imdct.c
上传用户:aoeyumen
上传日期:2007-01-06
资源大小:3329k
文件大小:12k
- /*
- * imdct.c
- *
- * Copyright (C) Aaron Holtzman - May 1999
- *
- * This file is part of ac3dec, a free Dolby AC-3 stream decoder.
- *
- * ac3dec is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2, or (at your option)
- * any later version.
- *
- * ac3dec is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GNU Make; see the file COPYING. If not, write to
- * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
- *
- *
- */
- #include <stdlib.h>
- #include <stdio.h>
- #include <math.h>
- #include "ac3.h"
- #include "decode.h"
- #include "imdct.h"
- void imdct_do_256(float x[],float y[],float delay[]);
- void imdct_do_512(float x[],float y[],float delay[]);
- typedef struct complex_s
- {
- float real;
- float imag;
- } complex_t;
- #define N 512
- static complex_t buf[N/4];
- /* 128 point bit-reverse LUT */
- static uint_8 bit_reverse_512[] = {
- 0x00, 0x40, 0x20, 0x60, 0x10, 0x50, 0x30, 0x70,
- 0x08, 0x48, 0x28, 0x68, 0x18, 0x58, 0x38, 0x78,
- 0x04, 0x44, 0x24, 0x64, 0x14, 0x54, 0x34, 0x74,
- 0x0c, 0x4c, 0x2c, 0x6c, 0x1c, 0x5c, 0x3c, 0x7c,
- 0x02, 0x42, 0x22, 0x62, 0x12, 0x52, 0x32, 0x72,
- 0x0a, 0x4a, 0x2a, 0x6a, 0x1a, 0x5a, 0x3a, 0x7a,
- 0x06, 0x46, 0x26, 0x66, 0x16, 0x56, 0x36, 0x76,
- 0x0e, 0x4e, 0x2e, 0x6e, 0x1e, 0x5e, 0x3e, 0x7e,
- 0x01, 0x41, 0x21, 0x61, 0x11, 0x51, 0x31, 0x71,
- 0x09, 0x49, 0x29, 0x69, 0x19, 0x59, 0x39, 0x79,
- 0x05, 0x45, 0x25, 0x65, 0x15, 0x55, 0x35, 0x75,
- 0x0d, 0x4d, 0x2d, 0x6d, 0x1d, 0x5d, 0x3d, 0x7d,
- 0x03, 0x43, 0x23, 0x63, 0x13, 0x53, 0x33, 0x73,
- 0x0b, 0x4b, 0x2b, 0x6b, 0x1b, 0x5b, 0x3b, 0x7b,
- 0x07, 0x47, 0x27, 0x67, 0x17, 0x57, 0x37, 0x77,
- 0x0f, 0x4f, 0x2f, 0x6f, 0x1f, 0x5f, 0x3f, 0x7f};
- static uint_8 bit_reverse_256[] = {
- 0x00, 0x20, 0x10, 0x30, 0x08, 0x28, 0x18, 0x38,
- 0x04, 0x24, 0x14, 0x34, 0x0c, 0x2c, 0x1c, 0x3c,
- 0x02, 0x22, 0x12, 0x32, 0x0a, 0x2a, 0x1a, 0x3a,
- 0x06, 0x26, 0x16, 0x36, 0x0e, 0x2e, 0x1e, 0x3e,
- 0x01, 0x21, 0x11, 0x31, 0x09, 0x29, 0x19, 0x39,
- 0x05, 0x25, 0x15, 0x35, 0x0d, 0x2d, 0x1d, 0x3d,
- 0x03, 0x23, 0x13, 0x33, 0x0b, 0x2b, 0x1b, 0x3b,
- 0x07, 0x27, 0x17, 0x37, 0x0f, 0x2f, 0x1f, 0x3f};
- /* Twiddle factor LUT */
- static complex_t *w[7];
- static complex_t w_1[1];
- static complex_t w_2[2];
- static complex_t w_4[4];
- static complex_t w_8[8];
- static complex_t w_16[16];
- static complex_t w_32[32];
- static complex_t w_64[64];
- /* Twiddle factors for IMDCT */
- static float xcos1[N/4];
- static float xsin1[N/4];
- static float xcos2[N/8];
- static float xsin2[N/8];
- /* Delay buffer for time domain interleaving */
- static float delay[6][256];
- /* Windowing function for Modified DCT - Thank you acroread */
- static float window[] = {
- 0.00014, 0.00024, 0.00037, 0.00051, 0.00067, 0.00086, 0.00107, 0.00130,
- 0.00157, 0.00187, 0.00220, 0.00256, 0.00297, 0.00341, 0.00390, 0.00443,
- 0.00501, 0.00564, 0.00632, 0.00706, 0.00785, 0.00871, 0.00962, 0.01061,
- 0.01166, 0.01279, 0.01399, 0.01526, 0.01662, 0.01806, 0.01959, 0.02121,
- 0.02292, 0.02472, 0.02662, 0.02863, 0.03073, 0.03294, 0.03527, 0.03770,
- 0.04025, 0.04292, 0.04571, 0.04862, 0.05165, 0.05481, 0.05810, 0.06153,
- 0.06508, 0.06878, 0.07261, 0.07658, 0.08069, 0.08495, 0.08935, 0.09389,
