cacheflush.h
上传用户:szlgq88
上传日期:2009-04-28
资源大小:48287k
文件大小:12k
源码类别:

嵌入式Linux

开发平台:

Unix_Linux

  1. /*
  2.  *  linux/include/asm-arm/cacheflush.h
  3.  *
  4.  *  Copyright (C) 1999-2002 Russell King
  5.  *
  6.  * This program is free software; you can redistribute it and/or modify
  7.  * it under the terms of the GNU General Public License version 2 as
  8.  * published by the Free Software Foundation.
  9.  */
  10. #ifndef _ASMARM_CACHEFLUSH_H
  11. #define _ASMARM_CACHEFLUSH_H
  12. #include <linux/config.h>
  13. #include <linux/sched.h>
  14. #include <linux/mm.h>
  15. #include <asm/mman.h>
  16. #include <asm/glue.h>
  17. #include <asm/shmparam.h>
  18. #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
  19. /*
  20.  * Cache Model
  21.  * ===========
  22.  */
  23. #undef _CACHE
  24. #undef MULTI_CACHE
  25. #if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710)
  26. # ifdef _CACHE
  27. #  define MULTI_CACHE 1
  28. # else
  29. #  define _CACHE v3
  30. # endif
  31. #endif
  32. #if defined(CONFIG_CPU_ARM720T)
  33. # ifdef _CACHE
  34. #  define MULTI_CACHE 1
  35. # else
  36. #  define _CACHE v4
  37. # endif
  38. #endif
  39. #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || 
  40.     defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
  41. # define MULTI_CACHE 1
  42. #endif
  43. #if defined(CONFIG_CPU_ARM926T)
  44. # ifdef _CACHE
  45. #  define MULTI_CACHE 1
  46. # else
  47. #  define _CACHE arm926
  48. # endif
  49. #endif
  50. #if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100)
  51. # ifdef _CACHE
  52. #  define MULTI_CACHE 1
  53. # else
  54. #  define _CACHE v4wb
  55. # endif
  56. #endif
  57. #if defined(CONFIG_CPU_XSCALE)
  58. # ifdef _CACHE
  59. #  define MULTI_CACHE 1
  60. # else
  61. #  define _CACHE xscale
  62. # endif
  63. #endif
  64. #if defined(CONFIG_CPU_V6)
  65. //# ifdef _CACHE
  66. #  define MULTI_CACHE 1
  67. //# else
  68. //#  define _CACHE v6
  69. //# endif
  70. #endif
  71. #if !defined(_CACHE) && !defined(MULTI_CACHE)
  72. #error Unknown cache maintainence model
  73. #endif
  74. /*
  75.  * This flag is used to indicate that the page pointed to by a pte
  76.  * is dirty and requires cleaning before returning it to the user.
  77.  */
  78. #define PG_dcache_dirty PG_arch_1
  79. /*
  80.  * MM Cache Management
  81.  * ===================
  82.  *
  83.  * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
  84.  * implement these methods.
  85.  *
  86.  * Start addresses are inclusive and end addresses are exclusive;
  87.  * start addresses should be rounded down, end addresses up.
  88.  *
  89.  * See Documentation/cachetlb.txt for more information.
  90.  * Please note that the implementation of these, and the required
  91.  * effects are cache-type (VIVT/VIPT/PIPT) specific.
  92.  *
  93.  * flush_cache_kern_all()
  94.  *
  95.  * Unconditionally clean and invalidate the entire cache.
  96.  *
  97.  * flush_cache_user_mm(mm)
  98.  *
  99.  * Clean and invalidate all user space cache entries
  100.  * before a change of page tables.
  101.  *
  102.  * flush_cache_user_range(start, end, flags)
  103.  *
  104.  * Clean and invalidate a range of cache entries in the
  105.  * specified address space before a change of page tables.
  106.  * - start - user start address (inclusive, page aligned)
  107.  * - end   - user end address   (exclusive, page aligned)
  108.  * - flags - vma->vm_flags field
  109.  *
  110.  * coherent_kern_range(start, end)
  111.  *
  112.  * Ensure coherency between the Icache and the Dcache in the
  113.  * region described by start, end.  If you have non-snooping
  114.  * Harvard caches, you need to implement this function.
  115.  * - start  - virtual start address
  116.  * - end    - virtual end address
  117.  *
  118.  * DMA Cache Coherency
  119.  * ===================
  120.  *
  121.  * dma_inv_range(start, end)
  122.  *
  123.  * Invalidate (discard) the specified virtual address range.
