l_setox.s
上传用户:nvosite88
上传日期:2007-01-17
资源大小:4983k
文件大小:28k
- /* l_setox.s - Motorola 68040 FP exponential routines (LIB) */
- /* Copyright 1991-1993 Wind River Systems, Inc. */
- .data
- .globl _copyright_wind_river
- .long _copyright_wind_river
- /*
- modification history
- --------------------
- 01f,12nov94,dvs fixed clearcase conversion search/replace errors.
- 01e,21jul93,kdl added .text (SPR #2372).
- 01d,23aug92,jcf changed bxxx to jxx.
- 01c,26may92,rrr the tree shuffle
- 01b,09jan92,kdl added modification history; general cleanup.
- 01a,15aug91,kdl original version, from Motorola FPSP v2.0.
- */
- /*
- DESCRIPTION
- setoxsa 3.1 12/10/90
- The entry point __l_setox computes the exponential of a value.
- __l_setoxd does the same except the input value is a denormalized
- number. __l_setoxm1 computes exp(X)-1, and __l_setoxm1d computes
- exp(X)-1 for denormalized X.
- INPUT
- -----
- Double-extended value in memory location pointed to by address
- register a0.
- OUTPUT
- ------
- exp(X) or exp(X)-1 returned in floating-point register fp0.
- ACCURACY and MONOTONICITY
- -------------------------
- The returned result is within 0.85 ulps in 64 significant bit, i.e.
- within 0.5001 ulp to 53 bits if the result is subsequently rounded
- to double precision. The result is provably monotonic in double
- precision.
- SPEED
- -----
- Two timings are measured, both in the copy-back mode. The
- first one is measured when the function is invoked the first time
- (so the instructions and data are not in cache), and the
- second one is measured when the function is reinvoked at the same
- input argument.
- The program __l_setox takes approximately 210/190 cycles for input
- argument X whose magnitude is less than 16380 log2, which
- is the usual situation. For the less common arguments,
- depending on their values, the program may run faster or slower --
- but no worse than 10 slower even in the extreme cases.
- The program __l_setoxm1 takes approximately ???/??? cycles for input
- argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes
- approximately ???/??? cycles. For the less common arguments,
- depending on their values, the program may run faster or slower --
- but no worse than 10 slower even in the extreme cases.
- ALGORITHM and IMPLEMENTATION NOTES
- ----------------------------------
- __l_setoxd
- ------
- Step 1. Set ans := 1.0
- Step 2. Return ans := ans + sign(X)*2^(-126). Exit.
- Notes: This will always generate one exception -- inexact.
- __l_setox
- -----
- Step 1. Filter out extreme cases of input argument.
- 1.1 If |X| >= 2^(-65), go to Step 1.3.
- 1.2 Go to Step 7.
- 1.3 If |X| < 16380 log(2), go to Step 2.
- 1.4 Go to Step 8.
- Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.
- To avoid the use of floating-point comparisons, a
- compact representation of |X| is used. This format is a
- 32-bit integer, the upper (more significant) 16 bits are
- the sign and biased exponent field of |X|| the lower 16
- bits are the 16 most significant fraction (including the
- explicit bit) bits of |X|. Consequently, the comparisons
- in Steps 1.1 and 1.3 can be performed by integer comparison.
- Note also that the constant 16380 log(2) used in Step 1.3
- is also in the compact form. Thus taking the branch
- to Step 2 guarantees |X| < 16380 log(2). There is no harm
- to have a small number of cases where |X| is less than,
- but close to, 16380 log(2) and the branch to Step 9 is
- taken.
- Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
- 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)
- 2.2 N := round-to-nearest-integer( X * 64/log2 ).
- 2.3 Calculate J = N mod 64| so J = 0,1,2,..., or 63.
- 2.4 Calculate M = (N - J)/64| so N = 64M + J.
- 2.5 Calculate the address of the stored value of 2^(J/64).
- 2.6 Create the value Scale = 2^M.
- Notes: The calculation in 2.2 is really performed by
- Z := X * constant
- N := round-to-nearest-integer(Z)
- where
- constant := single-precision( 64/log 2 ).
- Using a single-precision constant avoids memory access.
- Another effect of using a single-precision "constant" is
- that the calculated value Z is
- Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
- This error has to be considered later in Steps 3 and 4.
- Step 3. Calculate X - N*log2/64.
