l_stan.s
上传用户:nvosite88
上传日期:2007-01-17
资源大小:4983k
文件大小:14k
- /* l_stan.s - Motorola 68040 FP tangent routines (LIB) */
- /* Copyright 1991-1993 Wind River Systems, Inc. */
- .data
- .globl _copyright_wind_river
- .long _copyright_wind_river
- /*
- modification history
- --------------------
- 01f,21jul93,kdl added .text (SPR #2372).
- 01e,23aug92,jcf changed bxxx to jxx.
- 01d,26may92,rrr the tree shuffle
- 01c,10jan92,kdl general cleanup.
- 01b,17dec91,kdl put in changes from Motorola v3.3 (from FPSP 2.1):
- reduce argument by one step before general reduction
- loop.
- 01a,15aug91,kdl original version, from Motorola FPSP v2.0.
- */
- /*
- DESCRIPTION
- stansa 3.2 12/18/90
- The entry point __l_stan computes the tangent of
- an input argument;
- __l_stand does the same except for denormalized input.
- Input: Double-extended number X in location pointed to
- by address register a0.
- Output: The value tan(X) returned in floating-point register Fp0.
- Accuracy and Monotonicity: The returned result is within 3 ulp in
- 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
- result is subsequently rounded to double precision. The
- result is provably monotonic in double precision.
- Speed: The program sTAN takes approximately 170 cycles for
- input argument X such that |X| < 15Pi, which is the the usual
- situation.
- Algorithm:
- 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
- 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
- k = N mod 2, so in particular, k = 0 or 1.
- 3. If k is odd, go to 5.
- 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a
- rational function U/V where
- U = r + r*s*(P1 + s*(P2 + s*P3)), and
- V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r.
- Exit.
- 5. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a
- rational function U/V where
- U = r + r*s*(P1 + s*(P2 + s*P3)), and
- V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,
- -Cot(r) = -V/U. Exit.
- 6. If |X| > 1, go to 8.
- 7. (|X|<2**(-40)) Tan(X) = X. Exit.
- 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
- Copyright (C) Motorola, Inc. 1990
- All Rights Reserved
- THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
- The copyright notice above does not evidence any
- actual or intended publication of such source code.
- STAN idnt 2,1 Motorola 040 Floating Point Software Package
- section 8
- NOMANUAL
- */
- #include "fpsp040L.h"
- BOUNDS1: .long 0x3FD78000,0x4004BC7E
- TWOBYPI: .long 0x3FE45F30,0x6DC9C883
- TANQ4: .long 0x3EA0B759,0xF50F8688
- TANP3: .long 0xBEF2BAA5,0xA8924F04
- TANQ3: .long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
- TANP2: .long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
- TANQ2: .long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
- TANP1: .long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
- TANQ1: .long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
- INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
- TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
- TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
- |--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
- |--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
- |--MOST 69 BITS LONG.
- .globl __l_PITBL
- __l_PITBL:
- .long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
- .long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
- .long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
- .long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000
- .long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
- .long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
- .long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
- .long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
- .long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
- .long 0xC0040000,0x90836524,0x88034B96,0x20B00000
- .long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
- .long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
- .long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
- .long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
- .long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
- .long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
- .long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
- .long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
- .long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
- .long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
- .long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
- .long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
- .long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
- .long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
- .long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
- .long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
- .long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
- .long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
- .long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
- .long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
- .long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
- .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
- .long 0x00000000,0x00000000,0x00000000,0x00000000
- .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
- .long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
- .long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
- .long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
- .long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
- .long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
- .long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
- .long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
- .long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
- .long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
- .long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000
- .long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
- .long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
- .long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
- .long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
- .long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
- .long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
- .long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
- .long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
- .long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
- .long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
- .long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000
- .long 0x40040000,0x90836524,0x88034B96,0xA0B00000
- .long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
- .long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
- .long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
- .long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
- .long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
- .long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000
- .long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
- .long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
- .long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
- #define INARG FP_SCR4
- #define TWOTO63 L_SCR1
- #define ENDFLAG L_SCR2
- #define N L_SCR3
- | xref __l_t_frcinx
- | xref __l_t_extdnrm
- .text
- .globl __l_stand
- __l_stand:
- |--TAN(X) = X FOR DENORMALIZED X
- jra __l_t_extdnrm
- .globl __l_stan
- __l_stan:
- fmovex a0@,fp0 |...lOAD INPUT
- movel A0@,d0
- movew A0@(4),d0
- andil #0x7FFFFFFF,d0
- cmpil #0x3FD78000,d0 |...|X| >= 2**(-40)?
- jge TANOK1
- jra TANSM
- TANOK1:
- cmpil #0x4004BC7E,d0 |...|X| < 15 PI?
- jlt TANMAIN
- jra REDUCEX
- TANMAIN:
- |--THIS IS THE USUAL CASE, |X| <= 15 PI.