  124.  * May not write back any entries.  If 'start' or 'end'
  125.  * are not cache line aligned, those lines must be written
  126.  * back.
  127.  * - start  - virtual start address
  128.  * - end    - virtual end address
  129.  *
  130.  * dma_clean_range(start, end)
  131.  *
  132.  * Clean (write back) the specified virtual address range.
  133.  * - start  - virtual start address
  134.  * - end    - virtual end address
  135.  *
  136.  * dma_flush_range(start, end)
  137.  *
  138.  * Clean and invalidate the specified virtual address range.
  139.  * - start  - virtual start address
  140.  * - end    - virtual end address
  141.  */
  142. struct cpu_cache_fns {
  143. void (*flush_kern_all)(void);
  144. void (*flush_user_all)(void);
  145. void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
  146. void (*coherent_kern_range)(unsigned long, unsigned long);
  147. void (*coherent_user_range)(unsigned long, unsigned long);
  148. void (*flush_kern_dcache_page)(void *);
  149. void (*dma_inv_range)(unsigned long, unsigned long);
  150. void (*dma_clean_range)(unsigned long, unsigned long);
  151. void (*dma_flush_range)(unsigned long, unsigned long);
  152. };
  153. /*
  154.  * Select the calling method
  155.  */
  156. #ifdef MULTI_CACHE
  157. extern struct cpu_cache_fns cpu_cache;
  158. #define __cpuc_flush_kern_all cpu_cache.flush_kern_all
  159. #define __cpuc_flush_user_all cpu_cache.flush_user_all
  160. #define __cpuc_flush_user_range cpu_cache.flush_user_range
  161. #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
  162. #define __cpuc_coherent_user_range cpu_cache.coherent_user_range
  163. #define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
  164. /*
  165.  * These are private to the dma-mapping API.  Do not use directly.
  166.  * Their sole purpose is to ensure that data held in the cache
  167.  * is visible to DMA, or data written by DMA to system memory is
  168.  * visible to the CPU.
  169.  */
  170. #define dmac_inv_range cpu_cache.dma_inv_range
  171. #define dmac_clean_range cpu_cache.dma_clean_range
  172. #define dmac_flush_range cpu_cache.dma_flush_range
  173. #else
  174. #define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
  175. #define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
  176. #define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
  177. #define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
  178. #define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
  179. #define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
  180. extern void __cpuc_flush_kern_all(void);
  181. extern void __cpuc_flush_user_all(void);
  182. extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
  183. extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
  184. extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
  185. extern void __cpuc_flush_dcache_page(void *);
  186. /*
  187.  * These are private to the dma-mapping API.  Do not use directly.
  188.  * Their sole purpose is to ensure that data held in the cache
  189.  * is visible to DMA, or data written by DMA to system memory is
  190.  * visible to the CPU.
  191.  */
  192. #define dmac_inv_range __glue(_CACHE,_dma_inv_range)
  193. #define dmac_clean_range __glue(_CACHE,_dma_clean_range)
  194. #define dmac_flush_range __glue(_CACHE,_dma_flush_range)
  195. extern void dmac_inv_range(unsigned long, unsigned long);
  196. extern void dmac_clean_range(unsigned long, unsigned long);
  197. extern void dmac_flush_range(unsigned long, unsigned long);
  198. #endif
  199. /*
  200.  * flush_cache_vmap() is used when creating mappings (eg, via vmap,
  201.  * vmalloc, ioremap etc) in kernel space for pages.  Since the
  202.  * direct-mappings of these pages may contain cached data, we need
  203.  * to do a full cache flush to ensure that writebacks don't corrupt
  204.  * data placed into these pages via the new mappings.
  205.  */
  206. #define flush_cache_vmap(start, end) flush_cache_all()
  207. #define flush_cache_vunmap(start, end) flush_cache_all()
  208. /*
  209.  * Copy user data from/to a page which is mapped into a different
  210.  * processes address space.  Really, we want to allow our "user
  211.  * space" model to handle this.
  212.  */
  213. #define copy_to_user_page(vma, page, vaddr, dst, src, len) 
  214. do {
  215. flush_cache_page(vma, vaddr, page_to_pfn(page));
  216. memcpy(dst, src, len);
  217. flush_dcache_page(page);
  218. } while (0)
  219. #define copy_from_user_page(vma, page, vaddr, dst, src, len) 
  220. do {
  221. flush_cache_page(vma, vaddr, page_to_pfn(page));
  222. memcpy(dst, src, len);
  223. } while (0)
  224. /*
  225.  * Convert calls to our calling convention.