- 3.1 R := X + N*L1, where L1 := single-precision(-log2/64).
- 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
- Notes: a) The way L1 and L2 are chosen ensures L1+L2 approximate
- the value -log2/64 to 88 bits of accuracy.
- b) N*L1 is exact because N is no longer than 22 bits and
- L1 is no longer than 24 bits.
- c) The calculation X+N*L1 is also exact due to cancellation.
- Thus, R is practically X+N(L1+L2) to full 64 bits.
- d) It is important to estimate how large can |R| be after
- Step 3.2.
- N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
- X*64/log2 (1+eps) = N + f, |f| <= 0.5
- X*64/log2 - N = f - eps*X 64/log2
- X - N*log2/64 = f*log2/64 - eps*X
- Now |X| <= 16446 log2, thus
- |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
- <= 0.57 log2/64.
- This bound will be used in Step 4.
- Step 4. Approximate exp(R)-1 by a polynomial
- p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
- Notes: a) In order to reduce memory access, the coefficients are
- made as "short" as possible: A1 (which is 1/2), A4 and A5
- are single precision| A2 and A3 are double precision.
- b) Even with the restrictions above,
- |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.
- Note that 0.0062 is slightly bigger than 0.57 log2/64.
- c) To fully utilize the pipeline, p is separated into
- two independent pieces of roughly equal complexities
- p = [ R + R*S*(A2 + S*A4) ] +
- [ S*(A1 + S*(A3 + S*A5)) ]
- where S = R*R.
- Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by
- ans := T + ( T*p + t)
- where T and t are the stored values for 2^(J/64).
- Notes: 2^(J/64) is stored as T and t where T+t approximates
- 2^(J/64) to roughly 85 bits| T is in extended precision
- and t is in single precision. Note also that T is rounded
- to 62 bits so that the last two bits of T are zero. The
- reason for such a special form is that T-1, T-2, and T-8
- will all be exact --- a property that will give much
- more accurate computation of the function EXPM1.
- Step 6. Reconstruction of exp(X)
- exp(X) = 2^M * 2^(J/64) * exp(R).
- 6.1 If AdjFlag = 0, go to 6.3
- 6.2 ans := ans * AdjScale
- 6.3 Restore the user fpcr
- 6.4 Return ans := ans * Scale. Exit.
- Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,
- |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will
- neither overflow nor underflow. If AdjFlag = 1, that
- means that
- X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.
- Hence, exp(X) may overflow or underflow or neither.
- When that is the case, AdjScale = 2^(M1) where M1 is
- approximately M. Thus 6.2 will never cause over/underflow.
- Possible exception in 6.4 is overflow or underflow.
- The inexact exception is not generated in 6.4. Although
- one can argue that the inexact flag should always be
- raised, to simulate that exception cost to much than the
- flag is worth in practical uses.
- Step 7. Return 1 + X.
- 7.1 ans := X
- 7.2 Restore user fpcr.
- 7.3 Return ans := 1 + ans. Exit
- Notes: For non-zero X, the inexact exception will always be
- raised by 7.3. That is the only exception raised by 7.3.
- Note also that we use the FMOVEM instruction to move X
- in Step 7.1 to avoid unnecessary trapping. (Although
- the FMOVEM may not seem relevant since X is normalized,
- the precaution will be useful in the library version of
- this code where the separate entry for denormalized inputs
- will be done away with.)
- Step 8. Handle exp(X) where |X| >= 16380log2.
- 8.1 If |X| > 16480 log2, go to Step 9.
- (mimic 2.2 - 2.6)
- 8.2 N := round-to-integer( X * 64/log2 )
- 8.3 Calculate J = N mod 64, J = 0,1,...,63
- 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.
- 8.5 Calculate the address of the stored value 2^(J/64).
- 8.6 Create the values Scale = 2^M, AdjScale = 2^M1.
- 8.7 Go to Step 3.
- Notes: Refer to notes for 2.2 - 2.6.
- Step 9. Handle exp(X), |X| > 16480 log2.
- 9.1 If X < 0, go to 9.3
- 9.2 ans := Huge, go to 9.4
- 9.3 ans := Tiny.
- 9.4 Restore user fpcr.
- 9.5 Return ans := ans * ans. Exit.
