crypt.c
上传用户:nvosite88
上传日期:2007-01-17
资源大小:4983k
文件大小:29k
- /* crypt.c - crytographic routines */
- /* Copyright 1995 Wind River Systems, Inc. */
- #include "copyright_wrs.h"
- /*
- * Copyright (c) 1989 The Regents of the University of California.
- * All rights reserved.
- *
- * This code is derived from software contributed to Berkeley by
- * Tom Truscott.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- * must display the following acknowledgement:
- * This product includes software developed by the University of
- * California, Berkeley and its contributors.
- * 4. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
- /*
- modification history
- --------------------
- 01d,21jun95,dzb added cryptRtnInit() to install crypt().
- 01c,13jun95,dzb cleaned up i960 compiler warning.
- 01b,16jan95,dab new version.
- 01a,21dec94,dab VxWorks port - first WRS version.
- +dzb added: path for ppp header files, WRS copyright.
- */
- #include "vxWorks.h"
- /*
- * UNIX password, and DES, encryption.
- * By Tom Truscott, trt@rti.rti.org,
- * from algorithms by Robert W. Baldwin and James Gillogly.
- *
- * References:
- * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
- * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
- *
- * "Password Security: A Case History," R. Morris and Ken Thompson,
- * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
- *
- * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
- * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
- */
- /* ===== Configuration ==================== */
- /*
- * define "MUST_ALIGN" if your compiler cannot load/store
- * long integers at arbitrary (e.g. odd) memory locations.
- * (Either that or never pass unaligned addresses to des_cipher!)
- */
- #if !defined(vax)
- #define MUST_ALIGN
- #endif
- #ifdef CHAR_BITS
- #if CHAR_BITS != 8
- #error C_block structure assumes 8 bit characters
- #endif
- #endif
- /*
- * define "B64" to be the declaration for a 64 bit integer.
- * XXX this feature is currently unused, see "endian" comment below.
- */
- #if defined(cray)
- #define B64 long
- #endif
- #if defined(convex)
- #define B64 long long
- #endif
- /*
- * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
- * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
- * little effect on crypt().
- */
- #if defined(notdef)
- #define LARGEDATA
- #endif
- /* compile with "-DSTATIC= " when profiling */
- #ifndef STATIC
- #define STATIC static
- #endif
- STATIC void init_des();
- STATIC void init_perm();
- STATIC void permute();
- STATIC int des_setkey();
- STATIC int des_cipher();
- #ifdef DEBUG
- STATIC void prtab();
- #endif
- /* ==================================== */
- /*
- * Cipher-block representation (Bob Baldwin):
- *
- * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
- * representation is to store one bit per byte in an array of bytes. Bit N of
- * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
- * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
- * first byte, 9..16 in the second, and so on. The DES spec apparently has
- * bit 1 in the MSB of the first byte, but that is particularly noxious so we
- * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
- * the MSB of the first byte. Specifically, the 64-bit input data and key are
- * converted to LSB format, and the output 64-bit block is converted back into
- * MSB format.
- *
- * DES operates internally on groups of 32 bits which are expanded to 48 bits
- * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
- * the computation, the expansion is applied only once, the expanded
- * representation is maintained during the encryption, and a compression
- * permutation is applied only at the end. To speed up the S-box lookups,
- * the 48 bits are maintained as eight 6 bit groups, one per byte, which
- * directly feed the eight S-boxes. Within each byte, the 6 bits are the
- * most significant ones. The low two bits of each byte are zero. (Thus,
- * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
- * first byte in the eight byte representation, bit 2 of the 48 bit value is
- * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
- * used, in which the output is the 64 bit result of an S-box lookup which
- * has been permuted by P and expanded by E, and is ready for use in the next
- * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
- * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
- * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
- * "salt" are also converted to this 8*(6+2) format. The SPE table size is
- * 8*64*8 = 4K bytes.
