] ^ R[1];
  473.         R[3] = R[4] ^ R[1];
  474.         R[4] = R[5] ^ R[1];
  475.         R[5] = R[6];
  476.         R[6] = R[7] ^ perm_out;
  477.         R[7] = R[8];
  478.         R[8] = R[1] ^ sbox_out;
  479.         R[1] = next_R1;
  480.     }
  481.     for( i = 0; i < 8; i++ )
  482.     {
  483.         ib[i] = R[i+1];
  484.     }
  485. }