- Notes: Exp(X) will surely overflow or underflow, depending on
- X's sign. "Huge" and "Tiny" are respectively large/tiny
- extended-precision numbers whose square over/underflow
- with an inexact result. Thus, 9.5 always raises the
- inexact together with either overflow or underflow.
- __l_setoxm1d
- --------
- Step 1. Set ans := 0
- Step 2. Return ans := X + ans. Exit.
- Notes: This will return X with the appropriate rounding
- precision prescribed by the user fpcr.
- __l_setoxm1
- -------
- Step 1. Check |X|
- 1.1 If |X| >= 1/4, go to Step 1.3.
- 1.2 Go to Step 7.
- 1.3 If |X| < 70 log(2), go to Step 2.
- 1.4 Go to Step 10.
- Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.
- However, it is conceivable |X| can be small very often
- because EXPM1 is intended to evaluate exp(X)-1 accurately
- when |X| is small. For further details on the comparisons,
- see the notes on Step 1 of __l_setox.
- Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
- 2.1 N := round-to-nearest-integer( X * 64/log2 ).
- 2.2 Calculate J = N mod 64| so J = 0,1,2,..., or 63.
- 2.3 Calculate M = (N - J)/64| so N = 64M + J.
- 2.4 Calculate the address of the stored value of 2^(J/64).
- 2.5 Create the values Sc = 2^M and OnebySc := -2^(-M).
- Notes: See the notes on Step 2 of __l_setox.
- Step 3. Calculate X - N*log2/64.
- 3.1 R := X + N*L1, where L1 := single-precision(-log2/64).
- 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
- Notes: Applying the analysis of Step 3 of __l_setox in this case
- shows that |R| <= 0.0055 (note that |X| <= 70 log2 in
- this case).
- Step 4. Approximate exp(R)-1 by a polynomial
- p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))
- Notes: a) In order to reduce memory access, the coefficients are
- made as "short" as possible: A1 (which is 1/2), A5 and A6
- are single precision| A2, A3 and A4 are double precision.
- b) Even with the restriction above,
- |p - (exp(R)-1)| < |R| * 2^(-72.7)
- for all |R| <= 0.0055.
- c) To fully utilize the pipeline, p is separated into
- two independent pieces of roughly equal complexity
- p = [ R*S*(A2 + S*(A4 + S*A6)) ] +
- [ R + S*(A1 + S*(A3 + S*A5)) ]
- where S = R*R.
- Step 5. Compute 2^(J/64)*p by
- p := T*p
- where T and t are the stored values for 2^(J/64).
- Notes: 2^(J/64) is stored as T and t where T+t approximates
- 2^(J/64) to roughly 85 bits| T is in extended precision
- and t is in single precision. Note also that T is rounded
- to 62 bits so that the last two bits of T are zero. The
- reason for such a special form is that T-1, T-2, and T-8
- will all be exact --- a property that will be exploited
- in Step 6 below. The total relative error in p is no
- bigger than 2^(-67.7) compared to the final result.
- Step 6. Reconstruction of exp(X)-1
- exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).
- 6.1 If M <= 63, go to Step 6.3.
- 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6
- 6.3 If M >= -3, go to 6.5.
- 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6
- 6.5 ans := (T + OnebySc) + (p + t).
- 6.6 Restore user fpcr.
- 6.7 Return ans := Sc * ans. Exit.
- Notes: The various arrangements of the expressions give accurate
- evaluations.
- Step 7. exp(X)-1 for |X| < 1/4.
- 7.1 If |X| >= 2^(-65), go to Step 9.
- 7.2 Go to Step 8.
- Step 8. Calculate exp(X)-1, |X| < 2^(-65).
- 8.1 If |X| < 2^(-16312), goto 8.3
- 8.2 Restore fpcr| return ans := X - 2^(-16382). Exit.
- 8.3 X := X * 2^(140).
- 8.4 Restore fpcr| ans := ans - 2^(-16382).
- Return ans := ans*2^(140). Exit
- Notes: The idea is to return "X - tiny" under the user
- precision and rounding modes. To avoid unnecessary
- inefficiency, we stay away from denormalized numbers the
- best we can. For |X| >= 2^(-16312), the straightforward
- 8.2 generates the inexact exception as the case warrants.
- Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial
- p = X + X*X*(B1 + X*(B2 + |... + X*B12))
- Notes: a) In order to reduce memory access, the coefficients are
- made as "short" as possible: B1 (which is 1/2), B9 to B12
- are single precision| B3 to B8 are double precision| and
- B2 is double extended.
