jpgraph_pie3d.php
上传用户:gzy2002
上传日期:2010-02-11
资源大小:1785k
文件大小:24k
- <?php
- /*=======================================================================
- // File: JPGRAPH_PIE3D.PHP
- // Description: 3D Pie plot extension for JpGraph
- // Created: 2001-03-24
- // Author: Johan Persson (johanp@aditus.nu)
- // Ver: $Id: jpgraph_pie3d.php,v 1.5 2003/10/10 03:37:56 wwf Exp $
- //
- // License: This code is released under QPL
- // Copyright (C) 2001,2002 Johan Persson
- //========================================================================
- */
- //===================================================
- // CLASS PiePlot3D
- // Description: Plots a 3D pie with a specified projection
- // angle between 20 and 70 degrees.
- //===================================================
- class PiePlot3D extends PiePlot {
- var $labelhintcolor="red",$showlabelhint=true,$labelmargin=0.30;
- var $angle=50;
- var $edgecolor="", $edgeweight=1;
- var $iThickness=false;
-
- //---------------
- // CONSTRUCTOR
- function PiePlot3d(&$data) {
- $this->radius = 0.5;
- $this->data = $data;
- $this->title = new Text("");
- $this->title->SetFont(FF_FONT1,FS_BOLD);
- $this->value = new DisplayValue();
- $this->value->Show();
- $this->value->SetFormat('%.0f%%');
- }
- //---------------
- // PUBLIC METHODS
-
- // Set label arrays
- function SetLegends($aLegend) {
- $this->legends = array_reverse($aLegend);
- }
- function SetSliceColors($aColors) {
- $this->setslicecolors = $aColors;
- }
- function Legend(&$aGraph) {
- parent::Legend($aGraph);
- $aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol);
- }
- function SetCSIMTargets($targets,$alts=null) {
- $this->csimtargets = $targets;
- $this->csimalts = $alts;
- }
- // Should the slices be separated by a line? If color is specified as "" no line
- // will be used to separate pie slices.
- function SetEdge($aColor,$aWeight=1) {
- $this->edgecolor = $aColor;
- $this->edgeweight = $aWeight;
- }
- // Specify projection angle for 3D in degrees
- // Must be between 20 and 70 degrees
- function SetAngle($a) {
- if( $a<5 || $a>90 )
- JpGraphError::Raise("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees.");
- else
- $this->angle = $a;
- }
- function AddSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) { //Slice number, ellipse centre (x,y), height, width, start angle, end angle
- $sa *= M_PI/180;
- $ea *= M_PI/180;
- //add coordinates of the centre to the map
- $coords = "$xc, $yc";
- //add coordinates of the first point on the arc to the map
- $xp = floor($width*cos($sa)/2+$xc);
- $yp = floor($yc-$height*sin($sa)/2);
- $coords.= ", $xp, $yp";
- //If on the front half, add the thickness offset
- if ($sa >= M_PI && $sa <= 2*M_PI*1.01) {
- $yp = floor($yp+$thick);
- $coords.= ", $xp, $yp";
- }
-
- //add coordinates every 0.2 radians
- $a=$sa+0.2;
- while ($a<$ea) {
- $xp = floor($width*cos($a)/2+$xc);
- if ($a >= M_PI && $a <= 2*M_PI*1.01) {
- $yp = floor($yc-($height*sin($a)/2)+$thick);
- } else {
- $yp = floor($yc-$height*sin($a)/2);
- }
- $coords.= ", $xp, $yp";
- $a += 0.2;
- }
-
- //Add the last point on the arc
- $xp = floor($width*cos($ea)/2+$xc);
