coiflift.m
上传用户:haiyisale
上传日期:2013-01-09
资源大小:3246k
文件大小:3k
源码类别:

波变换

开发平台:

Matlab

  1. function LS = coiflift(wname)
  2. %COIFLIFT Coiflets lifting schemes.
  3. %   LS = COIFLIFT(WNAME) returns the lifting scheme specified
  4. %   by WNAME. The valid values for WNAME are:
  5. %      'coif1', 'coif2'
  6. %
  7. %   A lifting scheme LS is a N x 3 cell array such that:
  8. %     for k = 1:N-1
  9. %       | LS{k,1} is the lifting "type" 'p' (primal) or 'd' (dual).
  10. %       | LS{k,2} is the corresponding lifting filter.
  11. %       | LS{k,3} is the higher degree of the Laurent polynomial
  12. %       |         corresponding to the previous filter LS{k,2}.
  13. %     LS{N,1} is the primal normalization.
  14. %     LS{N,2} is the dual normalization.
  15. %     LS{N,3} is not used.
  16. %
  17. %   For more information about lifting schemes type: lsinfo.
  18. %   M. Misiti, Y. Misiti, G. Oppenheim, J.M. Poggi 30-Jun-2003.
  19. %   Last Revision: 30-Jun-2003.
  20. %   Copyright 1995-2004 The MathWorks, Inc.
  21. %   $Revision: 1.1.6.2 $ $Date: 2004/03/15 22:39:55 $ 
  22. Num = wstr2num(wname(5:end));
  23. switch Num
  24.     case 1
  25. %--------------------  Num LS = 7  ----------------------% 
  26. % Pow MAX = 0 - diff POW = 0
  27. %---+----+----+----+----+---%
  28. LS = {...                                                                 
  29. 'd'                     [  4.6457513110481772]                      [0]   
  30. 'p'                     [ -0.1171567416519999 -0.2057189138840000]  [1]   
  31. 'd'                     [  7.4686269664352070 -0.6076252184992341]  [-1]  
  32. 'p'                     [  0.0728756555332089]                      [2]   
  33. [ -1.7186236496830642]  [ -0.5818609561112537]                      []    
  34. };                                                                        
  35.     case 2
  36. %--------------------  Num LS = 1  ----------------------% 
  37. % Pow MAX = 0 - diff POW = 0
  38. %---+----+----+----+----+---%
  39. LS = {...                                                                 
  40. 'd'                     [  2.5303036209828274]                       [0]   
  41. 'p'                     [  0.2401406244344829  -0.3418203790296641]  [1]   
  42. 'd'                     [ -3.1631993897610227 -15.2683787372529950]  [-1]  
  43. 'p'                     [ -0.0057171329709620   0.0646171619180252]  [3]   
  44. 'd'                     [ 63.9510482479880200 -13.5911725693075900]  [-3]  
  45. 'p'                     [ -0.0005087264425263   0.0018667030862775]  [5]   
  46. 'd'                     [  3.7930423341992774]                       [-5]  
  47. [  9.2878701738310099]  [  0.1076673102965570]                       []    
  48. };
  49.         
  50.     otherwise
  51.         error('Invalid wavelet number.')
  52.         
  53. end