- *
- * To speed up bit-parallel operations (such as XOR), the 8 byte
- * representation is "union"ed with 32 bit values "i0" and "i1", and, on
- * machines which support it, a 64 bit value "b64". This data structure,
- * "C_block", has two problems. First, alignment restrictions must be
- * honored. Second, the byte-order (e.g. little-endian or big-endian) of
- * the architecture becomes visible.
- *
- * The byte-order problem is unfortunate, since on the one hand it is good
- * to have a machine-independent C_block representation (bits 1..8 in the
- * first byte, etc.), and on the other hand it is good for the LSB of the
- * first byte to be the LSB of i0. We cannot have both these things, so we
- * currently use the "little-endian" representation and avoid any multi-byte
- * operations that depend on byte order. This largely precludes use of the
- * 64-bit datatype since the relative order of i0 and i1 are unknown. It
- * also inhibits grouping the SPE table to look up 12 bits at a time. (The
- * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
- * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
- * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
- * requires a 128 kilobyte table, so perhaps this is not a big loss.
- *
- * Permutation representation (Jim Gillogly):
- *
- * A transformation is defined by its effect on each of the 8 bytes of the
- * 64-bit input. For each byte we give a 64-bit output that has the bits in
- * the input distributed appropriately. The transformation is then the OR
- * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
- * each transformation. Unless LARGEDATA is defined, however, a more compact
- * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
- * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
- * is slower but tolerable, particularly for password encryption in which
- * the SPE transformation is iterated many times. The small tables total 9K
- * bytes, the large tables total 72K bytes.
- *
- * The transformations used are:
- * IE3264: MSB->LSB conversion, initial permutation, and expansion.
- * This is done by collecting the 32 even-numbered bits and applying
- * a 32->64 bit transformation, and then collecting the 32 odd-numbered
- * bits and applying the same transformation. Since there are only
- * 32 input bits, the IE3264 transformation table is half the size of
- * the usual table.
- * CF6464: Compression, final permutation, and LSB->MSB conversion.
- * This is done by two trivial 48->32 bit compressions to obtain
- * a 64-bit block (the bit numbering is given in the "CIFP" table)
- * followed by a 64->64 bit "cleanup" transformation. (It would
- * be possible to group the bits in the 64-bit block so that 2
- * identical 32->32 bit transformations could be used instead,
- * saving a factor of 4 in space and possibly 2 in time, but
- * byte-ordering and other complications rear their ugly head.
- * Similar opportunities/problems arise in the key schedule
- * transforms.)
- * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
- * This admittedly baroque 64->64 bit transformation is used to
- * produce the first code (in 8*(6+2) format) of the key schedule.
- * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
- * It would be possible to define 15 more transformations, each
- * with a different rotation, to generate the entire key schedule.
- * To save space, however, we instead permute each code into the
- * next by using a transformation that "undoes" the PC2 permutation,
- * rotates the code, and then applies PC2. Unfortunately, PC2
- * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
- * invertible. We get around that problem by using a modified PC2
- * which retains the 8 otherwise-lost bits in the unused low-order
- * bits of each byte. The low-order bits are cleared when the
- * codes are stored into the key schedule.
- * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
- * This is faster than applying PC2ROT[0] twice,
- *
- * The Bell Labs "salt" (Bob Baldwin):
- *
- * The salting is a simple permutation applied to the 48-bit result of E.
- * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
- * i+24 of the result are swapped. The salt is thus a 24 bit number, with
- * 16777216 possible values. (The original salt was 12 bits and could not
- * swap bits 13..24 with 36..48.)
- *
- * It is possible, but ugly, to warp the SPE table to account for the salt
- * permutation. Fortunately, the conditional bit swapping requires only
- * about four machine instructions and can be done on-the-fly with about an
- * 8% performance penalty.
- */
- typedef union {
- unsigned char b[8];
- struct {
- int i0;
- int i1;
- } b32;
- #if defined(B64)
- B64 b64;
- #endif
- } C_block;
- /*
- * Convert twenty-four-bit long in host-order
- * to six bits (and 2 low-order zeroes) per char little-endian format.