- $yp = floor($yc-$height*sin($ea)/2);
- if ($ea >= M_PI && $ea <= 2*M_PI*1.01) {
- $coords.= ", $xp, ".floor($yp+$thick);
- }
- $coords.= ", $xp, $yp";
- $alt='';
- if( !empty($this->csimalts[$i]) ) {
- $tmp=sprintf($this->csimalts[$i],$this->data[$i]);
- $alt="alt="$tmp" title="$tmp"";
- }
- if( !empty($this->csimtargets[$i]) )
- $this->csimareas .= "<area shape="poly" coords="$coords" href="".$this->csimtargets[$i]."" $alt>n";
- }
- function SetLabels($aLabels,$aLblPosAdj="auto") {
- $this->labels = $aLabels;
- $this->ilabelposadj=$aLblPosAdj;
- }
-
- // Distance from the pie to the labels
- function SetLabelMargin($m) {
- assert($m>0 && $m<1);
- $this->labelmargin=$m;
- }
-
- // Show a thin line from the pie to the label for a specific slice
- function ShowLabelHint($f=true) {
- $this->showlabelhint=$f;
- }
-
- // Set color of hint line to label for each slice
- function SetLabelHintColor($c) {
- $this->labelhintcolor=$c;
- }
- function SetHeight($aHeight) {
- $this->iThickness = $aHeight;
- }
- // Normalize Angle between 0-360
- function NormAngle($a) {
- // Normalize anle to 0 to 2M_PI
- //
- if( $a > 0 ) {
- while($a > 360) $a -= 360;
- }
- else {
- while($a < 0) $a += 360;
- }
- if( $a < 0 )
- $a = 360 + $a;
- if( $a == 360 ) $a=0;
- return $a;
- }
-
- // Draw one 3D pie slice at position ($xc,$yc) with height $z
- function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) {
-
- // Due to the way the 3D Pie algorithm works we are
- // guaranteed that any slice we get into this method
- // belongs to either the left or right side of the
- // pie ellipse. Hence, no slice will cross 90 or 270
- // point.
- if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) {
- JpGraphError::Raise('Internal assertion failed. Pie3D::Pie3DSlice');
- exit(1);
- }
- $p[] = array();
- // Setup pre-calculated values
- $rsa = $sa/180*M_PI; // to Rad
- $rea = $ea/180*M_PI; // to Rad
- $sinsa = sin($rsa);
- $cossa = cos($rsa);
- $sinea = sin($rea);
- $cosea = cos($rea);
- // p[] is the points for the overall slice and
- // pt[] is the points for the top pie
- // Angular step when approximating the arc with a polygon train.
- $step = 0.05;
- if( $sa >= 270 ) {
- if( $ea > 360 || ($ea > 0 && $ea <= 90) ) {
- if( $ea > 0 && $ea <= 90 ) {
- // Adjust angle to simplify conditions in loops
- $rea += 2*M_PI;
- }
- $p = array($xc,$yc,$xc,$yc+$z,
- $xc+$w*$cossa,$z+$yc-$h*$sinsa);
- $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
- for( $a=$rsa; $a < 2*M_PI; $a += $step ) {
- $tca = cos($a);
- $tsa = sin($a);
- $p[] = $xc+$w*$tca;
- $p[] = $z+$yc-$h*$tsa;
- $pt[] = $xc+$w*$tca;
- $pt[] = $yc-$h*$tsa;
- }
- $pt[] = $xc+$w;
- $pt[] = $yc;
- $p[] = $xc+$w;
- $p[] = $z+$yc;
- $p[] = $xc+$w;
- $p[] = $yc;
- $p[] = $xc;
- $p[] = $yc;
- for( $a=2*M_PI+$step; $a < $rea; $a += $step ) {
- $pt[] = $xc + $w*cos($a);
- $pt[] = $yc - $h*sin($a);
- }
-
- $pt[] = $xc+$w*$cosea;
- $pt[] = $yc-$h*$sinea;
- $pt[] = $xc;
- $pt[] = $yc;
- }
- else {
- $p = array($xc,$yc,$xc,$yc+$z,
- $xc+$w*$cossa,$z+$yc-$h*$sinsa);
- $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
-
- $rea = $rea == 0.0 ? 2*M_PI : $rea;
