Transform.inl
上传用户:fxromeo
上传日期:2010-04-08
资源大小:89k
文件大小:8k
- //Transform.inl 数学变换头文件
- // Ver 1.0.0.0
- // 版权所有(C) 何渝, 2002
- // 最后修改: 2002.5.31.
- #ifndef _TRANSFORM_INL //避免多次编译
- #define _TRANSFORM_INL
- //傅里叶级数逼近
- template <class _Ty>
- void FourierSeriesApproach(valarray<_Ty>& f,
- valarray<_Ty>& a, valarray<_Ty>& b)
- {
- _Ty u0, c1(1), s1(0);
-
- int n = a.size() - 1;
- _Ty t = 6.283185306 / (2.0 * n + 1.0);
- _Ty c = cos(t);
- _Ty s = sin(t);
- t = 2.0 / (2.0 * n + 1.0);
-
- for(int i=0; i<=n; i++)
- {
- _Ty u1(0), u2(0);
- for(int j=2*n; j>=1; j--)
- {
- u0 = f[j] + 2.0 * c1 * u1 - u2;
- u2 = u1;
- u1 = u0;
- }
- a[i] = t * (f[0] + u1 * c1 - u2);
- b[i] = t * u1 * s1;
- u0 = c * c1 - s * s1;
- s1 = c * s1 + s * c1;
- c1 = u0;
- }
- }
- //快速傅里叶变换
- template <class _Ty>
- void FourierTransform(valarray<complex<_Ty> >& pp,
- valarray<complex<_Ty> >& ff, int l, int il)
- {
- int n = pp.size(); //输入的点数,n>0
- int it, k(0);
-
- for(it = 1; ; it *= 2) //求k值, 要满足n等于2的k次方
- {
- if(it == n) break;
- k++;
- if(k > 64) return;
- }
- for(it = 0; it<n; it++)
- {
- int m = it, is(0);
- for(int i=0; i<k; i++)
- {
- int j = m / 2;
- is = 2 * is + (m - 2 * j);
- m = j;
- }
-
- ff[it] = pp[is];
- }
- pp[0] = complex<_Ty>(1.0, 0.0);
-
- _Ty p = 6.283185306 / (1.0 * n);
- pp[1] = complex<_Ty>(cos(p), -sin(p));
-
- if(l != 0)
- pp[1] =complex<_Ty>(pp[1].real(), -pp[1].imag());
-
- for(int i = 2; i < n; i ++)
- {
- p = pp[i-1].real() * pp[1].real();
-
- _Ty q = pp[i-1].imag() * pp[1].imag();
- _Ty s = (pp[i-1].real() + pp[i-1].imag()) * (pp[1].real() + pp[1].imag());
-
- pp[i] = complex<_Ty>(p - q, s - p - q);
- }
- for(it = 0; it<n-1; it = it + 2)
- {
- _Ty vr=ff[it].real();
- _Ty vi=ff[it].imag();
- ff[it] = complex<_Ty>(vr + ff[it+1].real(), vi + ff[it+1].imag());
- ff[it+1] = complex<_Ty>(vr - ff[it+1].real(), vi - ff[it+1].imag());
-
- }
-
- int m=n/2;
- int nv(2);
-
- for(int l0 = k-2; l0>=0; l0--)
- {
- m = m / 2;
- nv = 2 * nv;
- for(it = 0; it <= (m - 1) * nv; it = it + nv)
- for(int j = 0; j < (nv / 2); j ++)
- {
- p = pp[m*j].real() * ff[it+j+nv/2].real();
- _Ty q = pp[m*j].imag() * ff[it+j+nv/2].imag();
- _Ty s = pp[m*j].real() + pp[m*j].imag();
-
- s *= (ff[it+j+nv/2].real() + ff[it+j+nv/2].imag());
- _Ty poddr = p - q;
- _Ty poddi = s - p - q;
-
