apmf2ls.m
上传用户:haiyisale
上传日期:2013-01-09
资源大小:3246k
文件大小:1k
- function LS = apmf2ls(APMF)
- %APMF2LS Analyzis polyphase matrix factorization to lifting scheme.
- % LS = APMF2LS(APMF) returns the lifting scheme LS corresponding
- % to the analyzis polyphase matrix factorization APMF.
- % APMF is a cell array of Laurent Matrices.
- %
- % If APMFC is a cell array of factorizations, LSC = APMF2LS(APMFC)
- % returns a cell array of lifting schemes. For each k, LSC{k}
- % is associated to the factorization APMFC{k}.
- %
- % See also LS2APMF.
- % M. Misiti, Y. Misiti, G. Oppenheim, J.M. Poggi 11-Jun-2003.
- % Last Revision: 27-Jun-2003.
- % Copyright 1995-2004 The MathWorks, Inc.
- % $Revision: 1.1.6.3 $ $Date: 2004/04/13 00:39:32 $
- if isempty(APMF) , LS = []; return; end
- cellMODE = ~isa(APMF{1},'laurmat');
- if cellMODE
- nbFACT = length(APMF);
- LS = cell(1,nbFACT);
- for k = 1:nbFACT
- LS{k} = ONE_apmf2ls(APMF{k});
- end
- else
- LS = ONE_apmf2ls(APMF);
- end
- %---+---+---+---+---+---+---+---+---+---+---+---+---%
- function LS = ONE_apmf2ls(APMF)
- nbLIFT = length(APMF);
- LS = cell(nbLIFT,3);
- for jj = nbLIFT:-1:2
- k = 1+nbLIFT-jj;
- M = APMF{jj};
- P = M{1,2};
- if P~=0
- LS{k,1} = 'p';
- else
- P = M{2,1};
- LS{k,1} = 'd';
- end
- [LS{k,2},LS{k,3}] = get(P,'coefs','maxDEG');
- end
- M = APMF{1};
- P = M{1,1};
- C = get(P,'coefs');
- LS(nbLIFT,1:3) = {C,1/C,[]};
- %---+---+---+---+---+---+---+---+---+---+---+---+---%