- |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
- fmovex fp0,fp1
- fmuld TWOBYPI,fp1 |...X*2/PI
- |--HIDE THE NEXT TWO INSTRUCTIONS
- lea __l_PITBL+0x200,a1 |...TABLE OF N*PI/2, N = -32,...,32
- |--FP1 IS NOW READY
- fmovel fp1,d0 |...CONVERT TO INTEGER
- asll #4,d0
- addal d0,a1 |...ADDRESS N*PIBY2 IN Y1, Y2
- fsubx a1@+,fp0 |...X-Y1
- |--HIDE THE NEXT ONE
- fsubs a1@,fp0 |...FP0 IS R = (X-Y1)-Y2
- rorl #5,d0
- andil #0x80000000,d0 |...D0 WAS ODD IFF d0 < 0
- TANCONT:
- cmpil #0,d0
- jlt NODD
- fmovex fp0,fp1
- fmulx fp1,fp1 |...S = R*R
- fmoved TANQ4,fp3
- fmoved TANP3,fp2
- fmulx fp1,fp3 |...SQ4
- fmulx fp1,fp2 |...SP3
- faddd TANQ3,fp3 |...Q3+SQ4
- faddx TANP2,fp2 |...P2+SP3
- fmulx fp1,fp3 |...S(Q3+SQ4)
- fmulx fp1,fp2 |...S(P2+SP3)
- faddx TANQ2,fp3 |...Q2+S(Q3+SQ4)
- faddx TANP1,fp2 |...P1+S(P2+SP3)
- fmulx fp1,fp3 |...S(Q2+S(Q3+SQ4))
- fmulx fp1,fp2 |...S(P1+S(P2+SP3))
- faddx TANQ1,fp3 |...Q1+S(Q2+S(Q3+SQ4))
- fmulx fp0,fp2 |...RS(P1+S(P2+SP3))
- fmulx fp3,fp1 |...S(Q1+S(Q2+S(Q3+SQ4)))
- faddx fp2,fp0 |...R+RS(P1+S(P2+SP3))
- .long 0xf23c44a2,0x3f800000 /* fadds &0x3F800000,fp1 */
- fmovel d1,fpcr | restore users exceptions
- fdivx fp1,fp0 | last inst - possible exception set
- jra __l_t_frcinx
- NODD:
- fmovex fp0,fp1
- fmulx fp0,fp0 |...S = R*R
- fmoved TANQ4,fp3
- fmoved TANP3,fp2
- fmulx fp0,fp3 |...SQ4
- fmulx fp0,fp2 |...SP3
- faddd TANQ3,fp3 |...Q3+SQ4
- faddx TANP2,fp2 |...P2+SP3
- fmulx fp0,fp3 |...S(Q3+SQ4)
- fmulx fp0,fp2 |...S(P2+SP3)
- faddx TANQ2,fp3 |...Q2+S(Q3+SQ4)
- faddx TANP1,fp2 |...P1+S(P2+SP3)
- fmulx fp0,fp3 |...S(Q2+S(Q3+SQ4))
- fmulx fp0,fp2 |...S(P1+S(P2+SP3))
- faddx TANQ1,fp3 |...Q1+S(Q2+S(Q3+SQ4))
- fmulx fp1,fp2 |...RS(P1+S(P2+SP3))
- fmulx fp3,fp0 |...S(Q1+S(Q2+S(Q3+SQ4)))
- faddx fp2,fp1 |...R+RS(P1+S(P2+SP3))
- .long 0xf23c4422,0x3f800000 /* fadds &0x3F800000,fp0 */
- fmovex fp1,a7@-
- eoril #0x80000000,a7@
- fmovel d1,fpcr | restore users exceptions
- fdivx a7@+,fp0 | last inst - possible exception set
- jra __l_t_frcinx
- TANBORS:
- |--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
- |--IF |X| < 2**(-40), RETURN X OR 1.
- cmpil #0x3FFF8000,d0
- jgt REDUCEX
- TANSM:
- fmovex fp0,a7@-
- fmovel d1,fpcr | restore users exceptions
- fmovex a7@+,fp0 | last inst - posibble exception set
- jra __l_t_frcinx
- REDUCEX:
- |--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
- |--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
- |--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
- fmovemx fp2-fp5,A7@- |...save fp2 through fp5
- movel d2,A7@-
- .long 0xf23c4480,0x00000000 /* fmoves &0x00000000,fp1 */
- |--If compact form of abs(arg) in d0=0x7ffeffff, argument is so large that
- |--there is a danger of unwanted overflow in first LOOP iteration. In this
- |--case, reduce argument by one remainder step to make subsequent reduction
- |--safe.
- cmpil #0x7ffeffff,d0 | is argument dangerously large?
