GNUregex.c
上传用户:liugui
上传日期:2007-01-04
资源大小:822k
文件大小:140k
- /* Pops what PUSH_FAIL_STACK pushes.
- *
- * We restore into the parameters, all of which should be lvalues:
- * STR -- the saved data position.
- * PAT -- the saved pattern position.
- * LOW_REG, HIGH_REG -- the highest and lowest active registers.
- * REGSTART, REGEND -- arrays of string positions.
- * REG_INFO -- array of information about each subexpression.
- *
- * Also assumes the variables `fail_stack' and (if debugging), `bufp',
- * `pend', `string1', `size1', `string2', and `size2'. */
- #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)
- {
- DEBUG_STATEMENT (fail_stack_elt_t failure_id;)
- int this_reg;
- const unsigned char *string_temp;
-
- assert (!FAIL_STACK_EMPTY ());
-
- /* Remove failure points and point to how many regs pushed. */
- DEBUG_PRINT1 ("POP_FAILURE_POINT:n");
- DEBUG_PRINT2 (" Before pop, next avail: %dn", fail_stack.avail);
- DEBUG_PRINT2 (" size: %dn", fail_stack.size);
-
- assert (fail_stack.avail >= NUM_NONREG_ITEMS);
-
- DEBUG_POP (&failure_id);
- DEBUG_PRINT2 (" Popping failure id: %un", failure_id);
-
- /* If the saved string location is NULL, it came from an
- on_failure_keep_string_jump opcode, and we want to throw away the
- saved NULL, thus retaining our current position in the string. */
- string_temp = POP_FAILURE_ITEM ();
- if (string_temp != NULL)
- str = (const char *) string_temp;
-
- DEBUG_PRINT2 (" Popping string 0x%x: `", str);
- DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);
- DEBUG_PRINT1 ("'n");
-
- pat = (unsigned char *) POP_FAILURE_ITEM ();
- DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat);
- DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);
-
- /* Restore register info. */
- high_reg = (unsigned long) POP_FAILURE_ITEM ();
- DEBUG_PRINT2 (" Popping high active reg: %dn", high_reg);
-
- low_reg = (unsigned long) POP_FAILURE_ITEM ();
- DEBUG_PRINT2 (" Popping low active reg: %dn", low_reg);
-
- for (this_reg = high_reg; this_reg >= low_reg; this_reg--)
- {
- DEBUG_PRINT2 (" Popping reg: %dn", this_reg);
-
- reg_info[this_reg].word = POP_FAILURE_ITEM ();
- DEBUG_PRINT2 (" info: 0x%xn", reg_info[this_reg]);
-
- regend[this_reg] = (const char *) POP_FAILURE_ITEM ();
- DEBUG_PRINT2 (" end: 0x%xn", regend[this_reg]);
-
- regstart[this_reg] = (const char *) POP_FAILURE_ITEM ();
- DEBUG_PRINT2 (" start: 0x%xn", regstart[this_reg]);
- }
-
- DEBUG_STATEMENT (nfailure_points_popped++);
- } /* POP_FAILURE_POINT */
- /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
- * BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
- * characters can start a string that matches the pattern. This fastmap
- * is used by re_search to skip quickly over impossible starting points.
- *
- * The caller must supply the address of a (1 << BYTEWIDTH)-byte data
- * area as BUFP->fastmap.
- *
- * We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
- * the pattern buffer.
- *
- * Returns 0 if we succeed, -2 if an internal error. */
- int
- re_compile_fastmap(bufp)
- struct re_pattern_buffer *bufp;
- {
- int j, k;
- fail_stack_type fail_stack;
- #ifndef REGEX_MALLOC
- char *destination;
- #endif
- /* We don't push any register information onto the failure stack. */
- unsigned num_regs = 0;
- register char *fastmap = bufp->fastmap;
- unsigned char *pattern = bufp->buffer;
- unsigned long size = bufp->used;
- const unsigned char *p = pattern;
- register unsigned char *pend = pattern + size;
- /* Assume that each path through the pattern can be null until
- * proven otherwise. We set this false at the bottom of switch
- * statement, to which we get only if a particular path doesn't
- * match the empty string. */
- boolean path_can_be_null = true;
- /* We aren't doing a `succeed_n' to begin with. */
- boolean succeed_n_p = false;
- assert(fastmap != NULL && p != NULL);
- INIT_FAIL_STACK();
- memset(fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
- bufp->fastmap_accurate = 1; /* It will be when we're done. */
- bufp->can_be_null = 0;
- while (p != pend || !FAIL_STACK_EMPTY()) {
- if (p == pend) {
- bufp->can_be_null |= path_can_be_null;
- /* Reset for next path. */
- path_can_be_null = true;
- p = fail_stack.stack[--fail_stack.avail];
- }
- /* We should never be about to go beyond the end of the pattern. */
- assert(p < pend);
- #ifdef SWITCH_ENUM_BUG
- switch ((int) ((re_opcode_t) * p++))
- #else
- switch ((re_opcode_t) * p++)
- #endif
- {
- /* I guess the idea here is to simply not bother with a fastmap
- * if a backreference is used, since it's too hard to figure out
- * the fastmap for the corresponding group. Setting
- * `can_be_null' stops `re_search_2' from using the fastmap, so
- * that is all we do. */
- case duplicate:
- bufp->can_be_null = 1;
- return 0;
- /* Following are the cases which match a character. These end
- * with `break'. */
- case exactn:
- fastmap[p[1]] = 1;
- break;
- case charset:
- for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
- if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
- fastmap[j] = 1;
- break;
- case charset_not:
- /* Chars beyond end of map must be allowed. */
- for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
- fastmap[j] = 1;
- for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
- if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
- fastmap[j] = 1;
- break;
- case wordchar:
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (SYNTAX(j) == Sword)
- fastmap[j] = 1;
- break;
- case notwordchar:
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (SYNTAX(j) != Sword)
- fastmap[j] = 1;
- break;
- case anychar:
- /* `.' matches anything ... */
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- fastmap[j] = 1;
- /* ... except perhaps newline. */
- if (!(bufp->syntax & RE_DOT_NEWLINE))
- fastmap['n'] = 0;
- /* Return if we have already set `can_be_null'; if we have,
- * then the fastmap is irrelevant. Something's wrong here. */
- else if (bufp->can_be_null)
- return 0;
- /* Otherwise, have to check alternative paths. */
- break;
- #ifdef emacs
- case syntaxspec:
- k = *p++;
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (SYNTAX(j) == (enum syntaxcode) k)
- fastmap[j] = 1;
- break;
- case notsyntaxspec:
- k = *p++;
- for (j = 0; j < (1 << BYTEWIDTH); j++)
- if (SYNTAX(j) != (enum syntaxcode) k)
- fastmap[j] = 1;
- break;
- /* All cases after this match the empty string. These end with
- * `continue'. */
- case before_dot:
- case at_dot:
- case after_dot:
- continue;
- #endif /* not emacs */
- case no_op:
- case begline:
- case endline:
- case begbuf:
- case endbuf:
- case wordbound:
- case notwordbound:
- case wordbeg:
- case wordend:
- case push_dummy_failure:
- continue;
- case jump_n:
- case pop_failure_jump:
- case maybe_pop_jump:
- case jump:
- case jump_past_alt:
- case dummy_failure_jump:
- EXTRACT_NUMBER_AND_INCR(j, p);
- p += j;
- if (j > 0)
- continue;
- /* Jump backward implies we just went through the body of a
- * loop and matched nothing. Opcode jumped to should be
- * `on_failure_jump' or `succeed_n'. Just treat it like an
- * ordinary jump. For a * loop, it has pushed its failure
- * point already; if so, discard that as redundant. */
- if ((re_opcode_t) * p != on_failure_jump
- && (re_opcode_t) * p != succeed_n)
- continue;
- p++;
- EXTRACT_NUMBER_AND_INCR(j, p);
- p += j;
- /* If what's on the stack is where we are now, pop it. */
- if (!FAIL_STACK_EMPTY()
- && fail_stack.stack[fail_stack.avail - 1] == p)
- fail_stack.avail--;
- continue;
- case on_failure_jump:
- case on_failure_keep_string_jump:
- handle_on_failure_jump:
- EXTRACT_NUMBER_AND_INCR(j, p);
- /* For some patterns, e.g., `(a?)?', `p+j' here points to the
- * end of the pattern. We don't want to push such a point,
- * since when we restore it above, entering the switch will
- * increment `p' past the end of the pattern. We don't need
- * to push such a point since we obviously won't find any more
- * fastmap entries beyond `pend'. Such a pattern can match
- * the null string, though. */
- if (p + j < pend) {
- if (!PUSH_PATTERN_OP(p + j, fail_stack))
- return -2;
- } else
- bufp->can_be_null = 1;
- if (succeed_n_p) {
- EXTRACT_NUMBER_AND_INCR(k, p); /* Skip the n. */
- succeed_n_p = false;
- }
- continue;
- case succeed_n:
- /* Get to the number of times to succeed. */
- p += 2;
- /* Increment p past the n for when k != 0. */
- EXTRACT_NUMBER_AND_INCR(k, p);
- if (k == 0) {
- p -= 4;
- succeed_n_p = true; /* Spaghetti code alert. */
- goto handle_on_failure_jump;
- }
- continue;
- case set_number_at:
- p += 4;
- continue;
- case start_memory:
- case stop_memory:
- p += 2;
- continue;
- default:
- abort(); /* We have listed all the cases. */
- } /* switch *p++ */
- /* Getting here means we have found the possible starting
- * characters for one path of the pattern -- and that the empty
- * string does not match. We need not follow this path further.