- for( $a=$rsa; $a < $rea; $a += $step ) {
- $tca = cos($a);
- $tsa = sin($a);
- $p[] = $xc+$w*$tca;
- $p[] = $z+$yc-$h*$tsa;
- $pt[] = $xc+$w*$tca;
- $pt[] = $yc-$h*$tsa;
- }
- $pt[] = $xc+$w*$cosea;
- $pt[] = $yc-$h*$sinea;
- $pt[] = $xc;
- $pt[] = $yc;
-
- $p[] = $xc+$w*$cosea;
- $p[] = $z+$yc-$h*$sinea;
- $p[] = $xc+$w*$cosea;
- $p[] = $yc-$h*$sinea;
- $p[] = $xc;
- $p[] = $yc;
- }
- }
- elseif( $sa >= 180 ) {
- $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
- $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
-
- for( $a=$rea; $a>$rsa; $a -= $step ) {
- $tca = cos($a);
- $tsa = sin($a);
- $p[] = $xc+$w*$tca;
- $p[] = $z+$yc-$h*$tsa;
- $pt[] = $xc+$w*$tca;
- $pt[] = $yc-$h*$tsa;
- }
- $pt[] = $xc+$w*$cossa;
- $pt[] = $yc-$h*$sinsa;
- $pt[] = $xc;
- $pt[] = $yc;
-
- $p[] = $xc+$w*$cossa;
- $p[] = $z+$yc-$h*$sinsa;
- $p[] = $xc+$w*$cossa;
- $p[] = $yc-$h*$sinsa;
- $p[] = $xc;
- $p[] = $yc;
-
- }
- elseif( $sa >= 90 ) {
- if( $ea > 180 ) {
- $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
- $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
- for( $a=$rea; $a > M_PI; $a -= $step ) {
- $tca = cos($a);
- $tsa = sin($a);
- $p[] = $xc+$w*$tca;
- $p[] = $z + $yc - $h*$tsa;
- $pt[] = $xc+$w*$tca;
- $pt[] = $yc-$h*$tsa;
- }
- $p[] = $xc-$w;
- $p[] = $z+$yc;
- $p[] = $xc-$w;
- $p[] = $yc;
- $p[] = $xc;
- $p[] = $yc;
- $pt[] = $xc-$w;
- $pt[] = $z+$yc;
- $pt[] = $xc-$w;
- $pt[] = $yc;
- for( $a=M_PI-$step; $a > $rsa; $a -= $step ) {
- $pt[] = $xc + $w*cos($a);
- $pt[] = $yc - $h*sin($a);
- }
- $pt[] = $xc+$w*$cossa;
- $pt[] = $yc-$h*$sinsa;
- $pt[] = $xc;
- $pt[] = $yc;
- }
- else { // $sa >= 90 && $ea <= 180
- $p = array($xc,$yc,$xc,$yc+$z,
- $xc+$w*$cosea,$z+$yc-$h*$sinea,
- $xc+$w*$cosea,$yc-$h*$sinea,
- $xc,$yc);
- $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
- for( $a=$rea; $a>$rsa; $a -= $step ) {
- $pt[] = $xc + $w*cos($a);
- $pt[] = $yc - $h*sin($a);
- }
- $pt[] = $xc+$w*$cossa;
- $pt[] = $yc-$h*$sinsa;
- $pt[] = $xc;
- $pt[] = $yc;
- }
- }
- else { // sa > 0 && ea < 90
- $p = array($xc,$yc,$xc,$yc+$z,
- $xc+$w*$cossa,$z+$yc-$h*$sinsa,
- $xc+$w*$cossa,$yc-$h*$sinsa,
- $xc,$yc);
- $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
- for( $a=$rsa; $a < $rea; $a += $step ) {
- $pt[] = $xc + $w*cos($a);
- $pt[] = $yc - $h*sin($a);
- }
- $pt[] = $xc+$w*$cosea;
- $pt[] = $yc-$h*$sinea;
- $pt[] = $xc;
- $pt[] = $yc;
- }
-
- $img->PushColor($fillcolor.":".$shadow);
- $img->FilledPolygon($p);
- $img->PopColor();
- $img->PushColor($fillcolor);
- $img->FilledPolygon($pt);
- $img->PopColor();
- }
-
- // Draw a 3D Pie
- function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z,
- $shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) {
- //---------------------------------------------------------------------------
- // As usual the algorithm get more complicated than I originally
- // envisioned. I believe that this is as simple as it is possible
- // to do it with the features I want. It's a good exercise to start
- // thinking on how to do this to convince your self that all this
- // is really needed for the general case.