- */
- #define TO_SIX_BIT(rslt, src) {
- C_block cvt;
- cvt.b[0] = src; src >>= 6;
- cvt.b[1] = src; src >>= 6;
- cvt.b[2] = src; src >>= 6;
- cvt.b[3] = src;
- rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;
- }
- /*
- * These macros may someday permit efficient use of 64-bit integers.
- */
- #define ZERO(d,d0,d1) d0 = 0, d1 = 0
- #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
- #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
- #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
- #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
- #define DCL_BLOCK(d,d0,d1) int d0, d1
- #if defined(LARGEDATA)
- /* Waste memory like crazy. Also, do permutations in line */
- #define LGCHUNKBITS 3
- #define CHUNKBITS (1<<LGCHUNKBITS)
- #define PERM6464(d,d0,d1,cpp,p)
- LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);
- OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);
- OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);
- OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
- OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);
- OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);
- OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);
- OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
- #define PERM3264(d,d0,d1,cpp,p)
- LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);
- OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);
- OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);
- OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
- #else
- /* "small data" */
- #define LGCHUNKBITS 2
- #define CHUNKBITS (1<<LGCHUNKBITS)
- #define PERM6464(d,d0,d1,cpp,p)
- { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
- #define PERM3264(d,d0,d1,cpp,p)
- { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
- STATIC
- void
- permute(cp, out, p, chars_in)
- unsigned char *cp;
- C_block *out;
- register C_block *p;
- int chars_in;
- {
- register DCL_BLOCK(D,D0,D1);
- register C_block *tp;
- register int t;
- ZERO(D,D0,D1);
- do {
- t = *cp++;
- tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
- tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
- } while (--chars_in > 0);
- STORE(D,D0,D1,*out);
- }
- #endif /* LARGEDATA */
- /* ===== (mostly) Standard DES Tables ==================== */
- static unsigned char IP[] = { /* initial permutation */
- 58, 50, 42, 34, 26, 18, 10, 2,
- 60, 52, 44, 36, 28, 20, 12, 4,
- 62, 54, 46, 38, 30, 22, 14, 6,
- 64, 56, 48, 40, 32, 24, 16, 8,
- 57, 49, 41, 33, 25, 17, 9, 1,
- 59, 51, 43, 35, 27, 19, 11, 3,
- 61, 53, 45, 37, 29, 21, 13, 5,
- 63, 55, 47, 39, 31, 23, 15, 7,
- };
- /* The final permutation is the inverse of IP - no table is necessary */
- static unsigned char ExpandTr[] = { /* expansion operation */
- 32, 1, 2, 3, 4, 5,
- 4, 5, 6, 7, 8, 9,
- 8, 9, 10, 11, 12, 13,
- 12, 13, 14, 15, 16, 17,
- 16, 17, 18, 19, 20, 21,
- 20, 21, 22, 23, 24, 25,
- 24, 25, 26, 27, 28, 29,
- 28, 29, 30, 31, 32, 1,
- };
- static unsigned char PC1[] = { /* permuted choice table 1 */
- 57, 49, 41, 33, 25, 17, 9,
- 1, 58, 50, 42, 34, 26, 18,
- 10, 2, 59, 51, 43, 35, 27,
- 19, 11, 3, 60, 52, 44, 36,
- 63, 55, 47, 39, 31, 23, 15,
- 7, 62, 54, 46, 38, 30, 22,
- 14, 6, 61, 53, 45, 37, 29,
- 21, 13, 5, 28, 20, 12, 4,
- };
- static unsigned char Rotates[] = { /* PC1 rotation schedule */
- 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
- };
- /* note: each "row" of PC2 is left-padded with bits that make it invertible */
- static unsigned char PC2[] = { /* permuted choice table 2 */
- 9, 18, 14, 17, 11, 24, 1, 5,
- 22, 25, 3, 28, 15, 6, 21, 10,
- 35, 38, 23, 19, 12, 4, 26, 8,
- 43, 54, 16, 7, 27, 20, 13, 2,
- 0, 0, 41, 52, 31, 37, 47, 55,
- 0, 0, 30, 40, 51, 45, 33, 48,
- 0, 0, 44, 49, 39, 56, 34, 53,
- 0, 0, 46, 42, 50, 36, 29, 32,
- };
- static unsigned char S[8][64] = { /* 48->32 bit substitution tables */
- /* S[1] */
- {14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
- 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
- 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
- 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13},
- /* S[2] */