- b) Even with the restriction above,
- |p - (exp(X)-1)| < |X| 2^(-70.6)
- for all |X| <= 0.251.
- Note that 0.251 is slightly bigger than 1/4.
- c) To fully preserve accuracy, the polynomial is computed
- as X + ( S*B1 + Q ) where S = X*X and
- Q = X*S*(B2 + X*(B3 + |... + X*B12))
- d) To fully utilize the pipeline, Q is separated into
- two independent pieces of roughly equal complexity
- Q = [ X*S*(B2 + S*(B4 + |... + S*B12)) ] +
- [ S*S*(B3 + S*(B5 + |... + S*B11)) ]
- Step 10. Calculate exp(X)-1 for |X| >= 70 log 2.
- 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical
- purposes. Therefore, go to Step 1 of __l_setox.
- 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.
- ans := -1
- Restore user fpcr
- Return ans := ans + 2^(-126). Exit.
- Notes: 10.2 will always create an inexact and return -1 + tiny
- in the user rounding precision and mode.
- Copyright (C) Motorola, Inc. 1990
- All Rights Reserved
- THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
- The copyright notice above does not evidence any
- actual or intended publication of such source code.
- __l_setox IDNT 2,1 Motorola 040 Floating Point Software Package
- section 8
- NOMANUAL
- */
- #include "fpsp040L.h"
- L2: .long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000
- EXPA3: .long 0x3FA55555,0x55554431
- EXPA2: .long 0x3FC55555,0x55554018
- HUGE: .long 0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000
- TINY: .long 0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000
- EM1A4: .long 0x3F811111,0x11174385
- EM1A3: .long 0x3FA55555,0x55554F5A
- EM1A2: .long 0x3FC55555,0x55555555,0x00000000,0x00000000
- EM1B8: .long 0x3EC71DE3,0xA5774682
- EM1B7: .long 0x3EFA01A0,0x19D7CB68
- EM1B6: .long 0x3F2A01A0,0x1A019DF3
- EM1B5: .long 0x3F56C16C,0x16C170E2
- EM1B4: .long 0x3F811111,0x11111111
- EM1B3: .long 0x3FA55555,0x55555555
- EM1B2: .long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB
- .long 0x00000000
- TWO140: .long 0x48B00000,0x00000000
- TWON140: .long 0x37300000,0x00000000
- EXPTBL:
- .long 0x3FFF0000,0x80000000,0x00000000,0x00000000
- .long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B
- .long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9
- .long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369
- .long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C
- .long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F
- .long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729
- .long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF
- .long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF
- .long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA
- .long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051
- .long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029
- .long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494
- .long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0
- .long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D
- .long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537
- .long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD
- .long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087
- .long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818
- .long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D
- .long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890
- .long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C
- .long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05
- .long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126
- .long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140
- .long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA
- .long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A
- .long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC
- .long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC
- .long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610
- .long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90
- .long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A
- .long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13
- .long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30
- .long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC
- .long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6
- .long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70
- .long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518
- .long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41
- .long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B
- .long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568
- .long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E
- .long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03
- .long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D
- .long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4
- .long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C
- .long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9
- .long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21
- .long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F
- .long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F
- .long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207
- .long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175
- .long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B
- .long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5
- .long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A
- .long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22
- .long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945
- .long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B
- .long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3
- .long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05
- .long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19
- .long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5
- .long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22
- .long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A
- #define ADJFLAG L_SCR2
- #define SCALE FP_SCR1
- #define ADJSCALE FP_SCR2
- #define SC FP_SCR3
- #define ONEBYSC FP_SCR4
- | xref __l_t_frcinx
- | xref __l_t_extdnrm
- | xref __l_t_unfl
- | xref __l_t_ovfl
- .text
- .globl __l_setoxd
- __l_setoxd:
- |--entry point for EXP(X), X is denormalized
- movel a0@,d0
- andil #0x80000000,d0
- oril #0x00800000,d0 |...sign(X)*2^(-126)
- movel d0,a7@-
- /* fmoves &0x3F800000,fp0 */ .long 0xf23c4400,0x3f800000
- fmovel d1,fpcr
- fadds a7@+,fp0
- jra __l_t_frcinx
- .globl __l_setox
- __l_setox:
- /* |--entry point for EXP(X), here X is finite, non-zero, and not NaN's */
- |--Step 1.