- //
- // The algorithm two draw 3D pies without "real 3D" is done in
- // two steps.
- // First imagine the pie cut in half through a thought line between
- // 12'a clock and 6'a clock. It now easy to imagine that we can plot
- // the individual slices for each half by starting with the topmost
- // pie slice and continue down to 6'a clock.
- //
- // In the algortithm this is done in three principal steps
- // Step 1. Do the knife cut to ensure by splitting slices that extends
- // over the cut line. This is done by splitting the original slices into
- // upto 3 subslices.
- // Step 2. Find the top slice for each half
- // Step 3. Draw the slices from top to bottom
- //
- // The thing that slightly complicates this scheme with all the
- // angle comparisons below is that we can have an arbitrary start
- // angle so we must take into account the different equivalence classes.
- // For the same reason we must walk through the angle array in a
- // modulo fashion.
- //
- // Limitations of algorithm:
- // * A small exploded slice which crosses the 270 degree point
- // will get slightly nagged close to the center due to the fact that
- // we print the slices in Z-order and that the slice left part
- // get printed first and might get slightly nagged by a larger
- // slice on the right side just before the right part of the small
- // slice. Not a major problem though.
- //---------------------------------------------------------------------------
-
- // Determine the height of the ellippse which gives an
- // indication of the inclination angle
- $h = ($angle/90.0)*$d;
- $sum = 0;
- for($i=0; $i<count($data); ++$i ) {
- $sum += $data[$i];
- }
-
- // Special optimization
- if( $sum==0 ) return;
- // Setup the start
- $accsum = 0;
- $a = $startangle;
- $a = $this->NormAngle($a);
- //
- // Step 1 . Split all slices that crosses 90 or 270
- //
- $idx=0;
- $adjexplode=array();
- $numcolors = count($colors);
- for($i=0; $i<count($data); ++$i, ++$idx ) {
- $da = $data[$i]/$sum * 360;
- if( empty($this->explode_radius[$i]) )
- $this->explode_radius[$i]=0;
- $expscale=1;
- if( $aaoption == 1 )
- $expscale=2;
- $la = $a + $da/2;
- $explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale,
- $yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale );
- $adjexplode[$idx] = $explode;
- $labeldata[$i] = array($la,$explode[0],$explode[1]);
- $originalangles[$i] = array($a,$a+$da);
- $ne = $this->NormAngle($a+$da);
- if( $da <= 180 ) {
- // If the slice size is <= 90 it can at maximum cut across
- // one boundary (either 90 or 270) where it needs to be split
- $split=-1; // no split
- if( ($da<=90 && ($a <= 90 && $ne > 90)) ||
- (($da <= 180 && $da >90) && (($a < 90 || $a >= 270) && $ne > 90)) ) {
- $split = 90;
- }
- elseif( ($da<=90 && ($a <= 270 && $ne > 270)) ||
- (($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) {
- $split = 270;
- }
- if( $split > 0 ) { // split in two
- $angles[$idx] = array($a,$split);
- $adjcolors[$idx] = $colors[$i % $numcolors];
- $adjexplode[$idx] = $explode;
- $angles[++$idx] = array($split,$ne);
- $adjcolors[$idx] = $colors[$i % $numcolors];
- $adjexplode[$idx] = $explode;
- }
- else { // no split
- $angles[$idx] = array($a,$ne);
- $adjcolors[$idx] = $colors[$i % $numcolors];
- $adjexplode[$idx] = $explode;
- }
- }
- else {
- // da>180
- // Slice may, depending on position, cross one or two
- // bonudaries
- if( $a < 90 )
- $split = 90;
- elseif( $a <= 270 )
- $split = 270;
- else
- $split = 90;
- $angles[$idx] = array($a,$split);
- $adjcolors[$idx] = $colors[$i % $numcolors];
- $adjexplode[$idx] = $explode;
- //if( $a+$da > 360-$split ) {
- // For slices larger than 270 degrees we might cross
- // another boundary as well. This means that we must
- // split the slice further. The comparison gets a little
- // bit complicated since we must take into accound that
- // a pie might have a startangle >0 and hence a slice might
- // wrap around the 0 angle.
