umem.c
资源名称:block.rar [点击查看]
上传用户:ajay2009
上传日期:2009-05-22
资源大小:495k
文件大小:36k
源码类别:
驱动编程
开发平台:
Unix_Linux
- /*
- * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
- *
- * (C) 2001 San Mehat <nettwerk@valinux.com>
- * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
- * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
- *
- * This driver for the Micro Memory PCI Memory Module with Battery Backup
- * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
- *
- * This driver is released to the public under the terms of the
- * GNU GENERAL PUBLIC LICENSE version 2
- * See the file COPYING for details.
- *
- * This driver provides a standard block device interface for Micro Memory(tm)
- * PCI based RAM boards.
- * 10/05/01: Phap Nguyen - Rebuilt the driver
- * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
- * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
- * - use stand disk partitioning (so fdisk works).
- * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
- * - incorporate into main kernel
- * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
- * - use spin_lock_bh instead of _irq
- * - Never block on make_request. queue
- * bh's instead.
- * - unregister umem from devfs at mod unload
- * - Change version to 2.3
- * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
- * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
- * 15May2002:NeilBrown - convert to bio for 2.5
- * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
- * - a sequence of writes that cover the card, and
- * - set initialised bit then.
- */
- //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
- #include <linux/config.h>
- #include <linux/sched.h>
- #include <linux/fs.h>
- #include <linux/bio.h>
- #include <linux/kernel.h>
- #include <linux/mm.h>
- #include <linux/mman.h>
- #include <linux/ioctl.h>
- #include <linux/module.h>
- #include <linux/init.h>
- #include <linux/interrupt.h>
- #include <linux/smp_lock.h>
- #include <linux/timer.h>
- #include <linux/pci.h>
- #include <linux/slab.h>
- #include <linux/fcntl.h> /* O_ACCMODE */
- #include <linux/hdreg.h> /* HDIO_GETGEO */
- #include <linux/umem.h>
- #include <asm/uaccess.h>
- #include <asm/io.h>
- #define MM_MAXCARDS 4
- #define MM_RAHEAD 2 /* two sectors */
- #define MM_BLKSIZE 1024 /* 1k blocks */
- #define MM_HARDSECT 512 /* 512-byte hardware sectors */
- #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
- /*
- * Version Information
- */
- #define DRIVER_VERSION "v2.3"
- #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
- #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
- static int debug;
- /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
- #define HW_TRACE(x)
- #define DEBUG_LED_ON_TRANSFER 0x01
- #define DEBUG_BATTERY_POLLING 0x02
- module_param(debug, int, 0644);
- MODULE_PARM_DESC(debug, "Debug bitmask");
- static int pci_read_cmd = 0x0C; /* Read Multiple */
- module_param(pci_read_cmd, int, 0);
- MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
- static int pci_write_cmd = 0x0F; /* Write and Invalidate */
- module_param(pci_write_cmd, int, 0);
- MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
- static int pci_cmds;
- static int major_nr;
- #include <linux/blkdev.h>
- #include <linux/blkpg.h>
- struct cardinfo {
- int card_number;
- struct pci_dev *dev;
- int irq;
- unsigned long csr_base;
- unsigned char __iomem *csr_remap;
- unsigned long csr_len;
- #ifdef CONFIG_MM_MAP_MEMORY
- unsigned long mem_base;
- unsigned char __iomem *mem_remap;
- unsigned long mem_len;
- #endif
- unsigned int win_size; /* PCI window size */
- unsigned int mm_size; /* size in kbytes */
- unsigned int init_size; /* initial segment, in sectors,
- * that we know to
- * have been written
- */
- struct bio *bio, *currentbio, **biotail;
- request_queue_t *queue;
- struct mm_page {
- dma_addr_t page_dma;
- struct mm_dma_desc *desc;
- int cnt, headcnt;
- struct bio *bio, **biotail;
- } mm_pages[2];
- #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
- int Active, Ready;
- struct tasklet_struct tasklet;
- unsigned int dma_status;
- struct {
- int good;
- int warned;
- unsigned long last_change;
- } battery[2];
- spinlock_t lock;
- int check_batteries;
- int flags;
- };
- static struct cardinfo cards[MM_MAXCARDS];
- static struct block_device_operations mm_fops;
- static struct timer_list battery_timer;
- static int num_cards = 0;
- static struct gendisk *mm_gendisk[MM_MAXCARDS];
- static void check_batteries(struct cardinfo *card);
- /*
- -----------------------------------------------------------------------------------
- -- get_userbit
- -----------------------------------------------------------------------------------
- */
- static int get_userbit(struct cardinfo *card, int bit)
- {
- unsigned char led;
- led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
- return led & bit;
- }
- /*
- -----------------------------------------------------------------------------------
- -- set_userbit
- -----------------------------------------------------------------------------------