- {15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
- 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
- 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
- 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9},
- /* S[3] */
- {10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
- 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
- 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
- 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12},
- /* S[4] */
- {7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
- 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
- 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
- 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14},
- /* S[5] */
- {2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
- 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
- 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
- 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3},
- /* S[6] */
- {12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
- 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
- 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
- 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13},
- /* S[7] */
- {4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
- 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
- 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
- 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12},
- /* S[8] */
- {13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
- 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
- 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
- 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}
- };
- static unsigned char P32Tr[] = { /* 32-bit permutation function */
- 16, 7, 20, 21,
- 29, 12, 28, 17,
- 1, 15, 23, 26,
- 5, 18, 31, 10,
- 2, 8, 24, 14,
- 32, 27, 3, 9,
- 19, 13, 30, 6,
- 22, 11, 4, 25,
- };
- static unsigned char CIFP[] = { /* compressed/interleaved permutation */
- 1, 2, 3, 4, 17, 18, 19, 20,
- 5, 6, 7, 8, 21, 22, 23, 24,
- 9, 10, 11, 12, 25, 26, 27, 28,
- 13, 14, 15, 16, 29, 30, 31, 32,
- 33, 34, 35, 36, 49, 50, 51, 52,
- 37, 38, 39, 40, 53, 54, 55, 56,
- 41, 42, 43, 44, 57, 58, 59, 60,
- 45, 46, 47, 48, 61, 62, 63, 64,
- };
- static unsigned char itoa64[] = /* 0..63 => ascii-64 */
- "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
- /* ===== Tables that are initialized at run time ==================== */
- static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
- /* Initial key schedule permutation */
- static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
- /* Subsequent key schedule rotation permutations */
- static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
- /* Initial permutation/expansion table */
- static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
- /* Table that combines the S, P, and E operations. */
- static int SPE[2][8][64];
- /* compressed/interleaved => final permutation table */
- static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
- /* ==================================== */
- static C_block constdatablock; /* encryption constant */
- static char cryptresult[1+4+4+11+1]; /* encrypted result */
- /*
- * Return a pointer to static data consisting of the "setting"
- * followed by an encryption produced by the "key" and "setting".
- */
- char *
- crypt(key, setting)
- register const char *key;
- register const char *setting;
- {
- register char *encp;
- register int i;
- register int t;
- int salt;
- int num_iter, salt_size;
- C_block keyblock, rsltblock;
- for (i = 0; i < 8; i++) {
- if ((t = 2*(unsigned char)(*key)) != 0)
- key++;
- keyblock.b[i] = t;
- }
- if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
- return (NULL);
- encp = &cryptresult[0];
- switch (*setting) {
- default:
- num_iter = 25;
- salt_size = 2;
- }
- salt = 0;
- for (i = salt_size; --i >= 0; ) {
- if ((t = (unsigned char)setting[i]) == ' ')
- t = '.';
- encp[i] = t;
- salt = (salt<<6) | a64toi[t];
- }
- encp += salt_size;
- if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
- salt, num_iter))
- return (NULL);
- /*
- * Encode the 64 cipher bits as 11 ascii characters.