- * Instead, look at the next alternative (remembered on the
- * stack), or quit if no more. The test at the top of the loop
- * does these things. */
- path_can_be_null = false;
- p = pend;
- } /* while p */
- /* Set `can_be_null' for the last path (also the first path, if the
- * pattern is empty). */
- bufp->can_be_null |= path_can_be_null;
- return 0;
- } /* re_compile_fastmap */
- /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
- * ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
- * this memory for recording register information. STARTS and ENDS
- * must be allocated using the malloc library routine, and must each
- * be at least NUM_REGS * sizeof (regoff_t) bytes long.
- *
- * If NUM_REGS == 0, then subsequent matches should allocate their own
- * register data.
- *
- * Unless this function is called, the first search or match using
- * PATTERN_BUFFER will allocate its own register data, without
- * freeing the old data. */
- void
- re_set_registers(bufp, regs, num_regs, starts, ends)
- struct re_pattern_buffer *bufp;
- struct re_registers *regs;
- unsigned num_regs;
- regoff_t *starts, *ends;
- {
- if (num_regs) {
- bufp->regs_allocated = REGS_REALLOCATE;
- regs->num_regs = num_regs;
- regs->start = starts;
- regs->end = ends;
- } else {
- bufp->regs_allocated = REGS_UNALLOCATED;
- regs->num_regs = 0;
- regs->start = regs->end = (regoff_t) 0;
- }
- }
- /* Searching routines. */
- /* Like re_search_2, below, but only one string is specified, and
- * doesn't let you say where to stop matching. */
- int
- re_search(bufp, string, size, startpos, range, regs)
- struct re_pattern_buffer *bufp;
- const char *string;
- int size, startpos, range;
- struct re_registers *regs;
- {
- return re_search_2(bufp, NULL, 0, string, size, startpos, range,
- regs, size);
- }
- /* Using the compiled pattern in BUFP->buffer, first tries to match the
- * virtual concatenation of STRING1 and STRING2, starting first at index
- * STARTPOS, then at STARTPOS + 1, and so on.
- *
- * STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
- *
- * RANGE is how far to scan while trying to match. RANGE = 0 means try
- * only at STARTPOS; in general, the last start tried is STARTPOS +
- * RANGE.
- *
- * In REGS, return the indices of the virtual concatenation of STRING1
- * and STRING2 that matched the entire BUFP->buffer and its contained
- * subexpressions.
- *
- * Do not consider matching one past the index STOP in the virtual
- * concatenation of STRING1 and STRING2.
- *
- * We return either the position in the strings at which the match was
- * found, -1 if no match, or -2 if error (such as failure
- * stack overflow). */
- int
- re_search_2(bufp, string1, size1, string2, size2, startpos, range, regs, stop)
- struct re_pattern_buffer *bufp;
- const char *string1, *string2;
- int size1, size2;
- int startpos;
- int range;
- struct re_registers *regs;
- int stop;
- {
- int val;
- register char *fastmap = bufp->fastmap;
- register char *translate = bufp->translate;
- int total_size = size1 + size2;
- int endpos = startpos + range;
- /* Check for out-of-range STARTPOS. */
- if (startpos < 0 || startpos > total_size)
- return -1;
- /* Fix up RANGE if it might eventually take us outside
- * the virtual concatenation of STRING1 and STRING2. */
- if (endpos < -1)
- range = -1 - startpos;
- else if (endpos > total_size)
- range = total_size - startpos;
- /* If the search isn't to be a backwards one, don't waste time in a
- * search for a pattern that must be anchored. */
- if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) {
- if (startpos > 0)
- return -1;
- else
- range = 1;
- }
- /* Update the fastmap now if not correct already. */
- if (fastmap && !bufp->fastmap_accurate)
- if (re_compile_fastmap(bufp) == -2)
- return -2;
- /* Loop through the string, looking for a place to start matching. */
- for (;;) {
- /* If a fastmap is supplied, skip quickly over characters that
- * cannot be the start of a match. If the pattern can match the
- * null string, however, we don't need to skip characters; we want
- * the first null string. */
- if (fastmap && startpos < total_size && !bufp->can_be_null) {
- if (range > 0) { /* Searching forwards. */
- register const char *d;
- register int lim = 0;
- int irange = range;
- if (startpos < size1 && startpos + range >= size1)
- lim = range - (size1 - startpos);
- d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
- /* Written out as an if-else to avoid testing `translate'
- * inside the loop. */
- if (translate)
- while (range > lim
- && !fastmap[(unsigned char)
- translate[(unsigned char) *d++]])
- range--;
- else
- while (range > lim && !fastmap[(unsigned char) *d++])
- range--;
- startpos += irange - range;
- } else { /* Searching backwards. */
- register char c = (size1 == 0 || startpos >= size1
- ? string2[startpos - size1]
- : string1[startpos]);
- if (!fastmap[(unsigned char) TRANSLATE(c)])
- goto advance;
- }
- }
- /* If can't match the null string, and that's all we have left, fail. */
- if (range >= 0 && startpos == total_size && fastmap
- && !bufp->can_be_null)
- return -1;
- val = re_match_2(bufp, string1, size1, string2, size2,
- startpos, regs, stop);
- if (val >= 0)
- return startpos;
- if (val == -2)
- return -2;
- advance:
- if (!range)
- break;
- else if (range > 0) {
- range--;
- startpos++;
- } else {
- range++;
- startpos--;
- }
- }
- return -1;
- } /* re_search_2 */
- /* Declarations and macros for re_match_2. */
- static int bcmp_translate();
- static boolean alt_match_null_string_p(), common_op_match_null_string_p(),
- group_match_null_string_p();
- /* Structure for per-register (a.k.a. per-group) information.
- * This must not be longer than one word, because we push this value
- * onto the failure stack. Other register information, such as the
- * starting and ending positions (which are addresses), and the list of
- * inner groups (which is a bits list) are maintained in separate
- * variables.
- *
- * We are making a (strictly speaking) nonportable assumption here: that
- * the compiler will pack our bit fields into something that fits into
- * the type of `word', i.e., is something that fits into one item on the
- * failure stack. */
- typedef union {
- fail_stack_elt_t word;
- struct {
- /* This field is one if this group can match the empty string,
- * zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
- #define MATCH_NULL_UNSET_VALUE 3
- unsigned match_null_string_p:2;
- unsigned is_active:1;
- unsigned matched_something:1;
- unsigned ever_matched_something:1;
- } bits;
- } register_info_type;
- #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
- #define IS_ACTIVE(R) ((R).bits.is_active)
- #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
- #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
- /* Call this when have matched a real character; it sets `matched' flags
- * for the subexpressions which we are currently inside. Also records
- * that those subexprs have matched. */
- #define SET_REGS_MATCHED()
- do
- {
- unsigned r;
- for (r = lowest_active_reg; r <= highest_active_reg; r++)
- {
- MATCHED_SOMETHING (reg_info[r])
- = EVER_MATCHED_SOMETHING (reg_info[r])
- = 1;
- }
- }
- while (0)
- /* This converts PTR, a pointer into one of the search strings `string1'
- * and `string2' into an offset from the beginning of that string. */
- #define POINTER_TO_OFFSET(ptr)
- (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
- /* Registers are set to a sentinel when they haven't yet matched. */
- #define REG_UNSET_VALUE ((char *) -1)
- #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
- /* Macros for dealing with the split strings in re_match_2. */
- #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
- /* Call before fetching a character with *d. This switches over to
- * string2 if necessary. */
- #define PREFETCH()
- while (d == dend)
- {
- /* End of string2 => fail. */
- if (dend == end_match_2)
- goto fail;
- /* End of string1 => advance to string2. */
- d = string2;
- dend = end_match_2;
- }
- /* Test if at very beginning or at very end of the virtual concatenation
- * of `string1' and `string2'. If only one string, it's `string2'. */
- #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
- #define AT_STRINGS_END(d) ((d) == end2)
- /* Test if D points to a character which is word-constituent. We have
- * two special cases to check for: if past the end of string1, look at
- * the first character in string2; and if before the beginning of
- * string2, look at the last character in string1. */
- #define WORDCHAR_P(d)
- (SYNTAX ((d) == end1 ? *string2
- : (d) == string2 - 1 ? *(end1 - 1) : *(d))
- == Sword)
- /* Test if the character before D and the one at D differ with respect
- * to being word-constituent. */
- #define AT_WORD_BOUNDARY(d)
- (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)
- || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
- /* Free everything we malloc. */
- #ifdef REGEX_MALLOC
- #define FREE_VAR(var) if (var) free (var); var = NULL
- #define FREE_VARIABLES()
- do {
- FREE_VAR (fail_stack.stack);
- FREE_VAR (regstart);
- FREE_VAR (regend);
- FREE_VAR (old_regstart);
- FREE_VAR (old_regend);
- FREE_VAR (best_regstart);
- FREE_VAR (best_regend);
- FREE_VAR (reg_info);
- FREE_VAR (reg_dummy);
- FREE_VAR (reg_info_dummy);
- } while (0)
- #else /* not REGEX_MALLOC */
- /* Some MIPS systems (at least) want this to free alloca'd storage. */
- #define FREE_VARIABLES() alloca (0)
- #endif /* not REGEX_MALLOC */
- /* These values must meet several constraints. They must not be valid
- * register values; since we have a limit of 255 registers (because
- * we use only one byte in the pattern for the register number), we can
- * use numbers larger than 255. They must differ by 1, because of
- * NUM_FAILURE_ITEMS above. And the value for the lowest register must
- * be larger than the value for the highest register, so we do not try
- * to actually save any registers when none are active. */
- #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
- #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
- /* Matching routines. */
- #ifndef emacs /* Emacs never uses this. */
- /* re_match is like re_match_2 except it takes only a single string. */
- int
- re_match(bufp, string, size, pos, regs)
- struct re_pattern_buffer *bufp;
- const char *string;
- int size, pos;
- struct re_registers *regs;
- {
- return re_match_2(bufp, NULL, 0, string, size, pos, regs, size);
- }
- #endif /* not emacs */
- /* re_match_2 matches the compiled pattern in BUFP against the
- * the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
- * and SIZE2, respectively). We start matching at POS, and stop
- * matching at STOP.
