log1p.c
上传用户:nvosite88
上传日期:2007-01-17
资源大小:4983k
文件大小:6k
- /* log1p.c - math routines */
- /* Copyright 1992 Wind River Systems, Inc. */
- /*
- modification history
- --------------------
- 01b,30jul92,kdl marked routine NOMANUAL.
- 01a,08jul92,smb documentation.
- */
- /*
- * DESCRIPTION
- *
- * This file includes a support routine (log1p()) which is used by
- * other portions of the UCB ANSI C library.
- *
- *
- * Copyright (c) 1985 Regents of the University of California.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms are permitted
- * provided that the above copyright notice and this paragraph are
- * duplicated in all such forms and that any documentation,
- * advertising materials, and other materials related to such
- * distribution and use acknowledge that the software was developed
- * by the University of California, Berkeley. The name of the
- * University may not be used to endorse or promote products derived
- * from this software without specific prior written permission.
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
- * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
- *
- * All recipients should regard themselves as participants in an ongoing
- * research project and hence should feel obligated to report their
- * experiences (good or bad) with these elementary function codes, using
- * the sendbug(8) program, to the authors.
- *
- * #ifndef lint
- * static char sccsid[] = "@(#)log1p.c 5.3 (Berkeley) 6/30/88";
- * #endif * not lint *
- *
- * SEE ALSO: American National Standard X3.159-1989
- *
- * NOMANUAL
- *
- */
- #include "vxWorks.h"
- #include "math.h"
- #if defined(vax)||defined(tahoe) /* VAX D format */
- #include <errno.h>
- #ifdef vax
- #define _0x(A,B) 0x/**/A/**/B
- #else /* vax */
- #define _0x(A,B) 0x/**/B/**/A
- #endif /* vax */
- /* static double */
- /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
- /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */
- /* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */
- static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
- static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
- static long sqrt2x[] = { _0x(04f3,40b5), _0x(de65,33f9)};
- #define ln2hi (*(double*)ln2hix)
- #define ln2lo (*(double*)ln2lox)
- #define sqrt2 (*(double*)sqrt2x)
- #else /* defined(vax)||defined(tahoe) */
- static double
- ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
- ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */
- sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */
- #endif /* defined(vax)||defined(tahoe) */
- /**************************************************************************
- * log1p -
- *
- * LOG1P(x)
- * RETURN THE LOGARITHM OF 1+x
- * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
- * CODED IN C BY K.C. NG, 1/19/85;
- * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
- *
- * Required system supported functions:
- * scalb(x,n)
- * copysign(x,y)
- * logb(x)
- * finite(x)
- *
- * Required kernel function:
- * log__L(z)
- *
- * Method :
- * 1. Argument Reduction: find k and f such that
- * 1+x = 2^k * (1+f),
- * where sqrt(2)/2 < 1+f < sqrt(2) .
- *
- * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- * log(1+f) is computed by
- *
- * log(1+f) = 2s + s*log__L(s*s)
- * where
- * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
- *
- * See log__L() for the values of the coefficients.
- *
- * 3. Finally, log(1+x) = k*ln2 + log(1+f).
- *
- * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
- * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last
- * 20 bits (for VAX D format), or the last 21 bits ( for IEEE
- * double) is 0. This ensures n*ln2hi is exactly representable.
- * 2. In step 1, f may not be representable. A correction term c
- * for f is computed. It follows that the correction term for
- * f - t (the leading term of log(1+f) in step 2) is c-c*x. We
- * add this correction term to n*ln2lo to attenuate the error.
- *
- *
- * Special cases:
- * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
- * log1p(INF) is +INF; log1p(-1) is -INF with signal;
- * only log1p(0)=0 is exact for finite argument.
- *
- * Accuracy:
- * log1p(x) returns the exact log(1+x) nearly rounded. In a test run
- * with 1,536,000 random arguments on a VAX, the maximum observed
- * error was .846 ulps (units in the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following constants.
- * The decimal values may be used, provided that the compiler will convert
- * from decimal to binary accurately enough to produce the hexadecimal values
- * shown.
- *
- * NOMANUAL
- */
- double log1p(x)
- double x;
- {
- static double zero=0.0, negone= -1.0, one=1.0,
- half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */
- double logb(),copysign(),scalb(),log__L(),z,s,t,c;
- int k,finite();
- #if !defined(vax)&&!defined(tahoe)
- if(x!=x) return(x); /* x is NaN */
- #endif /* !defined(vax)&&!defined(tahoe) */
- if(finite(x)) {
- if( x > negone ) {
- /* argument reduction */
- if(copysign(x,one)<small) return(x);
- k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
- if(z+t >= sqrt2 )
- { k += 1 ; z *= half; t *= half; }
- t += negone; x = z + t;
- c = (t-x)+z ; /* correction term for x */
- /* compute log(1+x) */
- s = x/(2+x); t = x*x*half;
- c += (k*ln2lo-c*x);
- z = c+s*(t+log__L(s*s));
- x += (z - t) ;
- return(k*ln2hi+x);
- }
- /* end of if (x > negone) */
- else {
- #if defined(vax)||defined(tahoe)
- extern double infnan();
- if ( x == negone )
- return (infnan(-ERANGE)); /* -INF */
- else
- return (infnan(EDOM)); /* NaN */
- #else /* defined(vax)||defined(tahoe) */
- /* x = -1, return -INF with signal */
- if ( x == negone ) return( negone/zero );
- /* negative argument for log, return NaN with signal */
- else return ( zero / zero );
- #endif /* defined(vax)||defined(tahoe) */
- }
- }
- /* end of if (finite(x)) */
- /* log(-INF) is NaN */
- else if(x<0)
- return(zero/zero);
- /* log(+INF) is INF */
- else return(x);
- }