- */
- static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
- {
- unsigned char led;
- led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
- if (state)
- led |= bit;
- else
- led &= ~bit;
- writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
- return 0;
- }
- /*
- -----------------------------------------------------------------------------------
- -- set_led
- -----------------------------------------------------------------------------------
- */
- /*
- * NOTE: For the power LED, use the LED_POWER_* macros since they differ
- */
- static void set_led(struct cardinfo *card, int shift, unsigned char state)
- {
- unsigned char led;
- led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
- if (state == LED_FLIP)
- led ^= (1<<shift);
- else {
- led &= ~(0x03 << shift);
- led |= (state << shift);
- }
- writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
- }
- #ifdef MM_DIAG
- /*
- -----------------------------------------------------------------------------------
- -- dump_regs
- -----------------------------------------------------------------------------------
- */
- static void dump_regs(struct cardinfo *card)
- {
- unsigned char *p;
- int i, i1;
- p = card->csr_remap;
- for (i = 0; i < 8; i++) {
- printk(KERN_DEBUG "%p ", p);
- for (i1 = 0; i1 < 16; i1++)
- printk("%02x ", *p++);
- printk("n");
- }
- }
- #endif
- /*
- -----------------------------------------------------------------------------------
- -- dump_dmastat
- -----------------------------------------------------------------------------------
- */
- static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
- {
- printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
- if (dmastat & DMASCR_ANY_ERR)
- printk("ANY_ERR ");
- if (dmastat & DMASCR_MBE_ERR)
- printk("MBE_ERR ");
- if (dmastat & DMASCR_PARITY_ERR_REP)
- printk("PARITY_ERR_REP ");
- if (dmastat & DMASCR_PARITY_ERR_DET)
- printk("PARITY_ERR_DET ");
- if (dmastat & DMASCR_SYSTEM_ERR_SIG)
- printk("SYSTEM_ERR_SIG ");
- if (dmastat & DMASCR_TARGET_ABT)
- printk("TARGET_ABT ");
- if (dmastat & DMASCR_MASTER_ABT)
- printk("MASTER_ABT ");
- if (dmastat & DMASCR_CHAIN_COMPLETE)
- printk("CHAIN_COMPLETE ");
- if (dmastat & DMASCR_DMA_COMPLETE)
- printk("DMA_COMPLETE ");
- printk("n");
- }
- /*
- * Theory of request handling
- *
- * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
- * We have two pages of mm_dma_desc, holding about 64 descriptors
- * each. These are allocated at init time.
- * One page is "Ready" and is either full, or can have request added.
- * The other page might be "Active", which DMA is happening on it.
- *
- * Whenever IO on the active page completes, the Ready page is activated
- * and the ex-Active page is clean out and made Ready.
- * Otherwise the Ready page is only activated when it becomes full, or
- * when mm_unplug_device is called via the unplug_io_fn.
- *
- * If a request arrives while both pages a full, it is queued, and b_rdev is
- * overloaded to record whether it was a read or a write.
- *
- * The interrupt handler only polls the device to clear the interrupt.
- * The processing of the result is done in a tasklet.
- */
- static void mm_start_io(struct cardinfo *card)
- {
- /* we have the lock, we know there is
- * no IO active, and we know that card->Active
- * is set
- */
- struct mm_dma_desc *desc;
- struct mm_page *page;
- int offset;
- /* make the last descriptor end the chain */
- page = &card->mm_pages[card->Active];
- pr_debug("start_io: %d %d->%dn", card->Active, page->headcnt, page->cnt-1);
- desc = &page->desc[page->cnt-1];
- desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
- desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
- desc->sem_control_bits = desc->control_bits;
- if (debug & DEBUG_LED_ON_TRANSFER)
- set_led(card, LED_REMOVE, LED_ON);
- desc = &page->desc[page->headcnt];
- writel(0, card->csr_remap + DMA_PCI_ADDR);
- writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
- writel(0, card->csr_remap + DMA_LOCAL_ADDR);
- writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
- writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
- writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
- writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
- writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
- offset = ((char*)desc) - ((char*)page->desc);
- writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
- card->csr_remap + DMA_DESCRIPTOR_ADDR);
- /* Force the value to u64 before shifting otherwise >> 32 is undefined C
- * and on some ports will do nothing ! */
- writel(cpu_to_le32(((u64)page->page_dma)>>32),
- card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
- /* Go, go, go */
- writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
- card->csr_remap + DMA_STATUS_CTRL);
- }
- static int add_bio(struct cardinfo *card);
- static void activate(struct cardinfo *card)
- {
- /* if No page is Active, and Ready is
- * not empty, then switch Ready page
- * to active and start IO.