- movel a0@,d0 |...load part of input X
- andil #0x7FFF0000,d0 |...biased expo. of X
- cmpil #0x3FBE0000,d0 |...2^(-65)
- jge EXPC1 |...normal case
- jra EXPSM
- EXPC1:
- |--The case |X| >= 2^(-65)
- movew a0@(4),d0 |...expo. and partial sig. of |X|
- cmpil #0x400CB167,d0 |...16380 log2 trunc. 16 bits
- jlt EXPMAIN |...normal case
- jra EXPBIG
- EXPMAIN:
- |--Step 2.
- |--This is the normal branch: 2^(-65) <= |X| < 16380 log2.
- fmovex a0@,fp0 |...load input from a0@
- fmovex fp0,fp1
- /* fmuls &0x42B8AA3B,fp0 */ .long 0xf23c4423,0x42b8aa3b
- fmovemx fp2/fp3,a7@- |...save fp2
- movel #0,a6@(ADJFLAG)
- fmovel fp0,d0 |...N = int( X * 64/log2 )
- lea EXPTBL,a1
- fmovel d0,fp0 |...convert to floating-format
- movel d0,a6@(L_SCR1) |...save N temporarily
- andil #0x3F,d0 |...D0 is J = N mod 64
- lsll #4,d0
- addal d0,a1 |...address of 2^(J/64)
- movel a6@(L_SCR1),d0
- asrl #6,d0 |...D0 is M
- addiw #0x3FFF,d0 |...biased expo. of 2^(M)
- movew L2,a6@(L_SCR1) |...prefetch L2, no need in CB
- EXPCONT1:
- |--Step 3.
- |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
- |--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
- fmovex fp0,fp2
- /* fmuls &0xBC317218,fp0 */ .long 0xf23c4423,0xbc317218
- fmulx L2,fp2 |...N * L2, L1+L2 = -log2/64
- faddx fp1,fp0 |...X + N*L1
- faddx fp2,fp0 |...fp0 is R, reduced arg.
- | MOVE.w #0x3FA5,EXPA3 |...load EXPA3 in cache
- |--Step 4.
- |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
- |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
- |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
- |--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
- fmovex fp0,fp1
- fmulx fp1,fp1 |...fp1 IS S = R*R
- /* fmoves &0x3AB60B70,fp2 */ .long 0xf23c4500,0x3ab60b70
- | MOVE.w #0,a1@(2) |...load 2^(J/64) in cache
- fmulx fp1,fp2 |...fp2 IS S*A5
- fmovex fp1,fp3
- /* fmuls &0x3C088895,fp3 */ .long 0xf23c45a3,0x3c088895
- faddd EXPA3,fp2 |...fp2 IS a3+S*A5
- faddd EXPA2,fp3 |...fp3 IS a2+S*A4
- fmulx fp1,fp2 |...fp2 IS S*(A3+S*A5)
- movew d0,a6@(SCALE) |...SCALE is 2^(M) in extended
- clrw a6@(SCALE+2)
- movel #0x80000000,a6@(SCALE+4)
- clrl a6@(SCALE+8)
- fmulx fp1,fp3 |...fp3 IS S*(A2+S*A4)
- /* fadds &0x3F000000,fp2 */ .long 0xf23c4522,0x3f000000
- fmulx fp0,fp3 |...fp3 IS R*S*(A2+S*A4)
- fmulx fp1,fp2 |...fp2 IS S*(A1+S*(A3+S*A5))
- faddx fp3,fp0 |...fp0 IS R+R*S*(A2+S*A4),
- | |...fp3 released
- fmovex a1@+,fp1 |...fp1 is lead. pt. of 2^(J/64)
- faddx fp2,fp0 |...fp0 is EXP(R) - 1
- | |...fp2 released
- |--Step 5
- |--final reconstruction process
- |--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
- fmulx fp1,fp0 |...2^(J/64)*(Exp(R)-1)
- fmovemx a7@+,fp2/fp3 |...fp2 restored
- fadds a1@,fp0 |...accurate 2^(J/64)
- faddx fp1,fp0 |...2^(J/64) + 2^(J/64)*...