- *
- * If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
- * store offsets for the substring each group matched in REGS. See the
- * documentation for exactly how many groups we fill.
- *
- * We return -1 if no match, -2 if an internal error (such as the
- * failure stack overflowing). Otherwise, we return the length of the
- * matched substring. */
- int
- re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop)
- struct re_pattern_buffer *bufp;
- const char *string1, *string2;
- int size1, size2;
- int pos;
- struct re_registers *regs;
- int stop;
- {
- /* General temporaries. */
- int mcnt;
- unsigned char *p1;
- /* Just past the end of the corresponding string. */
- const char *end1, *end2;
- /* Pointers into string1 and string2, just past the last characters in
- * each to consider matching. */
- const char *end_match_1, *end_match_2;
- /* Where we are in the data, and the end of the current string. */
- const char *d, *dend;
- /* Where we are in the pattern, and the end of the pattern. */
- unsigned char *p = bufp->buffer;
- register unsigned char *pend = p + bufp->used;
- /* We use this to map every character in the string. */
- char *translate = bufp->translate;
- /* Failure point stack. Each place that can handle a failure further
- * down the line pushes a failure point on this stack. It consists of
- * restart, regend, and reg_info for all registers corresponding to
- * the subexpressions we're currently inside, plus the number of such
- * registers, and, finally, two char *'s. The first char * is where
- * to resume scanning the pattern; the second one is where to resume
- * scanning the strings. If the latter is zero, the failure point is
- * a ``dummy''; if a failure happens and the failure point is a dummy,
- * it gets discarded and the next next one is tried. */
- fail_stack_type fail_stack;
- #ifdef DEBUG
- static unsigned failure_id = 0;
- unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
- #endif
- /* We fill all the registers internally, independent of what we
- * return, for use in backreferences. The number here includes
- * an element for register zero. */
- unsigned num_regs = bufp->re_nsub + 1;
- /* The currently active registers. */
- unsigned long lowest_active_reg = NO_LOWEST_ACTIVE_REG;
- unsigned long highest_active_reg = NO_HIGHEST_ACTIVE_REG;
- /* Information on the contents of registers. These are pointers into
- * the input strings; they record just what was matched (on this
- * attempt) by a subexpression part of the pattern, that is, the
- * regnum-th regstart pointer points to where in the pattern we began
- * matching and the regnum-th regend points to right after where we
- * stopped matching the regnum-th subexpression. (The zeroth register
- * keeps track of what the whole pattern matches.) */
- const char **regstart = NULL, **regend = NULL;
- /* If a group that's operated upon by a repetition operator fails to
- * match anything, then the register for its start will need to be
- * restored because it will have been set to wherever in the string we
- * are when we last see its open-group operator. Similarly for a
- * register's end. */
- const char **old_regstart = NULL, **old_regend = NULL;
- /* The is_active field of reg_info helps us keep track of which (possibly
- * nested) subexpressions we are currently in. The matched_something
- * field of reg_info[reg_num] helps us tell whether or not we have
- * matched any of the pattern so far this time through the reg_num-th
- * subexpression. These two fields get reset each time through any
- * loop their register is in. */
- register_info_type *reg_info = NULL;
- /* The following record the register info as found in the above
- * variables when we find a match better than any we've seen before.
- * This happens as we backtrack through the failure points, which in
- * turn happens only if we have not yet matched the entire string. */
- unsigned best_regs_set = false;
- const char **best_regstart = NULL, **best_regend = NULL;
- /* Logically, this is `best_regend[0]'. But we don't want to have to
- * allocate space for that if we're not allocating space for anything
- * else (see below). Also, we never need info about register 0 for
- * any of the other register vectors, and it seems rather a kludge to
- * treat `best_regend' differently than the rest. So we keep track of
- * the end of the best match so far in a separate variable. We
- * initialize this to NULL so that when we backtrack the first time
- * and need to test it, it's not garbage. */
- const char *match_end = NULL;
- /* Used when we pop values we don't care about. */
- const char **reg_dummy = NULL;
- register_info_type *reg_info_dummy = NULL;
- #ifdef DEBUG
- /* Counts the total number of registers pushed. */
- unsigned num_regs_pushed = 0;
- #endif
- DEBUG_PRINT1("nnEntering re_match_2.n");
- INIT_FAIL_STACK();
- /* Do not bother to initialize all the register variables if there are
- * no groups in the pattern, as it takes a fair amount of time. If
- * there are groups, we include space for register 0 (the whole
- * pattern), even though we never use it, since it simplifies the
- * array indexing. We should fix this. */
- if (bufp->re_nsub) {
- regstart = REGEX_TALLOC(num_regs, const char *);
- regend = REGEX_TALLOC(num_regs, const char *);
- old_regstart = REGEX_TALLOC(num_regs, const char *);
- old_regend = REGEX_TALLOC(num_regs, const char *);
- best_regstart = REGEX_TALLOC(num_regs, const char *);
- best_regend = REGEX_TALLOC(num_regs, const char *);
- reg_info = REGEX_TALLOC(num_regs, register_info_type);
- reg_dummy = REGEX_TALLOC(num_regs, const char *);
- reg_info_dummy = REGEX_TALLOC(num_regs, register_info_type);
- if (!(regstart && regend && old_regstart && old_regend && reg_info
- && best_regstart && best_regend && reg_dummy && reg_info_dummy)) {
- FREE_VARIABLES();
- return -2;
- }
- }
- #ifdef REGEX_MALLOC
- else {
- /* We must initialize all our variables to NULL, so that
- * `FREE_VARIABLES' doesn't try to free them. */
- regstart = regend = old_regstart = old_regend = best_regstart
- = best_regend = reg_dummy = NULL;
- reg_info = reg_info_dummy = (register_info_type *) NULL;
- }
- #endif /* REGEX_MALLOC */
- /* The starting position is bogus. */
- if (pos < 0 || pos > size1 + size2) {
- FREE_VARIABLES();
- return -1;
- }
- /* Initialize subexpression text positions to -1 to mark ones that no
- * start_memory/stop_memory has been seen for. Also initialize the
- * register information struct. */
- for (mcnt = 1; mcnt < num_regs; mcnt++) {
- regstart[mcnt] = regend[mcnt]
- = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
- REG_MATCH_NULL_STRING_P(reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
- IS_ACTIVE(reg_info[mcnt]) = 0;
- MATCHED_SOMETHING(reg_info[mcnt]) = 0;
- EVER_MATCHED_SOMETHING(reg_info[mcnt]) = 0;
- }
- /* We move `string1' into `string2' if the latter's empty -- but not if
- * `string1' is null. */
- if (size2 == 0 && string1 != NULL) {
- string2 = string1;
- size2 = size1;
- string1 = 0;
- size1 = 0;
- }
- end1 = string1 + size1;
- end2 = string2 + size2;
- /* Compute where to stop matching, within the two strings. */
- if (stop <= size1) {
- end_match_1 = string1 + stop;
- end_match_2 = string2;
- } else {
- end_match_1 = end1;
- end_match_2 = string2 + stop - size1;
- }
- /* `p' scans through the pattern as `d' scans through the data.
- * `dend' is the end of the input string that `d' points within. `d'
- * is advanced into the following input string whenever necessary, but
- * this happens before fetching; therefore, at the beginning of the
- * loop, `d' can be pointing at the end of a string, but it cannot
- * equal `string2'. */
- if (size1 > 0 && pos <= size1) {
- d = string1 + pos;
- dend = end_match_1;
- } else {
- d = string2 + pos - size1;
- dend = end_match_2;
- }
- DEBUG_PRINT1("The compiled pattern is: ");
- DEBUG_PRINT_COMPILED_PATTERN(bufp, p, pend);
- DEBUG_PRINT1("The string to match is: `");
- DEBUG_PRINT_DOUBLE_STRING(d, string1, size1, string2, size2);
- DEBUG_PRINT1("'n");
- /* This loops over pattern commands. It exits by returning from the
- * function if the match is complete, or it drops through if the match
- * fails at this starting point in the input data. */
- for (;;) {
- DEBUG_PRINT2("n0x%x: ", p);
- if (p == pend) { /* End of pattern means we might have succeeded. */
- DEBUG_PRINT1("end of pattern ... ");
- /* If we haven't matched the entire string, and we want the
- * longest match, try backtracking. */
- if (d != end_match_2) {
- DEBUG_PRINT1("backtracking.n");
- if (!FAIL_STACK_EMPTY()) { /* More failure points to try. */
- boolean same_str_p = (FIRST_STRING_P(match_end)
- == MATCHING_IN_FIRST_STRING);
- /* If exceeds best match so far, save it. */
- if (!best_regs_set
- || (same_str_p && d > match_end)
- || (!same_str_p && !MATCHING_IN_FIRST_STRING)) {
- best_regs_set = true;
- match_end = d;
- DEBUG_PRINT1("nSAVING match as best so far.n");
- for (mcnt = 1; mcnt < num_regs; mcnt++) {
- best_regstart[mcnt] = regstart[mcnt];
- best_regend[mcnt] = regend[mcnt];
- }
- }
- goto fail;
- }
- /* If no failure points, don't restore garbage. */
- else if (best_regs_set) {
- restore_best_regs:
- /* Restore best match. It may happen that `dend ==
- * end_match_1' while the restored d is in string2.
