lopcodes.h
资源名称:wow.rar [点击查看]
上传用户:jxpjxmjjw
上传日期:2009-12-07
资源大小:5877k
文件大小:7k
源码类别:
模拟服务器
开发平台:
Visual C++
- /*
- ** $Id: lopcodes.h,v 1.1 2004/08/20 02:26:56 JH Exp $
- ** Opcodes for Lua virtual machine
- ** See Copyright Notice in lua.h
- */
- #ifndef lopcodes_h
- #define lopcodes_h
- #include "llimits.h"
- /*===========================================================================
- We assume that instructions are unsigned numbers.
- All instructions have an opcode in the first 6 bits.
- Instructions can have the following fields:
- `A' : 8 bits
- `B' : 9 bits
- `C' : 9 bits
- `Bx' : 18 bits (`B' and `C' together)
- `sBx' : signed Bx
- A signed argument is represented in excess K; that is, the number
- value is the unsigned value minus K. K is exactly the maximum value
- for that argument (so that -max is represented by 0, and +max is
- represented by 2*max), which is half the maximum for the corresponding
- unsigned argument.
- ===========================================================================*/
- enum OpMode {iABC, iABx, iAsBx}; /* basic instruction format */
- /*
- ** size and position of opcode arguments.
- */
- #define SIZE_C 9
- #define SIZE_B 9
- #define SIZE_Bx (SIZE_C + SIZE_B)
- #define SIZE_A 8
- #define SIZE_OP 6
- #define POS_C SIZE_OP
- #define POS_B (POS_C + SIZE_C)
- #define POS_Bx POS_C
- #define POS_A (POS_B + SIZE_B)
- /*
- ** limits for opcode arguments.
- ** we use (signed) int to manipulate most arguments,
- ** so they must fit in BITS_INT-1 bits (-1 for sign)
- */
- #if SIZE_Bx < BITS_INT-1
- #define MAXARG_Bx ((1<<SIZE_Bx)-1)
- #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */
- #else
- #define MAXARG_Bx MAX_INT
- #define MAXARG_sBx MAX_INT
- #endif
- #define MAXARG_A ((1<<SIZE_A)-1)
- #define MAXARG_B ((1<<SIZE_B)-1)
- #define MAXARG_C ((1<<SIZE_C)-1)
- /* creates a mask with `n' 1 bits at position `p' */
- #define MASK1(n,p) ((~((~(Instruction)0)<<n))<<p)
- /* creates a mask with `n' 0 bits at position `p' */
- #define MASK0(n,p) (~MASK1(n,p))
- /*
- ** the following macros help to manipulate instructions
- */
- #define GET_OPCODE(i) (cast(OpCode, (i)&MASK1(SIZE_OP,0)))
- #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,0)) | cast(Instruction, o)))
- #define GETARG_A(i) (cast(int, (i)>>POS_A))
- #define SETARG_A(i,u) ((i) = (((i)&MASK0(SIZE_A,POS_A)) |
- ((cast(Instruction, u)<<POS_A)&MASK1(SIZE_A,POS_A))))
- #define GETARG_B(i) (cast(int, ((i)>>POS_B) & MASK1(SIZE_B,0)))
- #define SETARG_B(i,b) ((i) = (((i)&MASK0(SIZE_B,POS_B)) |
- ((cast(Instruction, b)<<POS_B)&MASK1(SIZE_B,POS_B))))
- #define GETARG_C(i) (cast(int, ((i)>>POS_C) & MASK1(SIZE_C,0)))
- #define SETARG_C(i,b) ((i) = (((i)&MASK0(SIZE_C,POS_C)) |
- ((cast(Instruction, b)<<POS_C)&MASK1(SIZE_C,POS_C))))
- #define GETARG_Bx(i) (cast(int, ((i)>>POS_Bx) & MASK1(SIZE_Bx,0)))
- #define SETARG_Bx(i,b) ((i) = (((i)&MASK0(SIZE_Bx,POS_Bx)) |
- ((cast(Instruction, b)<<POS_Bx)&MASK1(SIZE_Bx,POS_Bx))))
- #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
- #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
- #define CREATE_ABC(o,a,b,c) (cast(Instruction, o)
- | (cast(Instruction, a)<<POS_A)
- | (cast(Instruction, b)<<POS_B)
- | (cast(Instruction, c)<<POS_C))
- #define CREATE_ABx(o,a,bc) (cast(Instruction, o)
- | (cast(Instruction, a)<<POS_A)
- | (cast(Instruction, bc)<<POS_Bx))
- /*
- ** invalid register that fits in 8 bits
- */
- #define NO_REG MAXARG_A
- /*
- ** R(x) - register
- ** Kst(x) - constant (in constant table)
- ** RK(x) == if x < MAXSTACK then R(x) else Kst(x-MAXSTACK)
- */
- /*
- ** grep "ORDER OP" if you change these enums
- */
- typedef enum {
- /*----------------------------------------------------------------------
- name args description
- ------------------------------------------------------------------------*/
- OP_MOVE,/* A B R(A) := R(B) */
- OP_LOADK,/* A Bx R(A) := Kst(Bx) */
- OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) PC++ */
- OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */
- OP_GETUPVAL,/* A B R(A) := UpValue[B] */
- OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */
- OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
- OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */
- OP_SETUPVAL,/* A B UpValue[B] := R(A) */
- OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
- OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
- OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
- OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
- OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
- OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
- OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
- OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
- OP_UNM,/* A B R(A) := -R(B) */
- OP_NOT,/* A B R(A) := not R(B) */
- OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
- OP_JMP,/* sBx PC += sBx */
- OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
- OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
- OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
- OP_TEST,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
- OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
- OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
- OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
- OP_FORLOOP,/* A sBx R(A)+=R(A+2); if R(A) <?= R(A+1) then PC+= sBx */
- OP_TFORLOOP,/* A C R(A+2), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
- if R(A+2) ~= nil then pc++ */
- OP_TFORPREP,/* A sBx if type(R(A)) == table then R(A+1):=R(A), R(A):=next;
- PC += sBx */
- OP_SETLIST,/* A Bx R(A)[Bx-Bx%FPF+i] := R(A+i), 1 <= i <= Bx%FPF+1 */
- OP_SETLISTO,/* A Bx */
- OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/
- OP_CLOSURE/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */
- } OpCode;
- #define NUM_OPCODES (cast(int, OP_CLOSURE+1))
- /*===========================================================================
- Notes:
- (1) In OP_CALL, if (B == 0) then B = top. C is the number of returns - 1,
- and can be 0: OP_CALL then sets `top' to last_result+1, so
- next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use `top'.
- (2) In OP_RETURN, if (B == 0) then return up to `top'
- (3) For comparisons, B specifies what conditions the test should accept.
- (4) All `skips' (pc++) assume that next instruction is a jump
- ===========================================================================*/
- /*
- ** masks for instruction properties
- */
- enum OpModeMask {
- OpModeBreg = 2, /* B is a register */
- OpModeBrk, /* B is a register/constant */
- OpModeCrk, /* C is a register/constant */
- OpModesetA, /* instruction set register A */
- OpModeK, /* Bx is a constant */
- OpModeT /* operator is a test */
- };
- extern const lu_byte luaP_opmodes[NUM_OPCODES];
- #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
- #define testOpMode(m, b) (luaP_opmodes[m] & (1 << (b)))
- #ifdef LUA_OPNAMES
- extern const char *const luaP_opnames[]; /* opcode names */
- #endif
- /* number of list items to accumulate before a SETLIST instruction */
- /* (must be a power of 2) */
- #define LFIELDS_PER_FLUSH 32
- #endif