- */
- i = ((int)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
- rsltblock.b[2];
- encp[3] = itoa64[i&0x3f]; i >>= 6;
- encp[2] = itoa64[i&0x3f]; i >>= 6;
- encp[1] = itoa64[i&0x3f]; i >>= 6;
- encp[0] = itoa64[i]; encp += 4;
- i = ((int)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
- rsltblock.b[5];
- encp[3] = itoa64[i&0x3f]; i >>= 6;
- encp[2] = itoa64[i&0x3f]; i >>= 6;
- encp[1] = itoa64[i&0x3f]; i >>= 6;
- encp[0] = itoa64[i]; encp += 4;
- i = ((int)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
- encp[2] = itoa64[i&0x3f]; i >>= 6;
- encp[1] = itoa64[i&0x3f]; i >>= 6;
- encp[0] = itoa64[i];
- encp[3] = 0;
- return (cryptresult);
- }
- /*
- * The Key Schedule, filled in by des_setkey() or setkey().
- */
- #define KS_SIZE 16
- static C_block KS[KS_SIZE];
- /*
- * Set up the key schedule from the key.
- */
- STATIC int des_setkey(key)
- register const char *key;
- {
- register DCL_BLOCK(K, K0, K1);
- register C_block *ptabp;
- register int i;
- static int des_ready = 0;
- if (!des_ready) {
- init_des();
- des_ready = 1;
- }
- PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
- key = (char *)&KS[0];
- STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
- for (i = 1; i < 16; i++) {
- key += sizeof(C_block);
- STORE(K,K0,K1,*(C_block *)key);
- ptabp = (C_block *)PC2ROT[Rotates[i]-1];
- PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
- STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
- }
- return (0);
- }
- /*
- * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
- * iterations of DES, using the the given 24-bit salt and the pre-computed key
- * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
- *
- * NOTE: the performance of this routine is critically dependent on your
- * compiler and machine architecture.
- */
- STATIC int des_cipher(in, out, salt, num_iter)
- const char *in;
- char *out;
- long salt;
- int num_iter;
- {
- /* variables that we want in registers, most important first */
- #if defined(pdp11)
- register int j;
- #endif
- register int L0, L1, R0, R1, k;
- register C_block *kp;
- register int ks_inc, loop_count;
- C_block B;
- L0 = salt;
- TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
- #if defined(vax) || defined(pdp11)
- salt = ~salt; /* "x &~ y" is faster than "x & y". */
- #define SALT (~salt)
- #else
- #define SALT salt
- #endif
- #if defined(MUST_ALIGN)
- B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
- B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
- LOAD(L,L0,L1,B);
- #else
- LOAD(L,L0,L1,*(C_block *)in);
- #endif
- LOADREG(R,R0,R1,L,L0,L1);
- L0 &= 0x55555555L;
- L1 &= 0x55555555L;
- L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
- R0 &= 0xaaaaaaaaL;
- R1 = (R1 >> 1) & 0x55555555L;
- L1 = R0 | R1; /* L1 is the odd-numbered input bits */
- STORE(L,L0,L1,B);
- PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
- PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
- if (num_iter >= 0)
- { /* encryption */
- kp = &KS[0];
- ks_inc = sizeof(*kp);
- }
- else
- { /* decryption */
- num_iter = -num_iter;
- kp = &KS[KS_SIZE-1];
- ks_inc = -(long)sizeof(*kp);
- }
- while (--num_iter >= 0) {
- loop_count = 8;
- do {
- #define SPTAB(t, i)
- (*(int*)((unsigned char *)t + i*(sizeof(int)/4)))
- #if defined(gould)
- /* use this if B.b[i] is evaluated just once ... */
- #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
- #else
- #if defined(pdp11)
- /* use this if your "long" int indexing is slow */
- #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
- #else
- /* use this if "k" is allocated to a register ... */
- #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
- #endif
- #endif
- #define CRUNCH(p0, p1, q0, q1)
- k = (q0 ^ q1) & SALT;
- B.b32.i0 = k ^ q0 ^ kp->b32.i0;
- B.b32.i1 = k ^ q1 ^ kp->b32.i1;
- kp = (C_block *)((char *)kp+ks_inc);
-
- DOXOR(p0, p1, 0);
- DOXOR(p0, p1, 1);
- DOXOR(p0, p1, 2);
- DOXOR(p0, p1, 3);
- DOXOR(p0, p1, 4);
- DOXOR(p0, p1, 5);
- DOXOR(p0, p1, 6);
- DOXOR(p0, p1, 7);
- CRUNCH(L0, L1, R0, R1);
- CRUNCH(R0, R1, L0, L1);
- } while (--loop_count != 0);
- kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
- /* swap L and R */
- L0 ^= R0; L1 ^= R1;
- R0 ^= L0; R1 ^= L1;
- L0 ^= R0; L1 ^= R1;
- }
- /* store the encrypted (or decrypted) result */
- L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
- L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
- STORE(L,L0,L1,B);
- PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
- #if defined(MUST_ALIGN)
- STORE(L,L0,L1,B);
- out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
- out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
- #else
- STORE(L,L0,L1,*(C_block *)out);
- #endif
- return (0);
- }
- /*
- * Initialize various tables. This need only be done once. It could even be
- * done at compile time, if the compiler were capable of that sort of thing.