- * For example, the pattern `x.*y.*z' against the
- * strings `x-' and `y-z-', if the two strings are
- * not consecutive in memory. */
- DEBUG_PRINT1("Restoring best registers.n");
- d = match_end;
- dend = ((d >= string1 && d <= end1)
- ? end_match_1 : end_match_2);
- for (mcnt = 1; mcnt < num_regs; mcnt++) {
- regstart[mcnt] = best_regstart[mcnt];
- regend[mcnt] = best_regend[mcnt];
- }
- }
- } /* d != end_match_2 */
- DEBUG_PRINT1("Accepting match.n");
- /* If caller wants register contents data back, do it. */
- if (regs && !bufp->no_sub) {
- /* Have the register data arrays been allocated? */
- if (bufp->regs_allocated == REGS_UNALLOCATED) { /* No. So allocate them with malloc. We need one
- * extra element beyond `num_regs' for the `-1' marker
- * GNU code uses. */
- regs->num_regs = MAX(RE_NREGS, num_regs + 1);
- regs->start = TALLOC(regs->num_regs, regoff_t);
- regs->end = TALLOC(regs->num_regs, regoff_t);
- if (regs->start == NULL || regs->end == NULL)
- return -2;
- bufp->regs_allocated = REGS_REALLOCATE;
- } else if (bufp->regs_allocated == REGS_REALLOCATE) { /* Yes. If we need more elements than were already
- * allocated, reallocate them. If we need fewer, just
- * leave it alone. */
- if (regs->num_regs < num_regs + 1) {
- regs->num_regs = num_regs + 1;
- RETALLOC(regs->start, regs->num_regs, regoff_t);
- RETALLOC(regs->end, regs->num_regs, regoff_t);
- if (regs->start == NULL || regs->end == NULL)
- return -2;
- }
- } else
- assert(bufp->regs_allocated == REGS_FIXED);
- /* Convert the pointer data in `regstart' and `regend' to
- * indices. Register zero has to be set differently,
- * since we haven't kept track of any info for it. */
- if (regs->num_regs > 0) {
- regs->start[0] = pos;
- regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
- : d - string2 + size1);
- }
- /* Go through the first `min (num_regs, regs->num_regs)'
- * registers, since that is all we initialized. */
- for (mcnt = 1; mcnt < MIN(num_regs, regs->num_regs); mcnt++) {
- if (REG_UNSET(regstart[mcnt]) || REG_UNSET(regend[mcnt]))
- regs->start[mcnt] = regs->end[mcnt] = -1;
- else {
- regs->start[mcnt] = POINTER_TO_OFFSET(regstart[mcnt]);
- regs->end[mcnt] = POINTER_TO_OFFSET(regend[mcnt]);
- }
- }
- /* If the regs structure we return has more elements than
- * were in the pattern, set the extra elements to -1. If
- * we (re)allocated the registers, this is the case,
- * because we always allocate enough to have at least one
- * -1 at the end. */
- for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
- regs->start[mcnt] = regs->end[mcnt] = -1;
- } /* regs && !bufp->no_sub */
- FREE_VARIABLES();
- DEBUG_PRINT4("%u failure points pushed, %u popped (%u remain).n",
- nfailure_points_pushed, nfailure_points_popped,
- nfailure_points_pushed - nfailure_points_popped);
- DEBUG_PRINT2("%u registers pushed.n", num_regs_pushed);
- mcnt = d - pos - (MATCHING_IN_FIRST_STRING
- ? string1
- : string2 - size1);
- DEBUG_PRINT2("Returning %d from re_match_2.n", mcnt);
- return mcnt;
- }
- /* Otherwise match next pattern command. */
- #ifdef SWITCH_ENUM_BUG
- switch ((int) ((re_opcode_t) * p++))
- #else
- switch ((re_opcode_t) * p++)
- #endif
- {
- /* Ignore these. Used to ignore the n of succeed_n's which
- * currently have n == 0. */
- case no_op:
- DEBUG_PRINT1("EXECUTING no_op.n");
- break;
- /* Match the next n pattern characters exactly. The following
- * byte in the pattern defines n, and the n bytes after that
- * are the characters to match. */
- case exactn:
- mcnt = *p++;
- DEBUG_PRINT2("EXECUTING exactn %d.n", mcnt);
- /* This is written out as an if-else so we don't waste time
- * testing `translate' inside the loop. */
- if (translate) {
- do {
- PREFETCH();
- if (translate[(unsigned char) *d++] != (char) *p++)
- goto fail;
- }
- while (--mcnt);
- } else {
- do {
- PREFETCH();
- if (*d++ != (char) *p++)
- goto fail;
- }
- while (--mcnt);
- }
- SET_REGS_MATCHED();
- break;
- /* Match any character except possibly a newline or a null. */
- case anychar:
- DEBUG_PRINT1("EXECUTING anychar.n");
- PREFETCH();
- if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE(*d) == 'n')
- || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE(*d) == ' 00'))
- goto fail;
- SET_REGS_MATCHED();
- DEBUG_PRINT2(" Matched `%d'.n", *d);
- d++;
- break;
- case charset:
- case charset_not:
- {
- register unsigned char c;
- boolean not = (re_opcode_t) * (p - 1) == charset_not;
- DEBUG_PRINT2("EXECUTING charset%s.n", not ? "_not" : "");
- PREFETCH();
- c = TRANSLATE(*d); /* The character to match. */
- /* Cast to `unsigned' instead of `unsigned char' in case the
- * bit list is a full 32 bytes long. */
- if (c < (unsigned) (*p * BYTEWIDTH)
- && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
- not = !not;
- p += 1 + *p;
- if (!not)
- goto fail;
- SET_REGS_MATCHED();
- d++;
- break;
- }
- /* The beginning of a group is represented by start_memory.
- * The arguments are the register number in the next byte, and the
- * number of groups inner to this one in the next. The text
- * matched within the group is recorded (in the internal
- * registers data structure) under the register number. */
- case start_memory:
- DEBUG_PRINT3("EXECUTING start_memory %d (%d):n", *p, p[1]);
- /* Find out if this group can match the empty string. */
- p1 = p; /* To send to group_match_null_string_p. */
- if (REG_MATCH_NULL_STRING_P(reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
- REG_MATCH_NULL_STRING_P(reg_info[*p])
- = group_match_null_string_p(&p1, pend, reg_info);
- /* Save the position in the string where we were the last time
- * we were at this open-group operator in case the group is
- * operated upon by a repetition operator, e.g., with `(a*)*b'
- * against `ab'; then we want to ignore where we are now in
- * the string in case this attempt to match fails. */
- old_regstart[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
- ? REG_UNSET(regstart[*p]) ? d : regstart[*p]
- : regstart[*p];
- DEBUG_PRINT2(" old_regstart: %dn",
- POINTER_TO_OFFSET(old_regstart[*p]));
- regstart[*p] = d;
- DEBUG_PRINT2(" regstart: %dn", POINTER_TO_OFFSET(regstart[*p]));
- IS_ACTIVE(reg_info[*p]) = 1;
- MATCHED_SOMETHING(reg_info[*p]) = 0;
- /* This is the new highest active register. */
- highest_active_reg = *p;
- /* If nothing was active before, this is the new lowest active
- * register. */
- if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
- lowest_active_reg = *p;
- /* Move past the register number and inner group count. */
- p += 2;
- break;
- /* The stop_memory opcode represents the end of a group. Its
- * arguments are the same as start_memory's: the register
- * number, and the number of inner groups. */
- case stop_memory:
- DEBUG_PRINT3("EXECUTING stop_memory %d (%d):n", *p, p[1]);
- /* We need to save the string position the last time we were at
- * this close-group operator in case the group is operated
- * upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
- * against `aba'; then we want to ignore where we are now in
- * the string in case this attempt to match fails. */
- old_regend[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
- ? REG_UNSET(regend[*p]) ? d : regend[*p]
- : regend[*p];
- DEBUG_PRINT2(" old_regend: %dn",
- POINTER_TO_OFFSET(old_regend[*p]));
- regend[*p] = d;
- DEBUG_PRINT2(" regend: %dn", POINTER_TO_OFFSET(regend[*p]));
- /* This register isn't active anymore. */
- IS_ACTIVE(reg_info[*p]) = 0;
- /* If this was the only register active, nothing is active
- * anymore. */
- if (lowest_active_reg == highest_active_reg) {
- lowest_active_reg = NO_LOWEST_ACTIVE_REG;
- highest_active_reg = NO_HIGHEST_ACTIVE_REG;
- } else { /* We must scan for the new highest active register, since
- * it isn't necessarily one less than now: consider
- * (a(b)c(d(e)f)g). When group 3 ends, after the f), the
- * new highest active register is 1. */
- unsigned char r = *p - 1;
- while (r > 0 && !IS_ACTIVE(reg_info[r]))
- r--;
- /* If we end up at register zero, that means that we saved
- * the registers as the result of an `on_failure_jump', not
- * a `start_memory', and we jumped to past the innermost
- * `stop_memory'. For example, in ((.)*) we save
- * registers 1 and 2 as a result of the *, but when we pop
- * back to the second ), we are at the stop_memory 1.