- * Then add any bh's that are available to Ready
- */
- do {
- while (add_bio(card))
- ;
- if (card->Active == -1 &&
- card->mm_pages[card->Ready].cnt > 0) {
- card->Active = card->Ready;
- card->Ready = 1-card->Ready;
- mm_start_io(card);
- }
- } while (card->Active == -1 && add_bio(card));
- }
- static inline void reset_page(struct mm_page *page)
- {
- page->cnt = 0;
- page->headcnt = 0;
- page->bio = NULL;
- page->biotail = & page->bio;
- }
- static void mm_unplug_device(request_queue_t *q)
- {
- struct cardinfo *card = q->queuedata;
- unsigned long flags;
- spin_lock_irqsave(&card->lock, flags);
- if (blk_remove_plug(q))
- activate(card);
- spin_unlock_irqrestore(&card->lock, flags);
- }
- /*
- * If there is room on Ready page, take
- * one bh off list and add it.
- * return 1 if there was room, else 0.
- */
- static int add_bio(struct cardinfo *card)
- {
- struct mm_page *p;
- struct mm_dma_desc *desc;
- dma_addr_t dma_handle;
- int offset;
- struct bio *bio;
- int rw;
- int len;
- bio = card->currentbio;
- if (!bio && card->bio) {
- card->currentbio = card->bio;
- card->bio = card->bio->bi_next;
- if (card->bio == NULL)
- card->biotail = &card->bio;
- card->currentbio->bi_next = NULL;
- return 1;
- }
- if (!bio)
- return 0;
- rw = bio_rw(bio);
- if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
- return 0;
- len = bio_iovec(bio)->bv_len;
- dma_handle = pci_map_page(card->dev,
- bio_page(bio),
- bio_offset(bio),
- len,
- (rw==READ) ?
- PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
- p = &card->mm_pages[card->Ready];
- desc = &p->desc[p->cnt];
- p->cnt++;
- if ((p->biotail) != &bio->bi_next) {
- *(p->biotail) = bio;
- p->biotail = &(bio->bi_next);
- bio->bi_next = NULL;
- }
- desc->data_dma_handle = dma_handle;
- desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
- desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
- desc->transfer_size = cpu_to_le32(len);
- offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
- desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
- desc->zero1 = desc->zero2 = 0;
- offset = ( ((char*)(desc+1)) - ((char*)p->desc));
- desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
- desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
- DMASCR_PARITY_INT_EN|
- DMASCR_CHAIN_EN |
- DMASCR_SEM_EN |
- pci_cmds);
- if (rw == WRITE)
- desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
- desc->sem_control_bits = desc->control_bits;
- bio->bi_sector += (len>>9);
- bio->bi_size -= len;
- bio->bi_idx++;
- if (bio->bi_idx >= bio->bi_vcnt)
- card->currentbio = NULL;
- return 1;
- }
- static void process_page(unsigned long data)
- {
- /* check if any of the requests in the page are DMA_COMPLETE,
- * and deal with them appropriately.
- * If we find a descriptor without DMA_COMPLETE in the semaphore, then
- * dma must have hit an error on that descriptor, so use dma_status instead
- * and assume that all following descriptors must be re-tried.
- */
- struct mm_page *page;
- struct bio *return_bio=NULL;
- struct cardinfo *card = (struct cardinfo *)data;
- unsigned int dma_status = card->dma_status;
- spin_lock_bh(&card->lock);
- if (card->Active < 0)
- goto out_unlock;
- page = &card->mm_pages[card->Active];
- while (page->headcnt < page->cnt) {
- struct bio *bio = page->bio;
- struct mm_dma_desc *desc = &page->desc[page->headcnt];
- int control = le32_to_cpu(desc->sem_control_bits);
- int last=0;
- int idx;
- if (!(control & DMASCR_DMA_COMPLETE)) {
- control = dma_status;
- last=1;
- }
- page->headcnt++;
- idx = bio->bi_phys_segments;
- bio->bi_phys_segments++;
- if (bio->bi_phys_segments >= bio->bi_vcnt)
- page->bio = bio->bi_next;
- pci_unmap_page(card->dev, desc->data_dma_handle,
- bio_iovec_idx(bio,idx)->bv_len,
- (control& DMASCR_TRANSFER_READ) ?
- PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
- if (control & DMASCR_HARD_ERROR) {
- /* error */
- clear_bit(BIO_UPTODATE, &bio->bi_flags);
- printk(KERN_WARNING "MM%d: I/O error on sector %d/%dn",
- card->card_number,
- le32_to_cpu(desc->local_addr)>>9,
- le32_to_cpu(desc->transfer_size));
- dump_dmastat(card, control);
- } else if (test_bit(BIO_RW, &bio->bi_rw) &&
- le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
- card->init_size += le32_to_cpu(desc->transfer_size)>>9;
- if (card->init_size>>1 >= card->mm_size) {
- printk(KERN_INFO "MM%d: memory now initialisedn",
- card->card_number);
- set_userbit(card, MEMORY_INITIALIZED, 1);
- }
- }
- if (bio != page->bio) {
- bio->bi_next = return_bio;
- return_bio = bio;
- }
- if (last) break;
- }
- if (debug & DEBUG_LED_ON_TRANSFER)
- set_led(card, LED_REMOVE, LED_OFF);
- if (card->check_batteries) {
- card->check_batteries = 0;
- check_batteries(card);
- }
- if (page->headcnt >= page->cnt) {
- reset_page(page);
- card->Active = -1;
- activate(card);
- } else {
- /* haven't finished with this one yet */
- pr_debug("do some moren");
- mm_start_io(card);
- }
- out_unlock:
- spin_unlock_bh(&card->lock);
- while(return_bio) {
- struct bio *bio = return_bio;
- return_bio = bio->bi_next;
- bio->bi_next = NULL;
- bio_endio(bio, bio->bi_size, 0);
- }
- }
- /*
- -----------------------------------------------------------------------------------
- -- mm_make_request
- -----------------------------------------------------------------------------------
- */
- static int mm_make_request(request_queue_t *q, struct bio *bio)
- {
- struct cardinfo *card = q->queuedata;
- pr_debug("mm_make_request %ld %dn", bh->b_rsector, bh->b_size);
- bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
- spin_lock_irq(&card->lock);
- *card->biotail = bio;
- bio->bi_next = NULL;
- card->biotail = &bio->bi_next;
- blk_plug_device(q);
- spin_unlock_irq(&card->lock);
- return 0;
- }
- /*
- -----------------------------------------------------------------------------------
- -- mm_interrupt
- -----------------------------------------------------------------------------------
- */
- static irqreturn_t mm_interrupt(int irq, void *__card, struct pt_regs *regs)
- {
- struct cardinfo *card = (struct cardinfo *) __card;
- unsigned int dma_status;
- unsigned short cfg_status;
- HW_TRACE(0x30);
- dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
- if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
- /* interrupt wasn't for me ... */
- return IRQ_NONE;
- }
- /* clear COMPLETION interrupts */
- if (card->flags & UM_FLAG_NO_BYTE_STATUS)
- writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
- card->csr_remap+ DMA_STATUS_CTRL);
- else
- writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
- card->csr_remap+ DMA_STATUS_CTRL + 2);
- /* log errors and clear interrupt status */
- if (dma_status & DMASCR_ANY_ERR) {
- unsigned int data_log1, data_log2;
- unsigned int addr_log1, addr_log2;
- unsigned char stat, count, syndrome, check;
- stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
- data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
- data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
- addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
- addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
- count = readb(card->csr_remap + ERROR_COUNT);
- syndrome = readb(card->csr_remap + ERROR_SYNDROME);
- check = readb(card->csr_remap + ERROR_CHECK);
- dump_dmastat(card, dma_status);
- if (stat & 0x01)
- printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)n",
- card->card_number, count);
- if (stat & 0x02)
- printk(KERN_ERR "MM%d*: Multi-bit EDC errorn",
- card->card_number);
- printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08xn",
- card->card_number, addr_log2, addr_log1, data_log2, data_log1);
- printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02xn",
- card->card_number, check, syndrome);
- writeb(0, card->csr_remap + ERROR_COUNT);
- }
- if (dma_status & DMASCR_PARITY_ERR_REP) {
- printk(KERN_ERR "MM%d*: PARITY ERROR REPORTEDn", card->card_number);
- pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
- pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
- }
- if (dma_status & DMASCR_PARITY_ERR_DET) {
- printk(KERN_ERR "MM%d*: PARITY ERROR DETECTEDn", card->card_number);
- pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
- pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
- }
- if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
- printk(KERN_ERR "MM%d*: SYSTEM ERRORn", card->card_number);
- pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
- pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
- }
- if (dma_status & DMASCR_TARGET_ABT) {
- printk(KERN_ERR "MM%d*: TARGET ABORTn", card->card_number);
- pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
- pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
- }
- if (dma_status & DMASCR_MASTER_ABT) {
- printk(KERN_ERR "MM%d*: MASTER ABORTn", card->card_number);
- pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
- pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
- }
- /* and process the DMA descriptors */
- card->dma_status = dma_status;
- tasklet_schedule(&card->tasklet);
- HW_TRACE(0x36);
- return IRQ_HANDLED;
- }
- /*
- -----------------------------------------------------------------------------------
- -- set_fault_to_battery_status
- -----------------------------------------------------------------------------------
- */
- /*
- * If both batteries are good, no LED
- * If either battery has been warned, solid LED
- * If both batteries are bad, flash the LED quickly
- * If either battery is bad, flash the LED semi quickly
- */
- static void set_fault_to_battery_status(struct cardinfo *card)
- {
- if (card->battery[0].good && card->battery[1].good)
- set_led(card, LED_FAULT, LED_OFF);
- else if (card->battery[0].warned || card->battery[1].warned)
- set_led(card, LED_FAULT, LED_ON);
- else if (!card->battery[0].good && !card->battery[1].good)
- set_led(card, LED_FAULT, LED_FLASH_7_0);
- else
- set_led(card, LED_FAULT, LED_FLASH_3_5);
- }
- static void init_battery_timer(void);
- /*
- -----------------------------------------------------------------------------------
- -- check_battery
- -----------------------------------------------------------------------------------
- */
- static int check_battery(struct cardinfo *card, int battery, int status)
- {
- if (status != card->battery[battery].good) {
- card->battery[battery].good = !card->battery[battery].good;
- card->battery[battery].last_change = jiffies;
- if (card->battery[battery].good) {
- printk(KERN_ERR "MM%d: Battery %d now goodn",
- card->card_number, battery + 1);
- card->battery[battery].warned = 0;
- } else
- printk(KERN_ERR "MM%d: Battery %d now FAILEDn",
- card->card_number, battery + 1);
- return 1;
- } else if (!card->battery[battery].good &&
- !card->battery[battery].warned &&
- time_after_eq(jiffies, card->battery[battery].last_change +
- (HZ * 60 * 60 * 5))) {
- printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hoursn",
- card->card_number, battery + 1);
- card->battery[battery].warned = 1;
- return 1;
- }
- return 0;
- }
- /*
- -----------------------------------------------------------------------------------
- -- check_batteries
- -----------------------------------------------------------------------------------
- */
- static void check_batteries(struct cardinfo *card)
- {
- /* NOTE: this must *never* be called while the card
- * is doing (bus-to-card) DMA, or you will need the
- * reset switch
- */
- unsigned char status;
- int ret1, ret2;
- status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
- if (debug & DEBUG_BATTERY_POLLING)
- printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %sn",
- card->card_number,
- (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
- (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
- ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
- ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
- if (ret1 || ret2)
- set_fault_to_battery_status(card);
- }
- static void check_all_batteries(unsigned long ptr)
- {
- int i;
- for (i = 0; i < num_cards; i++)
- if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
- struct cardinfo *card = &cards[i];
- spin_lock_bh(&card->lock);
- if (card->Active >= 0)
- card->check_batteries = 1;
- else
- check_batteries(card);
- spin_unlock_bh(&card->lock);
- }
- init_battery_timer();
- }
- /*
- -----------------------------------------------------------------------------------
- -- init_battery_timer
- -----------------------------------------------------------------------------------
- */
- static void init_battery_timer(void)
- {
- init_timer(&battery_timer);
- battery_timer.function = check_all_batteries;
- battery_timer.expires = jiffies + (HZ * 60);
- add_timer(&battery_timer);
- }
- /*
- -----------------------------------------------------------------------------------
- -- del_battery_timer
- -----------------------------------------------------------------------------------
- */
- static void del_battery_timer(void)
- {
- del_timer(&battery_timer);
- }
- /*
- -----------------------------------------------------------------------------------
- -- mm_revalidate
- -----------------------------------------------------------------------------------
- */
- /*
- * Note no locks taken out here. In a worst case scenario, we could drop
- * a chunk of system memory. But that should never happen, since validation
- * happens at open or mount time, when locks are held.