- // Three cases:
- // a) Slice starts before 90 and hence gets a split=90, but
- // we must also check if we need to split at 270
- // b) Slice starts after 90 but before 270 and slices
- // crosses 90 (after a wrap around of 0)
- // c) If start is > 270 (hence the firstr split is at 90)
- // and the slice is so large that it goes all the way
- // around 270.
- if( ($a < 90 && ($a+$da > 270)) ||
- ($a > 90 && $a<=270 && ($a+$da>360+90) ) ||
- ($a > 270 && $this->NormAngle($a+$da)>270) ) {
- $angles[++$idx] = array($split,360-$split);
- $adjcolors[$idx] = $colors[$i % $numcolors];
- $adjexplode[$idx] = $explode;
- $angles[++$idx] = array(360-$split,$ne);
- $adjcolors[$idx] = $colors[$i % $numcolors];
- $adjexplode[$idx] = $explode;
- }
- else {
- // Just a simple split to the previous decided
- // angle.
- $angles[++$idx] = array($split,$ne);
- $adjcolors[$idx] = $colors[$i % $numcolors];
- $adjexplode[$idx] = $explode;
- }
- }
- $a += $da;
- $a = $this->NormAngle($a);
- }
- // Total number of slices
- $n = count($angles);
- for($i=0; $i<$n; ++$i) {
- list($dbgs,$dbge) = $angles[$i];
- }
- //
- // Step 2. Find start index (first pie that starts in upper left quadrant)
- //
- $minval = $angles[0][0];
- $min = 0;
- for( $i=0; $i<$n; ++$i ) {
- if( $angles[$i][0] < $minval ) {
- $minval = $angles[$i][0];
- $min = $i;
- }
- }
- $j = $min;
- $cnt = 0;
- while( $angles[$j][1] <= 90 ) {
- $j++;
- if( $j>=$n) {
- $j=0;
- }
- if( $cnt > $n ) {
- JpGraphError::Raise("Pie3D Internal error (#1). Trying to wrap twice when looking for start index");
- }
- ++$cnt;
- }
- $start = $j;
- //
- // Step 3. Print slices in z-order
- //
- $cnt = 0;
-
- // First stroke all the slices between 90 and 270 (left half circle)
- // counterclockwise
-
- while( $angles[$j][0] < 270 && $aaoption !== 2 ) {
- list($x,$y) = $adjexplode[$j];
- $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
- $z,$adjcolors[$j],$shadow);
-
- $last = array($x,$y,$j);
- $j++;
- if( $j >= $n ) $j=0;
- if( $cnt > $n ) {
- JpGraphError::Raise("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
- }
- ++$cnt;
- }
-
- $slice_left = $n-$cnt;
- $j=$start-1;
- if($j<0) $j=$n-1;
- $cnt = 0;
-
- // The stroke all slices from 90 to -90 (right half circle)
- // clockwise
- while( $cnt < $slice_left && $aaoption !== 2 ) {
- list($x,$y) = $adjexplode[$j];
- $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
- $z,$adjcolors[$j],$shadow);
- $j--;
- if( $cnt > $n ) {
- JpGraphError::Raise("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
- }
- if($j<0) $j=$n-1;
- $cnt++;
- }
-
- // Now do a special thing. Stroke the last slice on the left
- // halfcircle one more time. This is needed in the case where
- // the slice close to 270 have been exploded. In that case the
- // part of the slice close to the center of the pie might be
- // slightly nagged.