- * Thus, nothing is active. */
- if (r == 0) {
- lowest_active_reg = NO_LOWEST_ACTIVE_REG;
- highest_active_reg = NO_HIGHEST_ACTIVE_REG;
- } else
- highest_active_reg = r;
- }
- /* If just failed to match something this time around with a
- * group that's operated on by a repetition operator, try to
- * force exit from the ``loop'', and restore the register
- * information for this group that we had before trying this
- * last match. */
- if ((!MATCHED_SOMETHING(reg_info[*p])
- || (re_opcode_t) p[-3] == start_memory)
- && (p + 2) < pend) {
- boolean is_a_jump_n = false;
- p1 = p + 2;
- mcnt = 0;
- switch ((re_opcode_t) * p1++) {
- case jump_n:
- is_a_jump_n = true;
- case pop_failure_jump:
- case maybe_pop_jump:
- case jump:
- case dummy_failure_jump:
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- if (is_a_jump_n)
- p1 += 2;
- break;
- default:
- /* do nothing */ ;
- }
- p1 += mcnt;
- /* If the next operation is a jump backwards in the pattern
- * to an on_failure_jump right before the start_memory
- * corresponding to this stop_memory, exit from the loop
- * by forcing a failure after pushing on the stack the
- * on_failure_jump's jump in the pattern, and d. */
- if (mcnt < 0 && (re_opcode_t) * p1 == on_failure_jump
- && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) {
- /* If this group ever matched anything, then restore
- * what its registers were before trying this last
- * failed match, e.g., with `(a*)*b' against `ab' for
- * regstart[1], and, e.g., with `((a*)*(b*)*)*'
- * against `aba' for regend[3].
- *
- * Also restore the registers for inner groups for,
- * e.g., `((a*)(b*))*' against `aba' (register 3 would
- * otherwise get trashed). */
- if (EVER_MATCHED_SOMETHING(reg_info[*p])) {
- unsigned r;
- EVER_MATCHED_SOMETHING(reg_info[*p]) = 0;
- /* Restore this and inner groups' (if any) registers. */
- for (r = *p; r < *p + *(p + 1); r++) {
- regstart[r] = old_regstart[r];
- /* xx why this test? */
- if ((long) old_regend[r] >= (long) regstart[r])
- regend[r] = old_regend[r];
- }
- }
- p1++;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- PUSH_FAILURE_POINT(p1 + mcnt, d, -2);
- goto fail;
- }
- }
- /* Move past the register number and the inner group count. */
- p += 2;
- break;
- /* <digit> has been turned into a `duplicate' command which is
- * followed by the numeric value of <digit> as the register number. */
- case duplicate:
- {
- register const char *d2, *dend2;
- int regno = *p++; /* Get which register to match against. */
- DEBUG_PRINT2("EXECUTING duplicate %d.n", regno);
- /* Can't back reference a group which we've never matched. */
- if (REG_UNSET(regstart[regno]) || REG_UNSET(regend[regno]))
- goto fail;
- /* Where in input to try to start matching. */
- d2 = regstart[regno];
- /* Where to stop matching; if both the place to start and
- * the place to stop matching are in the same string, then
- * set to the place to stop, otherwise, for now have to use
- * the end of the first string. */
- dend2 = ((FIRST_STRING_P(regstart[regno])
- == FIRST_STRING_P(regend[regno]))
- ? regend[regno] : end_match_1);
- for (;;) {
- /* If necessary, advance to next segment in register
- * contents. */
- while (d2 == dend2) {
- if (dend2 == end_match_2)
- break;
- if (dend2 == regend[regno])
- break;
- /* End of string1 => advance to string2. */
- d2 = string2;
- dend2 = regend[regno];
- }
- /* At end of register contents => success */
- if (d2 == dend2)
- break;
- /* If necessary, advance to next segment in data. */
- PREFETCH();
- /* How many characters left in this segment to match. */
- mcnt = dend - d;
- /* Want how many consecutive characters we can match in
- * one shot, so, if necessary, adjust the count. */
- if (mcnt > dend2 - d2)
- mcnt = dend2 - d2;
- /* Compare that many; failure if mismatch, else move
- * past them. */
- if (translate
- ? bcmp_translate(d, d2, mcnt, translate)
- : memcmp(d, d2, mcnt))
- goto fail;
- d += mcnt, d2 += mcnt;
- }
- }
- break;
- /* begline matches the empty string at the beginning of the string
- * (unless `not_bol' is set in `bufp'), and, if
- * `newline_anchor' is set, after newlines. */
- case begline:
- DEBUG_PRINT1("EXECUTING begline.n");
- if (AT_STRINGS_BEG(d)) {
- if (!bufp->not_bol)
- break;
- } else if (d[-1] == 'n' && bufp->newline_anchor) {
- break;
- }
- /* In all other cases, we fail. */
- goto fail;
- /* endline is the dual of begline. */
- case endline:
- DEBUG_PRINT1("EXECUTING endline.n");
- if (AT_STRINGS_END(d)) {
- if (!bufp->not_eol)
- break;
- }
- /* We have to ``prefetch'' the next character. */
- else if ((d == end1 ? *string2 : *d) == 'n'
- && bufp->newline_anchor) {
- break;
- }
- goto fail;
- /* Match at the very beginning of the data. */
- case begbuf:
- DEBUG_PRINT1("EXECUTING begbuf.n");
- if (AT_STRINGS_BEG(d))
- break;
- goto fail;
- /* Match at the very end of the data. */
- case endbuf:
- DEBUG_PRINT1("EXECUTING endbuf.n");
- if (AT_STRINGS_END(d))
- break;
- goto fail;
- /* on_failure_keep_string_jump is used to optimize `.*n'. It
- * pushes NULL as the value for the string on the stack. Then
- * `pop_failure_point' will keep the current value for the
- * string, instead of restoring it. To see why, consider
- * matching `foonbar' against `.*n'. The .* matches the foo;
- * then the . fails against the n. But the next thing we want
- * to do is match the n against the n; if we restored the
- * string value, we would be back at the foo.
- *
- * Because this is used only in specific cases, we don't need to
- * check all the things that `on_failure_jump' does, to make
- * sure the right things get saved on the stack. Hence we don't
- * share its code. The only reason to push anything on the
- * stack at all is that otherwise we would have to change
- * `anychar's code to do something besides goto fail in this
- * case; that seems worse than this. */
- case on_failure_keep_string_jump:
- DEBUG_PRINT1("EXECUTING on_failure_keep_string_jump");
- EXTRACT_NUMBER_AND_INCR(mcnt, p);
- DEBUG_PRINT3(" %d (to 0x%x):n", mcnt, p + mcnt);
- PUSH_FAILURE_POINT(p + mcnt, NULL, -2);
- break;
- /* Uses of on_failure_jump:
- *
- * Each alternative starts with an on_failure_jump that points
- * to the beginning of the next alternative. Each alternative
- * except the last ends with a jump that in effect jumps past
- * the rest of the alternatives. (They really jump to the
- * ending jump of the following alternative, because tensioning
- * these jumps is a hassle.)
- *
- * Repeats start with an on_failure_jump that points past both
- * the repetition text and either the following jump or
- * pop_failure_jump back to this on_failure_jump. */
- case on_failure_jump:
- on_failure:
- DEBUG_PRINT1("EXECUTING on_failure_jump");
- EXTRACT_NUMBER_AND_INCR(mcnt, p);
- DEBUG_PRINT3(" %d (to 0x%x)", mcnt, p + mcnt);
- /* If this on_failure_jump comes right before a group (i.e.,
- * the original * applied to a group), save the information
- * for that group and all inner ones, so that if we fail back
- * to this point, the group's information will be correct.
- * For example, in (a*)*1, we need the preceding group,
- * and in ((a*)b*)2, we need the inner group. */
- /* We can't use `p' to check ahead because we push
- * a failure point to `p + mcnt' after we do this. */
- p1 = p;
- /* We need to skip no_op's before we look for the
- * start_memory in case this on_failure_jump is happening as
- * the result of a completed succeed_n, as in (a){1,3}b1
- * against aba. */
- while (p1 < pend && (re_opcode_t) * p1 == no_op)
- p1++;
- if (p1 < pend && (re_opcode_t) * p1 == start_memory) {
- /* We have a new highest active register now. This will
- * get reset at the start_memory we are about to get to,
- * but we will have saved all the registers relevant to
- * this repetition op, as described above. */
- highest_active_reg = *(p1 + 1) + *(p1 + 2);
- if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
- lowest_active_reg = *(p1 + 1);
- }
- DEBUG_PRINT1(":n");
- PUSH_FAILURE_POINT(p + mcnt, d, -2);
- break;
- /* A smart repeat ends with `maybe_pop_jump'.