- movel a6@(ADJFLAG),d0
- |--Step 6
- tstl d0
- jeq NORMAL
- ADJUST:
- fmulx a6@(ADJSCALE),fp0
- NORMAL:
- fmovel d1,fpcr |...restore user fpcr
- fmulx a6@(SCALE),fp0 |...multiply 2^(M)
- jra __l_t_frcinx
- EXPSM:
- |--Step 7
- fmovemx a0@,fp0-fp0 |...in case X is denormalized
- fmovel d1,fpcr
- /* fadds &0x3F800000,fp0 */ .long 0xf23c4422,0x3f800000
- jra __l_t_frcinx
- EXPBIG:
- |--Step 8
- cmpil #0x400CB27C,d0 |...16480 log2
- jgt EXP2BIG
- |--Steps 8.2 -- 8.6
- fmovex a0@,fp0 |...load input from a0@
- fmovex fp0,fp1
- /* fmuls &0x42B8AA3B,fp0 */ .long 0xf23c4423,0x42b8aa3b
- fmovemx fp2/fp3,a7@- |...save fp2
- movel #1,a6@(ADJFLAG)
- fmovel fp0,d0 |...N = int( X * 64/log2 )
- lea EXPTBL,a1
- fmovel d0,fp0 |...convert to floating-format
- movel d0,a6@(L_SCR1) |...save N temporarily
- andil #0x3F,d0 |...D0 is J = N mod 64
- lsll #4,d0
- addal d0,a1 |...address of 2^(J/64)
- movel a6@(L_SCR1),d0
- asrl #6,d0 |...D0 is K
- movel d0,a6@(L_SCR1) |...save K temporarily
- asrl #1,d0 |...D0 is M1
- subl d0,a6@(L_SCR1) |...a1 is M
- addiw #0x3FFF,d0 |...biased expo. of 2^(M1)
- movew d0,a6@(ADJSCALE) |...ADJSCALE := 2^(M1)
- clrw a6@(ADJSCALE+2)
- movel #0x80000000,a6@(ADJSCALE+4)
- clrl a6@(ADJSCALE+8)
- movel a6@(L_SCR1),d0 |...D0 is M
- addiw #0x3FFF,d0 |...biased expo. of 2^(M)
- jra EXPCONT1 |...go back to Step 3
- EXP2BIG:
- |--Step 9
- fmovel d1,fpcr
- movel a0@,d0
- bclr #sign_bit,a0@ |...setox always returns positive
- cmpil #0,d0
- jlt __l_t_unfl
- jra __l_t_ovfl
- .globl __l_setoxm1d
- __l_setoxm1d:
- |--entry point for EXPM1(X), here X is denormalized
- |--Step 0.
- jra __l_t_extdnrm
- .globl __l_setoxm1
- __l_setoxm1:
- |--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
- |--Step 1.
- |--Step 1.1
- movel a0@,d0 |...load part of input X
- andil #0x7FFF0000,d0 |...biased expo. of X
- cmpil #0x3FFD0000,d0 |...1/4
- jge EM1CON1 |...|X| >= 1/4
- jra EM1SM
- EM1CON1:
- |--Step 1.3
- |--The case |X| >= 1/4
- movew a0@(4),d0 |...expo. and partial sig. of |X|
- cmpil #0x4004C215,d0 |...70log2 rounded up to 16 bits
- jle EM1MAIN |...1/4 <= |X| <= 70log2
- jra EM1BIG
- EM1MAIN:
- |--Step 2.
- |--This is the case: 1/4 <= |X| <= 70 log2.
- fmovex a0@,fp0 |...load input from a0@
- fmovex fp0,fp1
- /* fmuls &0x42B8AA3B,fp0 */ .long 0xf23c4423,0x42b8aa3b
- fmovemx fp2/fp3,a7@- |...save fp2
- | MOVE.w #0x3F81,EM1A4 |...prefetch in CB mode
- fmovel fp0,d0 |...N = int( X * 64/log2 )
- lea EXPTBL,a1
- fmovel d0,fp0 |...convert to floating-format
- movel d0,a6@(L_SCR1) |...save N temporarily
- andil #0x3F,d0 |...D0 is J = N mod 64
- lsll #4,d0
- addal d0,a1 |...address of 2^(J/64)
- movel a6@(L_SCR1),d0
- asrl #6,d0 |...D0 is M
- movel d0,a6@(L_SCR1) |...save a copy of M
- | MOVE.w #0x3FDC,L2 |...prefetch L2 in CB mode
- |--Step 3.