- if( $aaoption !== 2 )
- $this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0],
- $angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow);
- if( $aaoption !== 1 ) {
- // Now print possible labels and add csim
- $img->SetFont($this->value->ff,$this->value->fs);
- $margin = $img->GetFontHeight()/2;
- for($i=0; $i < count($data); ++$i ) {
- $la = $labeldata[$i][0];
- $x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin);
- $y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin);
- if( $la > 180 && $la < 360 ) $y += $z;
- if( $this->labeltype == 0 )
- if( $sum > 0 )
- $l = 100*$data[$i]/$sum;
- else
- $l = 0;
- else
- $l = $data[$i];
- if( isset($this->labels[$i]) && is_string($this->labels[$i]) )
- $l=sprintf($this->labels[$i],$l);
- $this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z);
-
- $this->AddSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z,
- $originalangles[$i][0],$originalangles[$i][1]);
- }
- }
- //
- // Finally add potential lines in pie
- //
- if( $edgecolor=="" || $aaoption !== 0 ) return;
- $accsum = 0;
- $a = $startangle;
- $a = $this->NormAngle($a);
- $a *= M_PI/180.0;
- $idx=0;
- $img->PushColor($edgecolor);
- $img->SetLineWeight($edgeweight);
-
- $fulledge = true;
- for($i=0; $i < count($data) && $fulledge; ++$i ) {
- if( empty($this->explode_radius[$i]) )
- $this->explode_radius[$i]=0;
- if( $this->explode_radius[$i] > 0 ) {
- $fulledge = false;
- }
- }
-
- for($i=0; $i < count($data); ++$i, ++$idx ) {
- $da = $data[$i]/$sum * 2*M_PI;
- $this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor,
- $this->explode_radius[$i],$fulledge);
- $a += $da;
- }
- $img->PopColor();
- }
- function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) {
- $step = 0.02;
- if( $exploderadius > 0 ) {
- $la = ($sa+$ea)/2;
- $xc += $exploderadius*cos($la);
- $yc -= $exploderadius*sin($la) * ($h/$w) ;
-
- }
- $p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa));
- for($a=$sa; $a < $ea; $a += $step ) {
- $p[] = $xc + $w*cos($a);
- $p[] = $yc - $h*sin($a);
- }
- $p[] = $xc+$w*cos($ea);
- $p[] = $yc-$h*sin($ea);
- $p[] = $xc;
- $p[] = $yc;
- $img->SetColor($edgecolor);
- $img->Polygon($p);
- // Unfortunately we can't really draw the full edge around the whole of
- // of the slice if any of the slices are exploded. The reason is that
- // this algorithm is to simply. There are cases where the edges will
- // "overwrite" other slices when they have been exploded.
- // Doing the full, proper 3D hidden lines stiff is actually quite
- // tricky. So for exploded pies we only draw the top edge. Not perfect
- // but the "real" solution is much more complicated.
- if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) {
- if($sa < M_PI && $ea > M_PI)
- $sa = M_PI;
-
- if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) )
- $ea = 2*M_PI;
- if( $sa >= M_PI && $ea <= 2*M_PI ) {
- $p = array($xc + $w*cos($sa),$yc - $h*sin($sa),
- $xc + $w*cos($sa),$z + $yc - $h*sin($sa));
-
- for($a=$sa+$step; $a < $ea; $a += $step ) {
- $p[] = $xc + $w*cos($a);
- $p[] = $z + $yc - $h*sin($a);
- }
- $p[] = $xc + $w*cos($ea);
- $p[] = $z + $yc - $h*sin($ea);
- $p[] = $xc + $w*cos($ea);
- $p[] = $yc - $h*sin($ea);
- $img->SetColor($edgecolor);
- $img->Polygon($p);
- }
- }
- }
- function Stroke($img,$aaoption=0) {
- // If user hasn't set the colors use the theme array
- if( $this->setslicecolors==null ) {
- $colors = array_keys($img->rgb->rgb_table);
- sort($colors);
- $idx_a=$this->themearr[$this->theme];
- $ca = array();
- $n = count($idx_a);
- for($i=0; $i < $n; ++$i)
- $ca[$i] = $colors[$idx_a[$i]];
- }
- else {
- $ca = $this->setslicecolors;
- }
- if( $this->posx <= 1 && $this->posx > 0 )
- $xc = round($this->posx*$img->width);
- else
- $xc = $this->posx ;
-
- if( $this->posy <= 1 && $this->posy > 0 )
- $yc = round($this->posy*$img->height);
- else
- $yc = $this->posy ;
-
- if( $this->radius <= 1 ) {
- $width = floor($this->radius*min($img->width,$img->height));
- // Make sure that the pie doesn't overflow the image border
- // The 0.9 factor is simply an extra margin to leave some space
- // between the pie an the border of the image.