  226.  */
  227. #define flush_cache_all() __cpuc_flush_kern_all()
  228. #ifndef CONFIG_CPU_CACHE_VIPT
  229. static inline void flush_cache_mm(struct mm_struct *mm)
  230. {
  231. if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
  232. __cpuc_flush_user_all();
  233. }
  234. static inline void
  235. flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  236. {
  237. if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
  238. __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
  239. vma->vm_flags);
  240. }
  241. static inline void
  242. flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
  243. {
  244. if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
  245. unsigned long addr = user_addr & PAGE_MASK;
  246. __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
  247. }
  248. }
  249. #else
  250. extern void flush_cache_mm(struct mm_struct *mm);
  251. extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
  252. extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
  253. #endif
  254. /*
  255.  * flush_cache_user_range is used when we want to ensure that the
  256.  * Harvard caches are synchronised for the user space address range.
  257.  * This is used for the ARM private sys_cacheflush system call.
  258.  */
  259. #define flush_cache_user_range(vma,start,end) 
  260. __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
  261. /*
  262.  * Perform necessary cache operations to ensure that data previously
  263.  * stored within this range of addresses can be executed by the CPU.
  264.  */
  265. #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
  266. /*
  267.  * Perform necessary cache operations to ensure that the TLB will
  268.  * see data written in the specified area.
  269.  */
  270. #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
  271. /*
  272.  * flush_dcache_page is used when the kernel has written to the page
  273.  * cache page at virtual address page->virtual.
  274.  *
  275.  * If this page isn't mapped (ie, page_mapping == NULL), or it might
  276.  * have userspace mappings, then we _must_ always clean + invalidate
  277.  * the dcache entries associated with the kernel mapping.
  278.  *
  279.  * Otherwise we can defer the operation, and clean the cache when we are
  280.  * about to change to user space.  This is the same method as used on SPARC64.
  281.  * See update_mmu_cache for the user space part.
  282.  */
  283. extern void flush_dcache_page(struct page *);
  284. #define flush_dcache_mmap_lock(mapping) 
  285. write_lock_irq(&(mapping)->tree_lock)
  286. #define flush_dcache_mmap_unlock(mapping) 
  287. write_unlock_irq(&(mapping)->tree_lock)
  288. #define flush_icache_user_range(vma,page,addr,len) 
  289. flush_dcache_page(page)
  290. /*
  291.  * We don't appear to need to do anything here.  In fact, if we did, we'd
  292.  * duplicate cache flushing elsewhere performed by flush_dcache_page().
  293.  */
  294. #define flush_icache_page(vma,page) do { } while (0)
  295. #define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
  296. #define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25))
  297. #define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25))
  298. #define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
  299. #define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
  300. #if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
  301. #define cache_is_vivt() 1
  302. #define cache_is_vipt() 0
  303. #define cache_is_vipt_nonaliasing() 0
  304. #define cache_is_vipt_aliasing() 0
  305. #elif defined(CONFIG_CPU_CACHE_VIPT)
  306. #define cache_is_vivt() 0
  307. #define cache_is_vipt() 1
  308. #define cache_is_vipt_nonaliasing()
  309. ({
  310. unsigned int __val = read_cpuid(CPUID_CACHETYPE);
  311. __cacheid_vipt_nonaliasing(__val);
  312. })
  313. #define cache_is_vipt_aliasing()
  314. ({
  315. unsigned int __val = read_cpuid(CPUID_CACHETYPE);
  316. __cacheid_vipt_aliasing(__val);
  317. })
  318. #else
  319. #define cache_is_vivt()
  320. ({
  321. unsigned int __val = read_cpuid(CPUID_CACHETYPE);
  322. (!__cacheid_present(__val)) || __cacheid_vivt(__val);
  323. })
  324. #define cache_is_vipt()
  325. ({
  326. unsigned int __val = read_cpuid(CPUID_CACHETYPE);
  327. __cacheid_present(__val) && __cacheid_vipt(__val);
  328. })
  329. #define cache_is_vipt_nonaliasing()
  330. ({
  331. unsigned int __val = read_cpuid(CPUID_CACHETYPE);
  332. __cacheid_present(__val) &&
  333.  __cacheid_vipt_nonaliasing(__val);
  334. })
  335. #define cache_is_vipt_aliasing()
  336. ({
  337. unsigned int __val = read_cpuid(CPUID_CACHETYPE);
  338. __cacheid_present(__val) &&
  339.  __cacheid_vipt_aliasing(__val);
  340. })
  341. #endif
  342. #endif