- ff[it+j+nv/2] = complex<_Ty>(ff[it+j].real() - poddr, ff[it+j].imag() - poddi);
- ff[it+j] = complex<_Ty>(ff[it+j].real() + poddr, ff[it+j].imag() + poddi);
- }
- }
- if(l != 0)
- for(i = 0; i < n; i ++)
- {
- ff[i] = complex<_Ty>(ff[i].real() / (1.0*n),ff[i].imag() / (1.0*n));
- }
- if(il!=0)
- for(i=0; i<n; i++)
- {
- pp[i] = complex<_Ty>(sqrt(ff[i].real() * ff[i].real() + ff[i].imag() * ff[i].imag()),
- pp[i].imag());
- if(Abs(ff[i].real()) < 0.000001 * Abs(ff[i].imag()))
- {
- if((ff[i].imag() * ff[i].real()) > 0) pp[i] = complex<_Ty>(pp[i].real(), 90.0);
- else pp[i] = complex<_Ty>(pp[i].real(), -90.0);
- }
- else
- pp[i] = complex<_Ty>(pp[i].real(), (atan(ff[i].imag() / ff[i].real()) * 360.0 / 6.283185306));
-
- }
- }
- //快速沃什变换
- template <class _Ty>
- void WalshTransform(valarray<_Ty>& p, valarray<_Ty>& x)
- {
- int i, k(0);
- int n = p.size(); //输入序列的长度,n>0
- for(i=1; ; i*=2) //n等于2的k次方
- {
- if(i==n) break;
- k++;
- if(k>64) return;
- }
- int l=n, m(1), it=2, ii=n/2;
- x[0]=1;
- x[ii]=2;
- for(i=1; i<k; i++)
- {
- m=m+m;
- l=l/2;
- it=it+it;
- for(int j=0; j<m; j++) x[j*l+l/2]=it+1-x[j*l];
- }
- for(i=0; i<n; i++)
- {
- ii=x[i]-1;
- x[i]=p[ii];
- }
- l=1;
- for(i=1; i<=k; i++)
- {
- m=n/(2*l)-1;
- for(int j=0; j<=m; j++)
- {
- it=2*l*j;
- for(int is=0; is<l; is++)
- {
- _Ty q=x[it+is]+x[it+is+l];
- x[it+is+l]=x[it+is]-x[it+is+l];
- x[it+is]=q;
- }
- }
- l=2*l;
- }
- }
- //五点三次平滑(曲线拟合)
- template <class _Ty>
- void Smooth5_3(valarray<_Ty>& y, valarray<_Ty>& yy)
- {
- int n = y.size(); //给定等距观测点的个数。要求n>=5
- if(n<5)
- for(int i=0; i<n; i++) yy[i]=y[i];
- else
- {
- yy[0]=69.0*y[0]+4.0*y[1]-6.0*y[2]+4.0*y[3]-y[4];
- yy[0]=yy[0]/70.0;
- yy[1]=2.0*y[0]+27.0*y[1]+12.0*y[2]-8.0*y[3];
- yy[1]=(yy[1]+2.0*y[4])/35.0;
- for (int i=2; i<n-2; i++)
- {
- yy[i]=-3.0*y[i-2]+12.0*y[i-1]+17.0*y[i];
- yy[i]=(yy[i]+12.0*y[i+1]-3.0*y[i+2])/35.0;
- }
- yy[n-2]=2.0*y[n-5]-8.0*y[n-4]+12.0*y[n-3];
- yy[n-2]=(yy[n-2]+27.0*y[n-2]+2.0*y[n-1])/35.0;
- yy[n-1]=-y[n-5]+4.0*y[n-4]-6.0*y[n-3];
- yy[n-1]=(yy[n-1]+4.0*y[n-2]+69.0*y[n-1])/70.0;
- }
- }
- //离散随机线性系统的卡尔曼滤波
- template <class _Ty>
- int SievingKalman(matrix<_Ty>& f, matrix<_Ty>& q, matrix<_Ty>& r,
- matrix<_Ty>& h, matrix<_Ty>& y, matrix<_Ty>& x,
- matrix<_Ty>& p, matrix<_Ty>& g)
- {
- int i,j,kk,ii,jj,js;
- int n = g.GetRowNum(); //动态系统的维数