- $width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9));
- }
- else {
- $width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ;
- }
- // Add a sanity check for width
- if( $width < 1 ) {
- JpGraphError::Raise("Width for 3D Pie is 0. Specify a size > 0");
- exit();
- }
- // Establish a thickness. By default the thickness is a fifth of the
- // pie slice width (=pie radius) but since the perspective depends
- // on the inclination angle we use some heuristics to make the edge
- // slightly thicker the less the angle.
-
- // Has user specified an absolute thickness? In that case use
- // that instead
- if( $this->iThickness ) {
- $thick = $this->iThickness;
- $thick *= ($aaoption === 1 ? 2 : 1 );
- }
- else
- $thick = $width/12;
- $a = $this->angle;
- if( $a <= 30 ) $thick *= 1.6;
- elseif( $a <= 40 ) $thick *= 1.4;
- elseif( $a <= 50 ) $thick *= 1.2;
- elseif( $a <= 60 ) $thick *= 1.0;
- elseif( $a <= 70 ) $thick *= 0.8;
- elseif( $a <= 80 ) $thick *= 0.7;
- else $thick *= 0.6;
- $thick = floor($thick);
- if( $this->explode_all )
- for($i=0;$i<count($this->data);++$i)
- $this->explode_radius[$i]=$this->explode_r;
- $this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle,
- $thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight);
- // Adjust title position
- if( $aaoption != 1 ) {
- $this->title->Pos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin, "center","bottom");
- $this->title->Stroke($img);
- }
- }
- //---------------
- // PRIVATE METHODS
- // Position the labels of each slice
- function StrokeLabels($label,$img,$a,$xp,$yp,$z) {
- $this->value->halign="left";
- $this->value->valign="top";
- $this->value->margin=0;
- // Position the axis title.
- // dx, dy is the offset from the top left corner of the bounding box that sorrounds the text
- // that intersects with the extension of the corresponding axis. The code looks a little
- // bit messy but this is really the only way of having a reasonable position of the
- // axis titles.
- $img->SetFont($this->value->ff,$this->value->fs,$this->value->fsize);
- $h=$img->GetTextHeight($label);
- // For numeric values the format of the display value
- // must be taken into account
- if( is_numeric($label) ) {
- if( $label > 0 )
- $w=$img->GetTextWidth(sprintf($this->value->format,$label));
- else
- $w=$img->GetTextWidth(sprintf($this->value->negormat,$label));
- }
- else
- $w=$img->GetTextWidth($label);
- while( $a > 2*M_PI ) $a -= 2*M_PI;
- if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0;
- if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI;
- if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1;
- if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI);
-
- if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI;
- if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI);
- if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1;
- if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI);
- if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0;
-
- $x = round($xp-$dx*$w);
- $y = round($yp-$dy*$h);
- /*
- // Mark anchor point for debugging
- $img->SetColor('red');
- $img->Line($xp-10,$yp,$xp+10,$yp);
- $img->Line($xp,$yp-10,$xp,$yp+10);
- */
- $this->value->Stroke($img,$label,$x,$y);
- }
- } // Class
- /* EOF */
- ?>