- *
- * That's crap, since doing that while some partitions are opened
- * or mounted will give you really nasty results.
- */
- static int mm_revalidate(struct gendisk *disk)
- {
- struct cardinfo *card = disk->private_data;
- set_capacity(disk, card->mm_size << 1);
- return 0;
- }
- /*
- -----------------------------------------------------------------------------------
- -- mm_ioctl
- -----------------------------------------------------------------------------------
- */
- static int mm_ioctl(struct inode *i, struct file *f, unsigned int cmd, unsigned long arg)
- {
- if (cmd == HDIO_GETGEO) {
- struct cardinfo *card = i->i_bdev->bd_disk->private_data;
- int size = card->mm_size * (1024 / MM_HARDSECT);
- struct hd_geometry geo;
- /*
- * get geometry: we have to fake one... trim the size to a
- * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
- * whatever cylinders.
- */
- geo.heads = 64;
- geo.sectors = 32;
- geo.start = get_start_sect(i->i_bdev);
- geo.cylinders = size / (geo.heads * geo.sectors);
- if (copy_to_user((void __user *) arg, &geo, sizeof(geo)))
- return -EFAULT;
- return 0;
- }
- return -EINVAL;
- }
- /*
- -----------------------------------------------------------------------------------
- -- mm_check_change
- -----------------------------------------------------------------------------------
- Future support for removable devices
- */
- static int mm_check_change(struct gendisk *disk)
- {
- /* struct cardinfo *dev = disk->private_data; */
- return 0;
- }
- /*
- -----------------------------------------------------------------------------------
- -- mm_fops
- -----------------------------------------------------------------------------------
- */
- static struct block_device_operations mm_fops = {
- .owner = THIS_MODULE,
- .ioctl = mm_ioctl,
- .revalidate_disk= mm_revalidate,
- .media_changed = mm_check_change,
- };
- /*
- -----------------------------------------------------------------------------------
- -- mm_pci_probe
- -----------------------------------------------------------------------------------
- */
- static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
- {
- int ret = -ENODEV;
- struct cardinfo *card = &cards[num_cards];
- unsigned char mem_present;
- unsigned char batt_status;
- unsigned int saved_bar, data;
- int magic_number;
- if (pci_enable_device(dev) < 0)
- return -ENODEV;
- pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
- pci_set_master(dev);
- card->dev = dev;
- card->card_number = num_cards;
- card->csr_base = pci_resource_start(dev, 0);
- card->csr_len = pci_resource_len(dev, 0);
- #ifdef CONFIG_MM_MAP_MEMORY
- card->mem_base = pci_resource_start(dev, 1);
- card->mem_len = pci_resource_len(dev, 1);
- #endif
- printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))n",
- card->card_number, dev->bus->number, dev->devfn);
- if (pci_set_dma_mask(dev, 0xffffffffffffffffLL) &&
- !pci_set_dma_mask(dev, 0xffffffffLL)) {
- printk(KERN_WARNING "MM%d: NO suitable DMA foundn",num_cards);
- return -ENOMEM;
- }
- if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
- printk(KERN_ERR "MM%d: Unable to request memory regionn", card->card_number);
- ret = -ENOMEM;
- goto failed_req_csr;
- }
- card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
- if (!card->csr_remap) {
- printk(KERN_ERR "MM%d: Unable to remap memory regionn", card->card_number);
- ret = -ENOMEM;
- goto failed_remap_csr;
- }
- printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)n", card->card_number,
- card->csr_base, card->csr_remap, card->csr_len);
- #ifdef CONFIG_MM_MAP_MEMORY
- if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
- printk(KERN_ERR "MM%d: Unable to request memory regionn", card->card_number);
- ret = -ENOMEM;
- goto failed_req_mem;
- }
- if (!(card->mem_remap = ioremap(card->mem_base, cards->mem_len))) {
- printk(KERN_ERR "MM%d: Unable to remap memory regionn", card->card_number);
- ret = -ENOMEM;
- goto failed_remap_mem;
- }
- printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)n", card->card_number,
- card->mem_base, card->mem_remap, card->mem_len);
- #else
- printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)n",
- card->card_number);