- * We change it to either `pop_failure_jump' or `jump'. */
- case maybe_pop_jump:
- EXTRACT_NUMBER_AND_INCR(mcnt, p);
- DEBUG_PRINT2("EXECUTING maybe_pop_jump %d.n", mcnt);
- {
- register unsigned char *p2 = p;
- /* Compare the beginning of the repeat with what in the
- * pattern follows its end. If we can establish that there
- * is nothing that they would both match, i.e., that we
- * would have to backtrack because of (as in, e.g., `a*a')
- * then we can change to pop_failure_jump, because we'll
- * never have to backtrack.
- *
- * This is not true in the case of alternatives: in
- * `(a|ab)*' we do need to backtrack to the `ab' alternative
- * (e.g., if the string was `ab'). But instead of trying to
- * detect that here, the alternative has put on a dummy
- * failure point which is what we will end up popping. */
- /* Skip over open/close-group commands. */
- while (p2 + 2 < pend
- && ((re_opcode_t) * p2 == stop_memory
- || (re_opcode_t) * p2 == start_memory))
- p2 += 3; /* Skip over args, too. */
- /* If we're at the end of the pattern, we can change. */
- if (p2 == pend) {
- /* Consider what happens when matching ":(.*)"
- * against ":/". I don't really understand this code
- * yet. */
- p[-3] = (unsigned char) pop_failure_jump;
- DEBUG_PRINT1
- (" End of pattern: change to `pop_failure_jump'.n");
- } else if ((re_opcode_t) * p2 == exactn
- || (bufp->newline_anchor && (re_opcode_t) * p2 == endline)) {
- register unsigned char c
- = *p2 == (unsigned char) endline ? 'n' : p2[2];
- p1 = p + mcnt;
- /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
- * to the `maybe_finalize_jump' of this case. Examine what
- * follows. */
- if ((re_opcode_t) p1[3] == exactn && p1[5] != c) {
- p[-3] = (unsigned char) pop_failure_jump;
- DEBUG_PRINT3(" %c != %c => pop_failure_jump.n",
- c, p1[5]);
- } else if ((re_opcode_t) p1[3] == charset
- || (re_opcode_t) p1[3] == charset_not) {
- int not = (re_opcode_t) p1[3] == charset_not;
- if (c < (unsigned char) (p1[4] * BYTEWIDTH)
- && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
- not = !not;
- /* `not' is equal to 1 if c would match, which means
- * that we can't change to pop_failure_jump. */
- if (!not) {
- p[-3] = (unsigned char) pop_failure_jump;
- DEBUG_PRINT1(" No match => pop_failure_jump.n");
- }
- }
- }
- }
- p -= 2; /* Point at relative address again. */
- if ((re_opcode_t) p[-1] != pop_failure_jump) {
- p[-1] = (unsigned char) jump;
- DEBUG_PRINT1(" Match => jump.n");
- goto unconditional_jump;
- }
- /* Note fall through. */
- /* The end of a simple repeat has a pop_failure_jump back to
- * its matching on_failure_jump, where the latter will push a
- * failure point. The pop_failure_jump takes off failure
- * points put on by this pop_failure_jump's matching
- * on_failure_jump; we got through the pattern to here from the
- * matching on_failure_jump, so didn't fail. */
- case pop_failure_jump:
- {
- /* We need to pass separate storage for the lowest and
- * highest registers, even though we don't care about the
- * actual values. Otherwise, we will restore only one
- * register from the stack, since lowest will == highest in
- * `pop_failure_point'. */
- unsigned long dummy_low_reg, dummy_high_reg;
- unsigned char *pdummy;
- const char *sdummy;
- DEBUG_PRINT1("EXECUTING pop_failure_jump.n");
- POP_FAILURE_POINT(sdummy, pdummy,
- dummy_low_reg, dummy_high_reg,
- reg_dummy, reg_dummy, reg_info_dummy);
- }
- /* Note fall through. */
- /* Unconditionally jump (without popping any failure points). */
- case jump:
- unconditional_jump:
- EXTRACT_NUMBER_AND_INCR(mcnt, p); /* Get the amount to jump. */
- DEBUG_PRINT2("EXECUTING jump %d ", mcnt);
- p += mcnt; /* Do the jump. */
- DEBUG_PRINT2("(to 0x%x).n", p);
- break;
- /* We need this opcode so we can detect where alternatives end
- * in `group_match_null_string_p' et al. */
- case jump_past_alt:
- DEBUG_PRINT1("EXECUTING jump_past_alt.n");
- goto unconditional_jump;
- /* Normally, the on_failure_jump pushes a failure point, which
- * then gets popped at pop_failure_jump. We will end up at
- * pop_failure_jump, also, and with a pattern of, say, `a+', we
- * are skipping over the on_failure_jump, so we have to push
- * something meaningless for pop_failure_jump to pop. */
- case dummy_failure_jump:
- DEBUG_PRINT1("EXECUTING dummy_failure_jump.n");
- /* It doesn't matter what we push for the string here. What
- * the code at `fail' tests is the value for the pattern. */
- PUSH_FAILURE_POINT(0, 0, -2);
- goto unconditional_jump;
- /* At the end of an alternative, we need to push a dummy failure
- * point in case we are followed by a `pop_failure_jump', because
- * we don't want the failure point for the alternative to be
- * popped. For example, matching `(a|ab)*' against `aab'
- * requires that we match the `ab' alternative. */
- case push_dummy_failure:
- DEBUG_PRINT1("EXECUTING push_dummy_failure.n");
- /* See comments just above at `dummy_failure_jump' about the
- * two zeroes. */
- PUSH_FAILURE_POINT(0, 0, -2);
- break;
- /* Have to succeed matching what follows at least n times.
- * After that, handle like `on_failure_jump'. */
- case succeed_n:
- EXTRACT_NUMBER(mcnt, p + 2);
- DEBUG_PRINT2("EXECUTING succeed_n %d.n", mcnt);
- assert(mcnt >= 0);
- /* Originally, this is how many times we HAVE to succeed. */
- if (mcnt > 0) {
- mcnt--;
- p += 2;
- STORE_NUMBER_AND_INCR(p, mcnt);
- DEBUG_PRINT3(" Setting 0x%x to %d.n", p, mcnt);
- } else if (mcnt == 0) {
- DEBUG_PRINT2(" Setting two bytes from 0x%x to no_op.n", p + 2);
- p[2] = (unsigned char) no_op;
- p[3] = (unsigned char) no_op;
- goto on_failure;
- }
- break;
- case jump_n:
- EXTRACT_NUMBER(mcnt, p + 2);
- DEBUG_PRINT2("EXECUTING jump_n %d.n", mcnt);
- /* Originally, this is how many times we CAN jump. */
- if (mcnt) {
- mcnt--;
- STORE_NUMBER(p + 2, mcnt);
- goto unconditional_jump;
- }
- /* If don't have to jump any more, skip over the rest of command. */
- else
- p += 4;
- break;
- case set_number_at:
- {
- DEBUG_PRINT1("EXECUTING set_number_at.n");
- EXTRACT_NUMBER_AND_INCR(mcnt, p);
- p1 = p + mcnt;
- EXTRACT_NUMBER_AND_INCR(mcnt, p);
- DEBUG_PRINT3(" Setting 0x%x to %d.n", p1, mcnt);
- STORE_NUMBER(p1, mcnt);
- break;
- }
- case wordbound:
- DEBUG_PRINT1("EXECUTING wordbound.n");
- if (AT_WORD_BOUNDARY(d))
- break;
- goto fail;
- case notwordbound:
- DEBUG_PRINT1("EXECUTING notwordbound.n");
- if (AT_WORD_BOUNDARY(d))
- goto fail;
- break;
- case wordbeg:
- DEBUG_PRINT1("EXECUTING wordbeg.n");
- if (WORDCHAR_P(d) && (AT_STRINGS_BEG(d) || !WORDCHAR_P(d - 1)))
- break;
- goto fail;
- case wordend:
- DEBUG_PRINT1("EXECUTING wordend.n");
- if (!AT_STRINGS_BEG(d) && WORDCHAR_P(d - 1)
- && (!WORDCHAR_P(d) || AT_STRINGS_END(d)))
- break;
- goto fail;
- #ifdef emacs
- #ifdef emacs19
- case before_dot:
- DEBUG_PRINT1("EXECUTING before_dot.n");
- if (PTR_CHAR_POS((unsigned char *) d) >= point)
- goto fail;
- break;
- case at_dot:
- DEBUG_PRINT1("EXECUTING at_dot.n");
- if (PTR_CHAR_POS((unsigned char *) d) != point)
- goto fail;
- break;
- case after_dot:
- DEBUG_PRINT1("EXECUTING after_dot.n");
- if (PTR_CHAR_POS((unsigned char *) d) <= point)
- goto fail;
- break;
- #else /* not emacs19 */
- case at_dot:
- DEBUG_PRINT1("EXECUTING at_dot.n");
- if (PTR_CHAR_POS((unsigned char *) d) + 1 != point)
- goto fail;
- break;
- #endif /* not emacs19 */
- case syntaxspec:
- DEBUG_PRINT2("EXECUTING syntaxspec %d.n", mcnt);
- mcnt = *p++;
- goto matchsyntax;
- case wordchar:
- DEBUG_PRINT1("EXECUTING Emacs wordchar.n");
- mcnt = (int) Sword;
- matchsyntax:
- PREFETCH();
- if (SYNTAX(*d++) != (enum syntaxcode) mcnt)
- goto fail;
- SET_REGS_MATCHED();
- break;
- case notsyntaxspec:
- DEBUG_PRINT2("EXECUTING notsyntaxspec %d.n", mcnt);
- mcnt = *p++;
- goto matchnotsyntax;
- case notwordchar:
- DEBUG_PRINT1("EXECUTING Emacs notwordchar.n");
- mcnt = (int) Sword;
- matchnotsyntax:
- PREFETCH();
- if (SYNTAX(*d++) == (enum syntaxcode) mcnt)
- goto fail;
- SET_REGS_MATCHED();
- break;
- #else /* not emacs */
- case wordchar:
- DEBUG_PRINT1("EXECUTING non-Emacs wordchar.n");
- PREFETCH();
- if (!WORDCHAR_P(d))
- goto fail;
- SET_REGS_MATCHED();
- d++;
- break;
- case notwordchar:
- DEBUG_PRINT1("EXECUTING non-Emacs notwordchar.n");
- PREFETCH();
- if (WORDCHAR_P(d))
- goto fail;
- SET_REGS_MATCHED();
- d++;
- break;
- #endif /* not emacs */
- default:
- abort();
- }
- continue; /* Successfully executed one pattern command; keep going. */
- /* We goto here if a matching operation fails. */
- fail:
- if (!FAIL_STACK_EMPTY()) { /* A restart point is known. Restore to that state. */
- DEBUG_PRINT1("nFAIL:n");
- POP_FAILURE_POINT(d, p,
- lowest_active_reg, highest_active_reg,
- regstart, regend, reg_info);
- /* If this failure point is a dummy, try the next one. */
- if (!p)
- goto fail;
- /* If we failed to the end of the pattern, don't examine *p. */
- assert(p <= pend);
- if (p < pend) {
- boolean is_a_jump_n = false;
- /* If failed to a backwards jump that's part of a repetition
- * loop, need to pop this failure point and use the next one. */
- switch ((re_opcode_t) * p) {
- case jump_n:
- is_a_jump_n = true;
- case maybe_pop_jump:
- case pop_failure_jump:
- case jump:
- p1 = p + 1;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- p1 += mcnt;
- if ((is_a_jump_n && (re_opcode_t) * p1 == succeed_n)
- || (!is_a_jump_n
- && (re_opcode_t) * p1 == on_failure_jump))
- goto fail;
- break;
- default:
- /* do nothing */ ;
- }
- }
- if (d >= string1 && d <= end1)
- dend = end_match_1;
- } else
- break; /* Matching at this starting point really fails. */
- } /* for (;;) */
- if (best_regs_set)
- goto restore_best_regs;
- FREE_VARIABLES();
- return -1; /* Failure to match. */
- } /* re_match_2 */
- /* Subroutine definitions for re_match_2. */
- /* We are passed P pointing to a register number after a start_memory.