- jne LOOP
- movel #0x7ffe0000,a6@(FP_SCR2) | yes
- | | create 2**16383*PI/2
- movel #0xc90fdaa2,a6@(FP_SCR2+4)
- clrl a6@(FP_SCR2+8)
- ftstx fp0 | test sign of argument
- movel #0x7fdc0000,a6@(FP_SCR3) | create low half of 2**16383*
- | | PI/2 at FP_SCR3
- movel #0x85a308d3,a6@(FP_SCR3+4)
- clrl a6@(FP_SCR3+8)
- fblt red_neg
- orw #0x8000,a6@(FP_SCR2) | positive arg
- orw #0x8000,a6@(FP_SCR3)
- red_neg:
- faddx a6@(FP_SCR2),fp0 | high part of reduction is exact
- fmovex fp0,fp1 | save high result in fp1
- faddx a6@(FP_SCR3),fp0 | low part of reduction
- fsubx fp0,fp1 | determine low component of result
- faddx a6@(FP_SCR3),fp1 | fp0/fp1 are reduced argument.
- |--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
- |--integer quotient will be stored in N
- |--Intermeditate remainder is 66-bit long| (R,r) in (FP0,FP1)
- LOOP:
- fmovex fp0,a6@(INARG) |...+-2**K * F, 1 <= F < 2
- movew a6@(INARG),d0
- movel d0,a1 |...save a copy of d0
- andil #0x00007FFF,d0
- subil #0x00003FFF,d0 |...D0 IS K
- cmpil #28,d0
- jle LASTLOOP
- CONTLOOP:
- subil #27,d0 |...D0 IS L := K-27
- movel #0,a6@(ENDFLAG)
- jra WORK
- LASTLOOP:
- clrl d0 |...D0 IS L := 0
- movel #1,a6@(ENDFLAG)
- WORK:
- |--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
- |--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
- |--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
- |--2**L * (PIby2_1), 2**L * (PIby2_2)
- movel #0x00003FFE,d2 |...BIASED EXPO OF 2/PI
- subl d0,d2 |...BIASED EXPO OF 2**(-L)*(2/PI)
- movel #0xA2F9836E,a6@(FP_SCR1+4)
- movel #0x4E44152A,a6@(FP_SCR1+8)
- movew d2,a6@(FP_SCR1) |...FP_SCR1 is 2**(-L)*(2/PI)
- fmovex fp0,fp2
- fmulx a6@(FP_SCR1),fp2
- |--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
- /* |--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.l FP <--> N */
- |--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
- |--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
- |--US THE DESIRED VALUE IN FLOATING POINT.
- |--HIDE SIX CYCLES OF INSTRUCTION
- movel a1,d2
- swap d2
- andil #0x80000000,d2
- oril #0x5F000000,d2 |...D2 IS SIGN(INARG)*2**63 IN SGL
- movel d2,a6@(TWOTO63)
- movel d0,d2
- addil #0x00003FFF,d2 |...BIASED EXPO OF 2**L * (PI/2)
- |--FP2 IS READY
- fadds a6@(TWOTO63),fp2 |...THE FRACTIONAL PART OF fp1 IS ROUNDED
- |--HIDE 4 CYCLES OF INSTRUCTION| creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
- movew d2,a6@(FP_SCR2)
- clrw a6@(FP_SCR2+2)
- movel #0xC90FDAA2,a6@(FP_SCR2+4)
- clrl a6@(FP_SCR2+8) |...FP_SCR2 is 2**(L) * Piby2_1
- |--FP2 IS READY
- fsubs a6@(TWOTO63),fp2 |...FP2 is N
- addil #0x00003FDD,d0
- movew d0,a6@(FP_SCR3)
- clrw a6@(FP_SCR3+2)
- movel #0x85A308D3,a6@(FP_SCR3+4)
- clrl a6@(FP_SCR3+8) |...FP_SCR3 is 2**(L) * Piby2_2
- movel a6@(ENDFLAG),d0
- |--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
- |--P2 = 2**(L) * Piby2_2
- fmovex fp2,fp4
- fmulx a6@(FP_SCR2),fp4 |...w = N*P1
- fmovex fp2,fp5
- fmulx a6@(FP_SCR3),fp5 |...w = N*P2
- fmovex fp4,fp3
- |--we want P+p = W+w but |p| <= half ulp of P
- |--Then, we need to compute A := R-P and a := r-p
- faddx fp5,fp3 |...FP3 is P
- fsubx fp3,fp4 |...w-P
- fsubx fp3,fp0 |...FP0 is A := R - P
- faddx fp5,fp4 |...FP4 is p = (W-P)+w
- fmovex fp0,fp3 |...FP3 A
- fsubx fp4,fp1 |...FP1 is a := r - p
- |--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
- |--|r| <= half ulp of R.
- faddx fp1,fp0 |...FP0 is R := A+a
- |--No need to calculate r if this is the last loop
- cmpil #0,d0
- jgt RESTORE
- |--Need to calculate r
- fsubx fp0,fp3 |...A-R
- faddx fp3,fp1 |...FP1 is r := (A-R)+a
- jra LOOP
- RESTORE:
- fmovel fp2,a6@(N)
- movel A7@+,d2
- fmovemx A7@+,fp2-fp5
- movel a6@(N),d0
- rorl #1,d0
- jra TANCONT
- | end