- |--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
- |--a0 points to 2^(J/64), D0 and a1 both contain M
- fmovex fp0,fp2
- /* fmuls &0xBC317218,fp0 */ .long 0xf23c4423,0xbc317218
- fmulx L2,fp2 |...N * L2, L1+L2 = -log2/64
- faddx fp1,fp0 |...X + N*L1
- faddx fp2,fp0 |...fp0 is R, reduced arg.
- | MOVE.w #0x3FC5,EM1A2 |...load EM1A2 in cache
- addiw #0x3FFF,d0 |...D0 is biased expo. of 2^M
- |--Step 4.
- |--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
- |-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
- |--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
- |--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
- fmovex fp0,fp1
- fmulx fp1,fp1 |...fp1 IS S = R*R
- /* fmoves &0x3950097B,fp2 */ .long 0xf23c4500,0x3950097b
- | MOVE.w #0,a1@(2) |...load 2^(J/64) in cache
- fmulx fp1,fp2 |...fp2 IS S*A6
- fmovex fp1,fp3
- /* fmuls &0x3AB60B6A,fp3 */ .long 0xf23c45a3,0x3ab60b6a
- faddd EM1A4,fp2 |...fp2 IS a4+S*A6
- faddd EM1A3,fp3 |...fp3 IS a3+S*A5
- movew d0,a6@(SC) |...SC is 2^(M) in extended
- clrw a6@(SC+2)
- movel #0x80000000,a6@(SC+4)
- clrl a6@(SC+8)
- fmulx fp1,fp2 |...fp2 IS S*(A4+S*A6)
- movel a6@(L_SCR1),d0 |...D0 is M
- negw d0 |...D0 is -M
- fmulx fp1,fp3 |...fp3 IS S*(A3+S*A5)
- addiw #0x3FFF,d0 |...biased expo. of 2^(-M)
- faddd EM1A2,fp2 |...fp2 IS a2+S*(A4+S*A6)
- /* fadds &0x3F000000,fp3 */ .long 0xf23c45a2,0x3f000000
- fmulx fp1,fp2 |...fp2 IS S*(A2+S*(A4+S*A6))
- oriw #0x8000,d0 |...signed/expo. of -2^(-M)
- movew d0,a6@(ONEBYSC) |...OnebySc is -2^(-M)
- clrw a6@(ONEBYSC+2)
- movel #0x80000000,a6@(ONEBYSC+4)
- clrl a6@(ONEBYSC+8)
- fmulx fp3,fp1 |...fp1 IS S*(A1+S*(A3+S*A5))
- | |...fp3 released
- fmulx fp0,fp2 |...fp2 IS R*S*(A2+S*(A4+S*A6))
- faddx fp1,fp0 |...fp0 IS R+S*(A1+S*(A3+S*A5))
- | |...fp1 released
- faddx fp2,fp0 |...fp0 IS EXP(R)-1
- | |...fp2 released
- fmovemx a7@+,fp2/fp3 |...fp2 restored
- |--Step 5
- |--Compute 2^(J/64)*p
- fmulx a1@,fp0 |...2^(J/64)*(Exp(R)-1)
- |--Step 6
- |--Step 6.1
- movel a6@(L_SCR1),d0 |...retrieve M
- cmpil #63,d0
- jle MLE63
- |--Step 6.2 M >= 64
- fmoves a1@(12),fp1 |...fp1 is t
- faddx a6@(ONEBYSC),fp1 |...fp1 is t+OnebySc
- faddx fp1,fp0 |...p+(t+OnebySc), fp1 released
- faddx a1@,fp0 |...T+(p+(t+OnebySc))
- jra EM1SCALE
- MLE63:
- |--Step 6.3 M <= 63
- cmpil #-3,d0
- jge MGEN3
- MLTN3:
- |--Step 6.4 M <= -4
- fadds a1@(12),fp0 |...p+t
- faddx a1@,fp0 |...T+(p+t)
- faddx a6@(ONEBYSC),fp0 |...OnebySc + (T+(p+t))
- jra EM1SCALE
- MGEN3:
- |--Step 6.5 -3 <= M <= 63
- fmovex a1@+,fp1 |...fp1 is T
- fadds a1@,fp0 |...fp0 is p+t
- faddx a6@(ONEBYSC),fp1 |...fp1 is T+OnebySc
- faddx fp1,fp0 |...(T+OnebySc)+(p+t)
- EM1SCALE:
- |--Step 6.6
- fmovel d1,fpcr
- fmulx a6@(SC),fp0
- jra __l_t_frcinx
- EM1SM:
- |--Step 7 |X| < 1/4.