- *
- * Return true if the pattern up to the corresponding stop_memory can
- * match the empty string, and false otherwise.
- *
- * If we find the matching stop_memory, sets P to point to one past its number.
- * Otherwise, sets P to an undefined byte less than or equal to END.
- *
- * We don't handle duplicates properly (yet). */
- static boolean
- group_match_null_string_p(p, end, reg_info)
- unsigned char **p, *end;
- register_info_type *reg_info;
- {
- int mcnt;
- /* Point to after the args to the start_memory. */
- unsigned char *p1 = *p + 2;
- while (p1 < end) {
- /* Skip over opcodes that can match nothing, and return true or
- * false, as appropriate, when we get to one that can't, or to the
- * matching stop_memory. */
- switch ((re_opcode_t) * p1) {
- /* Could be either a loop or a series of alternatives. */
- case on_failure_jump:
- p1++;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- /* If the next operation is not a jump backwards in the
- * pattern. */
- if (mcnt >= 0) {
- /* Go through the on_failure_jumps of the alternatives,
- * seeing if any of the alternatives cannot match nothing.
- * The last alternative starts with only a jump,
- * whereas the rest start with on_failure_jump and end
- * with a jump, e.g., here is the pattern for `a|b|c':
- *
- * /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
- * /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
- * /exactn/1/c
- *
- * So, we have to first go through the first (n-1)
- * alternatives and then deal with the last one separately. */
- /* Deal with the first (n-1) alternatives, which start
- * with an on_failure_jump (see above) that jumps to right
- * past a jump_past_alt. */
- while ((re_opcode_t) p1[mcnt - 3] == jump_past_alt) {
- /* `mcnt' holds how many bytes long the alternative
- * is, including the ending `jump_past_alt' and
- * its number. */
- if (!alt_match_null_string_p(p1, p1 + mcnt - 3,
- reg_info))
- return false;
- /* Move to right after this alternative, including the
- * jump_past_alt. */
- p1 += mcnt;
- /* Break if it's the beginning of an n-th alternative
- * that doesn't begin with an on_failure_jump. */
- if ((re_opcode_t) * p1 != on_failure_jump)
- break;
- /* Still have to check that it's not an n-th
- * alternative that starts with an on_failure_jump. */
- p1++;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- if ((re_opcode_t) p1[mcnt - 3] != jump_past_alt) {
- /* Get to the beginning of the n-th alternative. */
- p1 -= 3;
- break;
- }
- }
- /* Deal with the last alternative: go back and get number
- * of the `jump_past_alt' just before it. `mcnt' contains
- * the length of the alternative. */
- EXTRACT_NUMBER(mcnt, p1 - 2);
- if (!alt_match_null_string_p(p1, p1 + mcnt, reg_info))
- return false;
- p1 += mcnt; /* Get past the n-th alternative. */
- } /* if mcnt > 0 */
- break;
- case stop_memory:
- assert(p1[1] == **p);
- *p = p1 + 2;
- return true;
- default:
- if (!common_op_match_null_string_p(&p1, end, reg_info))
- return false;
- }
- } /* while p1 < end */
- return false;
- } /* group_match_null_string_p */
- /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
- * It expects P to be the first byte of a single alternative and END one
- * byte past the last. The alternative can contain groups. */
- static boolean
- alt_match_null_string_p(p, end, reg_info)
- unsigned char *p, *end;
- register_info_type *reg_info;
- {
- int mcnt;
- unsigned char *p1 = p;
- while (p1 < end) {
- /* Skip over opcodes that can match nothing, and break when we get
- * to one that can't. */
- switch ((re_opcode_t) * p1) {
- /* It's a loop. */
- case on_failure_jump:
- p1++;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- p1 += mcnt;
- break;
- default:
- if (!common_op_match_null_string_p(&p1, end, reg_info))
- return false;
- }
- } /* while p1 < end */
- return true;
- } /* alt_match_null_string_p */
- /* Deals with the ops common to group_match_null_string_p and
- * alt_match_null_string_p.
- *
- * Sets P to one after the op and its arguments, if any. */
- static boolean
- common_op_match_null_string_p(p, end, reg_info)
- unsigned char **p, *end;
- register_info_type *reg_info;
- {
- int mcnt;
- boolean ret;
- int reg_no;
- unsigned char *p1 = *p;
- switch ((re_opcode_t) * p1++) {
- case no_op:
- case begline:
- case endline:
- case begbuf:
- case endbuf:
- case wordbeg:
- case wordend:
- case wordbound:
- case notwordbound:
- #ifdef emacs
- case before_dot:
- case at_dot:
- case after_dot:
- #endif
- break;
- case start_memory:
- reg_no = *p1;
- assert(reg_no > 0 && reg_no <= MAX_REGNUM);
- ret = group_match_null_string_p(&p1, end, reg_info);
- /* Have to set this here in case we're checking a group which
- * contains a group and a back reference to it. */
- if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
- REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret;
- if (!ret)
- return false;
- break;
- /* If this is an optimized succeed_n for zero times, make the jump. */
- case jump:
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- if (mcnt >= 0)
- p1 += mcnt;
- else
- return false;
- break;
- case succeed_n:
- /* Get to the number of times to succeed. */
- p1 += 2;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- if (mcnt == 0) {
- p1 -= 4;
- EXTRACT_NUMBER_AND_INCR(mcnt, p1);
- p1 += mcnt;
- } else
- return false;
- break;
- case duplicate:
- if (!REG_MATCH_NULL_STRING_P(reg_info[*p1]))
- return false;
- break;
- case set_number_at:
- p1 += 4;
- default:
- /* All other opcodes mean we cannot match the empty string. */
- return false;
- }
- *p = p1;
- return true;
- } /* common_op_match_null_string_p */
- /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
- * bytes; nonzero otherwise. */
- static int
- bcmp_translate(s1, s2, len, translate)
- unsigned char *s1, *s2;
- register int len;
- char *translate;
- {
- register unsigned char *p1 = s1, *p2 = s2;
- while (len) {
- if (translate[*p1++] != translate[*p2++])
- return 1;
- len--;
- }
- return 0;
- }
- /* Entry points for GNU code. */
- /* re_compile_pattern is the GNU regular expression compiler: it
- * compiles PATTERN (of length SIZE) and puts the result in BUFP.
- * Returns 0 if the pattern was valid, otherwise an error string.
- *
- * Assumes the `allocated' (and perhaps `buffer') and `translate' fields
- * are set in BUFP on entry.