- int m = g.GetColNum(); //观测系统的维数
- int k = y.GetRowNum(); //观测序列的长度
- matrix<_Ty> e(m,m);
- int l=m;
- if(l<n) l=n;
- matrix<_Ty> a(l,l);
- matrix<_Ty> b(l,l);
- for(i=0; i<n; i++)
- for(j=0; j<n; j++)
- {
- a(i,j)=0.0;
- for(kk=0; kk<n; kk++) a(i,j)=a(i,j)+p(i,kk)*f(j,kk);
- }
- for(i=0; i<n; i++)
- for(j=0; j<n; j++)
- {
- p(i,j)=q(i,j);
- for(kk=0; kk<n; kk++) p(i,j)=p(i,j)+f(i,kk)*a(kk,j);
- }
- for(ii=2; ii<=k; ii++)
- {
- for(i=0; i<n; i++)
- for(j=0; j<m; j++)
- {
- jj=i*l+j;
- a(i,j)=0.0;
- for(kk=0; kk<n; kk++)
- a(i,j)=a(i,j)+p(i,kk)*h(j,kk);
- }
- for(i=0; i<m; i++)
- for(j=0; j<m; j++)
- {
- jj=i*m+j;
- e(i,j)=r(i,j);
- for(kk=0; kk<n; kk++)
- e(i,j)=e(i,j)+h(i,kk)*a(kk,j);
- }
- js=MatrixInversionGS(e); //调用全选主元高斯-约当消去法求逆
- if(js==0)
- {
- cout << "Error! No inversion!" << endl;
- return(js); //求增益矩阵过程中求逆失败
- }
-
- for(i=0; i<n; i++)
- for(j=0; j<m; j++)
- {
- jj=i*m+j;
- g(i,j)=0.0;
- for(kk=0; kk<m; kk++)
- g(i,j)=g(i,j)+a(i,kk)*e(j,kk);
- }
- for(i=0; i<n; i++)
- {
- jj=(ii-1)*n+i;
- x(ii-1,i)=0.0;
- for(j=0; j<n; j++)
- x(ii-1,i)=x(ii-1,i)+f(i,j)*x(ii-2,j);
- }
- for(i=0; i<m; i++)
- {
- jj=i*l;
- b(i,0)=y(ii-1,i);
- for(j=0; j<n; j++)
- b(i,0)=b(i,0)-h(i,j)*x(ii-1,j);
- }
- for(i=0; i<n; i++)
- {
- jj=(ii-1)*n+i;
- for(j=0; j<m; j++)
- x(ii-1,i)=x(ii-1,i)+g(i,j)*b(j,0);
- }
- if(ii<k)
- {
- for(i=0; i<n; i++)
- for(j=0; j<n; j++)
- {
- jj=i*l+j;
- a(i,j)=0.0;
- for(kk=0; kk<m; kk++)
- a(i,j)=a(i,j)-g(i,kk)*h(kk,j);
- if(i==j) a(i,j)=1.0+a(i,j);
- }
- for(i=0; i<n; i++)
- for(j=0; j<n; j++)
- {
- jj=i*l+j;
- b(i,j)=0.0;
- for(kk=0; kk<n; kk++)
- b(i,j)=b(i,j)+a(i,kk)*p(kk,j);
- }
- for(i=0; i<n; i++)
- for(j=0; j<n; j++)
- {
- jj=i*l+j;
- a(i,j)=0.0;
- for(kk=0; kk<n; kk++)
- a(i,j)=a(i,j)+b(i,kk)*f(j,kk);
- }
- for(i=0; i<n; i++)
- for(j=0; j<n; j++)
- {
- jj=i*n+j;
- p(i,j)=q(i,j);
- for(kk=0; kk<n; kk++)
- p(i,j)=p(i,j)+f(i,kk)*a(j,kk);
- }
- }
- }
- return(js);
- }
- //a-b-r滤波
- template <class _Ty>
- void SievingABR(valarray<_Ty>& x, _Ty t, _Ty a, _Ty b,
- _Ty r, valarray<_Ty>& y)
- {
- _Ty aa(0), vv(0), ss(0);
- int n = x.size(); //量测数据的点数
-
- for(int i=0; i<n; i++)
- {
- _Ty s1=ss+t*vv+t*t*aa/2.0;
- _Ty v1=vv+t*aa;
- _Ty a1=aa;
- ss=s1+a*(x[i]-s1);
- y[i]=ss;
- vv=v1+b*(x[i]-s1);
- aa=a1+2.0*r*(x[i]-s1)/(t*t);
- }
- }
- #endif // _TRANSFORM_INL