- cmpil #0x3FBE0000,d0 |...2^(-65)
- jge EM1POLY
- EM1TINY:
- |--Step 8 |X| < 2^(-65)
- cmpil #0x00330000,d0 |...2^(-16312)
- jlt EM12TINY
- |--Step 8.2
- movel #0x80010000,a6@(SC) |...SC is -2^(-16382)
- movel #0x80000000,a6@(SC+4)
- clrl a6@(SC+8)
- fmovex a0@,fp0
- fmovel d1,fpcr
- faddx a6@(SC),fp0
- jra __l_t_frcinx
- EM12TINY:
- |--Step 8.3
- fmovex a0@,fp0
- fmuld TWO140,fp0
- movel #0x80010000,a6@(SC)
- movel #0x80000000,a6@(SC+4)
- clrl a6@(SC+8)
- faddx a6@(SC),fp0
- fmovel d1,fpcr
- fmuld TWON140,fp0
- jra __l_t_frcinx
- EM1POLY:
- |--Step 9 exp(X)-1 by a simple polynomial
- fmovex a0@,fp0 |...fp0 is X
- fmulx fp0,fp0 |...fp0 is S := X*X
- fmovemx fp2/fp3,a7@- |...save fp2
- /* fmoves &0x2F30CAA8,fp1 */ .long 0xf23c4480,0x2f30caa8
- fmulx fp0,fp1 |...fp1 is S*B12
- /* fmoves &0x310F8290,fp2 */ .long 0xf23c4500,0x310f8290
- /* fadds &0x32D73220,fp1 */ .long 0xf23c44a2,0x32d73220
- fmulx fp0,fp2 |...fp2 is S*B11
- fmulx fp0,fp1 |...fp1 is S*(B10 + ...
- /* fadds &0x3493F281,fp2 */ .long 0xf23c4522,0x3493f281
- faddd EM1B8,fp1 |...fp1 is B8+S*...
- fmulx fp0,fp2 |...fp2 is S*(B9+...
- fmulx fp0,fp1 |...fp1 is S*(B8+...
- faddd EM1B7,fp2 |...fp2 is B7+S*...
- faddd EM1B6,fp1 |...fp1 is B6+S*...
- fmulx fp0,fp2 |...fp2 is S*(B7+...
- fmulx fp0,fp1 |...fp1 is S*(B6+...
- faddd EM1B5,fp2 |...fp2 is B5+S*...
- faddd EM1B4,fp1 |...fp1 is B4+S*...
- fmulx fp0,fp2 |...fp2 is S*(B5+...
- fmulx fp0,fp1 |...fp1 is S*(B4+...
- faddd EM1B3,fp2 |...fp2 is B3+S*...
- faddx EM1B2,fp1 |...fp1 is B2+S*...
- fmulx fp0,fp2 |...fp2 is S*(B3+...
- fmulx fp0,fp1 |...fp1 is S*(B2+...
- fmulx fp0,fp2 |...fp2 is S*S*(B3+...)
- fmulx a0@,fp1 |...fp1 is X*S*(B2...
- /* fmuls &0x3F000000,fp0 */ .long 0xf23c4423,0x3f000000
- faddx fp2,fp1 |...fp1 is Q
- | |...fp2 released
- fmovemx a7@+,fp2/fp3 |...fp2 restored
- faddx fp1,fp0 |...fp0 is S*B1+Q
- | |...fp1 released
- fmovel d1,fpcr
- faddx a0@,fp0
- jra __l_t_frcinx
- EM1BIG:
- |--Step 10 |X| > 70 log2
- movel a0@,d0
- cmpil #0,d0
- jgt EXPC1
- |--Step 10.2
- /* fmoves &0xBF800000,fp0 */ .long 0xf23c4400,0xbf800000
- fmovel d1,fpcr
- /* fadds &0x00800000,fp0 */ .long 0xf23c4422,0x00800000
- jra __l_t_frcinx
- | end