- *
- * We call regex_compile to do the actual compilation. */
- const char *
- re_compile_pattern(pattern, length, bufp)
- const char *pattern;
- int length;
- struct re_pattern_buffer *bufp;
- {
- reg_errcode_t ret;
- /* GNU code is written to assume at least RE_NREGS registers will be set
- * (and at least one extra will be -1). */
- bufp->regs_allocated = REGS_UNALLOCATED;
- /* And GNU code determines whether or not to get register information
- * by passing null for the REGS argument to re_match, etc., not by
- * setting no_sub. */
- bufp->no_sub = 0;
- /* Match anchors at newline. */
- bufp->newline_anchor = 1;
- ret = regex_compile(pattern, length, re_syntax_options, bufp);
- return re_error_msg[(int) ret];
- }
- /* Entry points compatible with 4.2 BSD regex library. We don't define
- * them if this is an Emacs or POSIX compilation. */
- #if !defined (emacs) && !defined (_POSIX_SOURCE)
- /* BSD has one and only one pattern buffer. */
- static struct re_pattern_buffer re_comp_buf;
- char *
- re_comp(s)
- const char *s;
- {
- reg_errcode_t ret;
- if (!s) {
- if (!re_comp_buf.buffer)
- return "No previous regular expression";
- return 0;
- }
- if (!re_comp_buf.buffer) {
- re_comp_buf.buffer = (unsigned char *) malloc(200);
- if (re_comp_buf.buffer == NULL)
- return "Memory exhausted";
- re_comp_buf.allocated = 200;
- re_comp_buf.fastmap = (char *) malloc(1 << BYTEWIDTH);
- if (re_comp_buf.fastmap == NULL)
- return "Memory exhausted";
- }
- /* Since `re_exec' always passes NULL for the `regs' argument, we
- * don't need to initialize the pattern buffer fields which affect it. */
- /* Match anchors at newlines. */
- re_comp_buf.newline_anchor = 1;
- ret = regex_compile(s, strlen(s), re_syntax_options, &re_comp_buf);
- /* Yes, we're discarding `const' here. */
- return (char *) re_error_msg[(int) ret];
- }
- int
- re_exec(s)
- const char *s;
- {
- const int len = strlen(s);
- return
- 0 <= re_search(&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
- }
- #endif /* not emacs and not _POSIX_SOURCE */
- /* POSIX.2 functions. Don't define these for Emacs. */
- #ifndef emacs
- /* regcomp takes a regular expression as a string and compiles it.
- *
- * PREG is a regex_t *. We do not expect any fields to be initialized,
- * since POSIX says we shouldn't. Thus, we set
- *
- * `buffer' to the compiled pattern;
- * `used' to the length of the compiled pattern;
- * `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
- * REG_EXTENDED bit in CFLAGS is set; otherwise, to
- * RE_SYNTAX_POSIX_BASIC;
- * `newline_anchor' to REG_NEWLINE being set in CFLAGS;
- * `fastmap' and `fastmap_accurate' to zero;
- * `re_nsub' to the number of subexpressions in PATTERN.
- *
- * PATTERN is the address of the pattern string.
- *
- * CFLAGS is a series of bits which affect compilation.
- *
- * If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
- * use POSIX basic syntax.
- *
- * If REG_NEWLINE is set, then . and [^...] don't match newline.
- * Also, regexec will try a match beginning after every newline.
- *
- * If REG_ICASE is set, then we considers upper- and lowercase
- * versions of letters to be equivalent when matching.
- *
- * If REG_NOSUB is set, then when PREG is passed to regexec, that
- * routine will report only success or failure, and nothing about the
- * registers.
- *
- * It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
- * the return codes and their meanings.) */
- int
- regcomp(preg, pattern, cflags)
- regex_t *preg;
- const char *pattern;
- int cflags;
- {
- reg_errcode_t ret;
- unsigned syntax
- = (cflags & REG_EXTENDED) ?
- RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
- /* regex_compile will allocate the space for the compiled pattern. */
- preg->buffer = 0;
- preg->allocated = 0;
- /* Don't bother to use a fastmap when searching. This simplifies the
- * REG_NEWLINE case: if we used a fastmap, we'd have to put all the
- * characters after newlines into the fastmap. This way, we just try
- * every character. */
- preg->fastmap = 0;
- if (cflags & REG_ICASE) {
- unsigned i;
- preg->translate = (char *) malloc(CHAR_SET_SIZE);
- if (preg->translate == NULL)
- return (int) REG_ESPACE;
- /* Map uppercase characters to corresponding lowercase ones. */
- for (i = 0; i < CHAR_SET_SIZE; i++)
- preg->translate[i] = ISUPPER(i) ? tolower(i) : i;
- } else
- preg->translate = NULL;
- /* If REG_NEWLINE is set, newlines are treated differently. */
- if (cflags & REG_NEWLINE) { /* REG_NEWLINE implies neither . nor [^...] match newline. */
- syntax &= ~RE_DOT_NEWLINE;
- syntax |= RE_HAT_LISTS_NOT_NEWLINE;
- /* It also changes the matching behavior. */
- preg->newline_anchor = 1;
- } else
- preg->newline_anchor = 0;
- preg->no_sub = !!(cflags & REG_NOSUB);
- /* POSIX says a null character in the pattern terminates it, so we
- * can use strlen here in compiling the pattern. */
- ret = regex_compile(pattern, strlen(pattern), syntax, preg);
- /* POSIX doesn't distinguish between an unmatched open-group and an
- * unmatched close-group: both are REG_EPAREN. */
- if (ret == REG_ERPAREN)
- ret = REG_EPAREN;
- return (int) ret;
- }
- /* regexec searches for a given pattern, specified by PREG, in the
- * string STRING.
- *
- * If NMATCH is zero or REG_NOSUB was set in the cflags argument to
- * `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
- * least NMATCH elements, and we set them to the offsets of the
- * corresponding matched substrings.
- *
- * EFLAGS specifies `execution flags' which affect matching: if
- * REG_NOTBOL is set, then ^ does not match at the beginning of the
- * string; if REG_NOTEOL is set, then $ does not match at the end.
- *
- * We return 0 if we find a match and REG_NOMATCH if not. */
- int
- regexec(preg, string, nmatch, pmatch, eflags)
- const regex_t *preg;
- const char *string;
- size_t nmatch;
- regmatch_t pmatch[];
- int eflags;
- {
- int ret;
- struct re_registers regs;
- regex_t private_preg;
- int len = strlen(string);
- boolean want_reg_info = !preg->no_sub && nmatch > 0;
- private_preg = *preg;
- private_preg.not_bol = !!(eflags & REG_NOTBOL);
- private_preg.not_eol = !!(eflags & REG_NOTEOL);
- /* The user has told us exactly how many registers to return
- * information about, via `nmatch'. We have to pass that on to the
- * matching routines. */
- private_preg.regs_allocated = REGS_FIXED;
- if (want_reg_info) {
- regs.num_regs = nmatch;
- regs.start = TALLOC(nmatch, regoff_t);
- regs.end = TALLOC(nmatch, regoff_t);
- if (regs.start == NULL || regs.end == NULL)
- return (int) REG_NOMATCH;
- }
- /* Perform the searching operation. */
- ret = re_search(&private_preg, string, len,
- /* start: */ 0, /* range: */ len,
- want_reg_info ? ®s : (struct re_registers *) 0);
- /* Copy the register information to the POSIX structure. */
- if (want_reg_info) {
- if (ret >= 0) {
- unsigned r;
- for (r = 0; r < nmatch; r++) {
- pmatch[r].rm_so = regs.start[r];
- pmatch[r].rm_eo = regs.end[r];
- }
- }
- /* If we needed the temporary register info, free the space now. */
- free(regs.start);
- free(regs.end);
- }
- /* We want zero return to mean success, unlike `re_search'. */
- return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
- }
- /* Returns a message corresponding to an error code, ERRCODE, returned
- * from either regcomp or regexec. We don't use PREG here. */
- size_t
- regerror(errcode, preg, errbuf, errbuf_size)
- int errcode;
- const regex_t *preg;
- char *errbuf;
- size_t errbuf_size;
- {
- const char *msg;
- size_t msg_size;
- if (errcode < 0
- || errcode >= (sizeof(re_error_msg) / sizeof(re_error_msg[0])))
- /* Only error codes returned by the rest of the code should be passed
- * to this routine. If we are given anything else, or if other regex
- * code generates an invalid error code, then the program has a bug.
- * Dump core so we can fix it. */
- abort();
- msg = re_error_msg[errcode];
- /* POSIX doesn't require that we do anything in this case, but why
- * not be nice. */
- if (!msg)
- msg = "Success";
- msg_size = strlen(msg) + 1; /* Includes the null. */
- if (errbuf_size != 0) {
- if (msg_size > errbuf_size) {
- strncpy(errbuf, msg, errbuf_size - 1);
- errbuf[errbuf_size - 1] = 0;
- } else
- strcpy(errbuf, msg);
- }
- return msg_size;
- }
- /* Free dynamically allocated space used by PREG. */
- void
- regfree(preg)
- regex_t *preg;
- {
- if (preg->buffer != NULL)
- free(preg->buffer);
- preg->buffer = NULL;
- preg->allocated = 0;
- preg->used = 0;
- if (preg->fastmap != NULL)
- free(preg->fastmap);
- preg->fastmap = NULL;
- preg->fastmap_accurate = 0;
- if (preg->translate != NULL)
- free(preg->translate);
- preg->translate = NULL;
- }
- #endif /* not emacs */
- /*
- * Local variables:
- * make-backup-files: t
- * version-control: t
- * trim-versions-without-asking: nil
- * End:
- */