- */
- STATIC
- void
- init_des()
- {
- register int i, j;
- register int k;
- register int tableno;
- static unsigned char perm[64], tmp32[32]; /* "static" for speed */
- /*
- * table that converts chars "./0-9A-Za-z"to integers 0-63.
- */
- for (i = 0; i < 64; i++)
- a64toi[itoa64[i]] = i;
- /*
- * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
- */
- for (i = 0; i < 64; i++)
- perm[i] = 0;
- for (i = 0; i < 64; i++) {
- if ((k = PC2[i]) == 0)
- continue;
- k += Rotates[0]-1;
- if ((k%28) < Rotates[0]) k -= 28;
- k = PC1[k];
- if (k > 0) {
- k--;
- k = (k|07) - (k&07);
- k++;
- }
- perm[i] = k;
- }
- #ifdef DEBUG
- prtab("pc1tab", perm, 8);
- #endif
- init_perm(PC1ROT, perm, 8, 8);
- /*
- * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
- */
- for (j = 0; j < 2; j++) {
- unsigned char pc2inv[64];
- for (i = 0; i < 64; i++)
- perm[i] = pc2inv[i] = 0;
- for (i = 0; i < 64; i++) {
- if ((k = PC2[i]) == 0)
- continue;
- pc2inv[k-1] = i+1;
- }
- for (i = 0; i < 64; i++) {
- if ((k = PC2[i]) == 0)
- continue;
- k += j;
- if ((k%28) <= j) k -= 28;
- perm[i] = pc2inv[k];
- }
- #ifdef DEBUG
- prtab("pc2tab", perm, 8);
- #endif
- init_perm(PC2ROT[j], perm, 8, 8);
- }
- /*
- * Bit reverse, then initial permutation, then expansion.
- */
- for (i = 0; i < 8; i++) {
- for (j = 0; j < 8; j++) {
- k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
- if (k > 32)
- k -= 32;
- else if (k > 0)
- k--;
- if (k > 0) {
- k--;
- k = (k|07) - (k&07);
- k++;
- }
- perm[i*8+j] = k;
- }
- }
- #ifdef DEBUG
- prtab("ietab", perm, 8);
- #endif
- init_perm(IE3264, perm, 4, 8);
- /*
- * Compression, then final permutation, then bit reverse.