- #endif
- switch(card->dev->device) {
- case 0x5415:
- card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
- magic_number = 0x59;
- break;
- case 0x5425:
- card->flags |= UM_FLAG_NO_BYTE_STATUS;
- magic_number = 0x5C;
- break;
- case 0x6155:
- card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
- magic_number = 0x99;
- break;
- default:
- magic_number = 0x100;
- break;
- }
- if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
- printk(KERN_ERR "MM%d: Magic number invalidn", card->card_number);
- ret = -ENOMEM;
- goto failed_magic;
- }
- card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
- PAGE_SIZE*2,
- &card->mm_pages[0].page_dma);
- card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
- PAGE_SIZE*2,
- &card->mm_pages[1].page_dma);
- if (card->mm_pages[0].desc == NULL ||
- card->mm_pages[1].desc == NULL) {
- printk(KERN_ERR "MM%d: alloc failedn", card->card_number);
- goto failed_alloc;
- }
- reset_page(&card->mm_pages[0]);
- reset_page(&card->mm_pages[1]);
- card->Ready = 0; /* page 0 is ready */
- card->Active = -1; /* no page is active */
- card->bio = NULL;
- card->biotail = &card->bio;
- card->queue = blk_alloc_queue(GFP_KERNEL);
- if (!card->queue)
- goto failed_alloc;
- blk_queue_make_request(card->queue, mm_make_request);
- card->queue->queuedata = card;
- card->queue->unplug_fn = mm_unplug_device;
- tasklet_init(&card->tasklet, process_page, (unsigned long)card);
- card->check_batteries = 0;
- mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
- switch (mem_present) {
- case MEM_128_MB:
- card->mm_size = 1024 * 128;
- break;
- case MEM_256_MB:
- card->mm_size = 1024 * 256;
- break;
- case MEM_512_MB:
- card->mm_size = 1024 * 512;
- break;
- case MEM_1_GB:
- card->mm_size = 1024 * 1024;
- break;
- case MEM_2_GB:
- card->mm_size = 1024 * 2048;
- break;
- default:
- card->mm_size = 0;
- break;
- }
- /* Clear the LED's we control */
- set_led(card, LED_REMOVE, LED_OFF);
- set_led(card, LED_FAULT, LED_OFF);
- batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
- card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
- card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
- card->battery[0].last_change = card->battery[1].last_change = jiffies;
- if (card->flags & UM_FLAG_NO_BATT)
- printk(KERN_INFO "MM%d: Size %d KBn",
- card->card_number, card->mm_size);
- else {
- printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)n",
- card->card_number, card->mm_size,
- (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
- card->battery[0].good ? "OK" : "FAILURE",
- (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
- card->battery[1].good ? "OK" : "FAILURE");
- set_fault_to_battery_status(card);
- }
- pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
- data = 0xffffffff;
- pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
- pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
- pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
- data &= 0xfffffff0;
- data = ~data;
- data += 1;
- card->win_size = data;
- if (request_irq(dev->irq, mm_interrupt, SA_SHIRQ, "pci-umem", card)) {
- printk(KERN_ERR "MM%d: Unable to allocate IRQn", card->card_number);
- ret = -ENODEV;
- goto failed_req_irq;
- }
- card->irq = dev->irq;
- printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %dn", card->card_number,
- card->win_size, card->irq);
- spin_lock_init(&card->lock);
- pci_set_drvdata(dev, card);
- if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
- pci_write_cmd = 0x07; /* then Memory Write command */
- if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
- unsigned short cfg_command;
- pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
- cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
- pci_write_config_word(dev, PCI_COMMAND, cfg_command);
- }
- pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
- num_cards++;
- if (!get_userbit(card, MEMORY_INITIALIZED)) {
- printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.n", card->card_number);
- card->init_size = 0;
- } else {
- printk(KERN_INFO "MM%d: memory already initializedn", card->card_number);
- card->init_size = card->mm_size;
- }
- /* Enable ECC */
- writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
- return 0;
- failed_req_irq:
- failed_alloc:
- if (card->mm_pages[0].desc)
- pci_free_consistent(card->dev, PAGE_SIZE*2,
- card->mm_pages[0].desc,
- card->mm_pages[0].page_dma);
- if (card->mm_pages[1].desc)
- pci_free_consistent(card->dev, PAGE_SIZE*2,
- card->mm_pages[1].desc,
- card->mm_pages[1].page_dma);
- failed_magic:
- #ifdef CONFIG_MM_MAP_MEMORY
- iounmap(card->mem_remap);
- failed_remap_mem:
- release_mem_region(card->mem_base, card->mem_len);
- failed_req_mem:
- #endif
- iounmap(card->csr_remap);
- failed_remap_csr:
- release_mem_region(card->csr_base, card->csr_len);
- failed_req_csr:
- return ret;
- }
- /*
- -----------------------------------------------------------------------------------
- -- mm_pci_remove
- -----------------------------------------------------------------------------------
- */
- static void mm_pci_remove(struct pci_dev *dev)
- {
- struct cardinfo *card = pci_get_drvdata(dev);
- tasklet_kill(&card->tasklet);
- iounmap(card->csr_remap);
- release_mem_region(card->csr_base, card->csr_len);
- #ifdef CONFIG_MM_MAP_MEMORY
- iounmap(card->mem_remap);
- release_mem_region(card->mem_base, card->mem_len);
- #endif
- free_irq(card->irq, card);
- if (card->mm_pages[0].desc)
- pci_free_consistent(card->dev, PAGE_SIZE*2,
- card->mm_pages[0].desc,
- card->mm_pages[0].page_dma);
- if (card->mm_pages[1].desc)
- pci_free_consistent(card->dev, PAGE_SIZE*2,
- card->mm_pages[1].desc,
- card->mm_pages[1].page_dma);
- blk_put_queue(card->queue);
- }
- static const struct pci_device_id mm_pci_ids[] = { {
- .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
- .device = PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
- }, {
- .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
- .device = PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
- }, {
- .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
- .device = PCI_DEVICE_ID_MICRO_MEMORY_6155,
- }, {
- .vendor = 0x8086,
- .device = 0xB555,
- .subvendor= 0x1332,
- .subdevice= 0x5460,
- .class = 0x050000,
- .class_mask= 0,
- }, { /* end: all zeroes */ }
- };
- MODULE_DEVICE_TABLE(pci, mm_pci_ids);
- static struct pci_driver mm_pci_driver = {
- .name = "umem",
- .id_table = mm_pci_ids,
- .probe = mm_pci_probe,
- .remove = mm_pci_remove,
- };
- /*
- -----------------------------------------------------------------------------------
- -- mm_init
- -----------------------------------------------------------------------------------
- */
- static int __init mm_init(void)
- {
- int retval, i;
- int err;
- printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "n");
- retval = pci_module_init(&mm_pci_driver);
- if (retval)
- return -ENOMEM;
- err = major_nr = register_blkdev(0, "umem");
- if (err < 0)
- return -EIO;
- for (i = 0; i < num_cards; i++) {
- mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
- if (!mm_gendisk[i])
- goto out;
- }
- for (i = 0; i < num_cards; i++) {
- struct gendisk *disk = mm_gendisk[i];
- sprintf(disk->disk_name, "umem%c", 'a'+i);
- sprintf(disk->devfs_name, "umem/card%d", i);
- spin_lock_init(&cards[i].lock);
- disk->major = major_nr;
- disk->first_minor = i << MM_SHIFT;
- disk->fops = &mm_fops;
- disk->private_data = &cards[i];
- disk->queue = cards[i].queue;
- set_capacity(disk, cards[i].mm_size << 1);
- add_disk(disk);
- }
- init_battery_timer();
- printk("MM: desc_per_page = %ldn", DESC_PER_PAGE);
- /* printk("mm_init: Done. 10-19-01 9:00n"); */
- return 0;
- out:
- unregister_blkdev(major_nr, "umem");
- while (i--)
- put_disk(mm_gendisk[i]);
- return -ENOMEM;
- }
- /*
- -----------------------------------------------------------------------------------
- -- mm_cleanup
- -----------------------------------------------------------------------------------
- */
- static void __exit mm_cleanup(void)
- {
- int i;
- del_battery_timer();
- for (i=0; i < num_cards ; i++) {
- del_gendisk(mm_gendisk[i]);
- put_disk(mm_gendisk[i]);
- }
- pci_unregister_driver(&mm_pci_driver);
- unregister_blkdev(major_nr, "umem");
- }
- module_init(mm_init);
- module_exit(mm_cleanup);
- MODULE_AUTHOR(DRIVER_AUTHOR);
- MODULE_DESCRIPTION(DRIVER_DESC);
- MODULE_LICENSE("GPL");