- */
- for (i = 0; i < 64; i++) {
- k = IP[CIFP[i]-1];
- if (k > 0) {
- k--;
- k = (k|07) - (k&07);
- k++;
- }
- perm[k-1] = i+1;
- }
- #ifdef DEBUG
- prtab("cftab", perm, 8);
- #endif
- init_perm(CF6464, perm, 8, 8);
- /*
- * SPE table
- */
- for (i = 0; i < 48; i++)
- perm[i] = P32Tr[ExpandTr[i]-1];
- for (tableno = 0; tableno < 8; tableno++) {
- for (j = 0; j < 64; j++) {
- k = (((j >> 0) &01) << 5)|
- (((j >> 1) &01) << 3)|
- (((j >> 2) &01) << 2)|
- (((j >> 3) &01) << 1)|
- (((j >> 4) &01) << 0)|
- (((j >> 5) &01) << 4);
- k = S[tableno][k];
- k = (((k >> 3)&01) << 0)|
- (((k >> 2)&01) << 1)|
- (((k >> 1)&01) << 2)|
- (((k >> 0)&01) << 3);
- for (i = 0; i < 32; i++)
- tmp32[i] = 0;
- for (i = 0; i < 4; i++)
- tmp32[4 * tableno + i] = (k >> i) & 01;
- k = 0;
- for (i = 24; --i >= 0; )
- k = (k<<1) | tmp32[perm[i]-1];
- TO_SIX_BIT(SPE[0][tableno][j], k);
- k = 0;
- for (i = 24; --i >= 0; )
- k = (k<<1) | tmp32[perm[i+24]-1];
- TO_SIX_BIT(SPE[1][tableno][j], k);
- }
- }
- }
- /*
- * Initialize "perm" to represent transformation "p", which rearranges
- * (perhaps with expansion and/or contraction) one packed array of bits
- * (of size "chars_in" characters) into another array (of size "chars_out"
- * characters).
- *
- * "perm" must be all-zeroes on entry to this routine.
- */
- STATIC
- void
- init_perm(perm, p, chars_in, chars_out)
- C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
- unsigned char p[64];
- int chars_in, chars_out;
- {
- register int i, j, k, l;
- for (k = 0; k < chars_out*8; k++) { /* each output bit position */
- l = p[k] - 1; /* where this bit comes from */
- if (l < 0)
- continue; /* output bit is always 0 */
- i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
- l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
- for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
- if ((j & l) != 0)
- perm[i][j].b[k>>3] |= 1<<(k&07);
- }
- }
- }
- /*
- * "setkey" routine (for backwards compatibility)
- */
- int setkey(key)
- register const char *key;
- {
- register int i, j, k;
- C_block keyblock;
- for (i = 0; i < 8; i++) {
- k = 0;
- for (j = 0; j < 8; j++) {
- k <<= 1;
- k |= (unsigned char)*key++;
- }
- keyblock.b[i] = k;
- }
- return (des_setkey((char *)keyblock.b));
- }
- /*
- * "encrypt" routine (for backwards compatibility)
- */
- int encrypt(block, flag)
- register char *block;
- int flag;
- {
- register int i, j, k;
- C_block cblock;
- for (i = 0; i < 8; i++) {
- k = 0;
- for (j = 0; j < 8; j++) {
- k <<= 1;
- k |= (unsigned char)*block++;
- }
- cblock.b[i] = k;
- }
- if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
- return (1);
- for (i = 7; i >= 0; i--) {
- k = cblock.b[i];
- for (j = 7; j >= 0; j--) {
- *--block = k&01;
- k >>= 1;
- }
- }
- return (0);
- }
- #ifdef DEBUG
- STATIC
- void
- prtab(s, t, num_rows)
- char *s;
- unsigned char *t;
- int num_rows;
- {
- register int i, j;
- (void)printf("%s:n", s);
- for (i = 0; i < num_rows; i++) {
- for (j = 0; j < 8; j++) {
- (void)printf("%3d", t[i*8+j]);
- }
- (void)printf("n");
- }
- (void)printf("n");
- }
- #endif
- /*******************************************************************************
- *
- * cryptRtnInit - install cryptographic authentication routine into hook
- *
- * RETURNS: N/A
- *
- * NOMANUAL
- */
- void cryptRtnInit
- (
- FUNCPTR *cryptRtnHook
- )
- {
- *cryptRtnHook = (FUNCPTR) crypt;
- }