- 0.09859, 0.10343, 0.10842, 0.11356, 0.11885, 0.12429, 0.12988, 0.13563,
- 0.14152, 0.14757, 0.15376, 0.16011, 0.16661, 0.17325, 0.18005, 0.18699,
- 0.19407, 0.20130, 0.20867, 0.21618, 0.22382, 0.23161, 0.23952, 0.24757,
- 0.25574, 0.26404, 0.27246, 0.28100, 0.28965, 0.29841, 0.30729, 0.31626,
- 0.32533, 0.33450, 0.34376, 0.35311, 0.36253, 0.37204, 0.38161, 0.39126,
- 0.40096, 0.41072, 0.42054, 0.43040, 0.44030, 0.45023, 0.46020, 0.47019,
- 0.48020, 0.49022, 0.50025, 0.51028, 0.52031, 0.53033, 0.54033, 0.55031,
- 0.56026, 0.57019, 0.58007, 0.58991, 0.59970, 0.60944, 0.61912, 0.62873,
- 0.63827, 0.64774, 0.65713, 0.66643, 0.67564, 0.68476, 0.69377, 0.70269,
- 0.71150, 0.72019, 0.72877, 0.73723, 0.74557, 0.75378, 0.76186, 0.76981,
- 0.77762, 0.78530, 0.79283, 0.80022, 0.80747, 0.81457, 0.82151, 0.82831,
- 0.83496, 0.84145, 0.84779, 0.85398, 0.86001, 0.86588, 0.87160, 0.87716,
- 0.88257, 0.88782, 0.89291, 0.89785, 0.90264, 0.90728, 0.91176, 0.91610,
- 0.92028, 0.92432, 0.92822, 0.93197, 0.93558, 0.93906, 0.94240, 0.94560,
- 0.94867, 0.95162, 0.95444, 0.95713, 0.95971, 0.96217, 0.96451, 0.96674,
- 0.96887, 0.97089, 0.97281, 0.97463, 0.97635, 0.97799, 0.97953, 0.98099,
- 0.98236, 0.98366, 0.98488, 0.98602, 0.98710, 0.98811, 0.98905, 0.98994,
- 0.99076, 0.99153, 0.99225, 0.99291, 0.99353, 0.99411, 0.99464, 0.99513,
- 0.99558, 0.99600, 0.99639, 0.99674, 0.99706, 0.99736, 0.99763, 0.99788,
- 0.99811, 0.99831, 0.99850, 0.99867, 0.99882, 0.99895, 0.99908, 0.99919,
- 0.99929, 0.99938, 0.99946, 0.99953, 0.99959, 0.99965, 0.99969, 0.99974,
- 0.99978, 0.99981, 0.99984, 0.99986, 0.99988, 0.99990, 0.99992, 0.99993,
- 0.99994, 0.99995, 0.99996, 0.99997, 0.99998, 0.99998, 0.99998, 0.99999,
- 0.99999, 0.99999, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
- 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000 };
- static void swap_cmplx(complex_t *a, complex_t *b)
- {
- complex_t tmp;
- tmp = *a;
- *a = *b;
- *b = tmp;
- }
- static inline complex_t cmplx_mult(complex_t a, complex_t b)
- {
- complex_t ret;
- ret.real = a.real * b.real - a.imag * b.imag;
- ret.imag = a.real * b.imag + a.imag * b.real;
- return ret;
- }
- void imdct_init(void)
- {
- int i,k;
- complex_t angle_step;
- complex_t current_angle;
- /* Twiddle factors to turn IFFT into IMDCT */
- for( i=0; i < N/4; i++)
- {
- xcos1[i] = -cos(2 * M_PI * (8*i+1)/(8*N)) ;
- xsin1[i] = -sin(2 * M_PI * (8*i+1)/(8*N)) ;
- }
-
- /* More twiddle factors to turn IFFT into IMDCT */
- for( i=0; i < N/8; i++)
- {
- xcos2[i] = -cos(2 * M_PI * (8*i+1)/(4*N)) ;
- xsin2[i] = -sin(2 * M_PI * (8*i+1)/(4*N)) ;
- }
- /* Canonical twiddle factors for FFT */
- w[0] = w_1;
- w[1] = w_2;
- w[2] = w_4;
- w[3] = w_8;
- w[4] = w_16;
- w[5] = w_32;
- w[6] = w_64;
- for( i = 0; i < 7; i++)
- {
- angle_step.real = cos(-2.0 * M_PI / (1 << (i+1)));
- angle_step.imag = sin(-2.0 * M_PI / (1 << (i+1)));
- current_angle.real = 1.0;
- current_angle.imag = 0.0;
- for (k = 0; k < 1 << i; k++)
- {
- w[i][k] = current_angle;
- current_angle = cmplx_mult(current_angle,angle_step);
- }
- }
- }
- void
- imdct(bsi_t *bsi,audblk_t *audblk,
- stream_coeffs_t *coeffs, stream_samples_t *samples)
- {
- int i;
- for(i=0; i<bsi->nfchans;i++)
- {
- if(audblk->blksw[i])
- imdct_do_256(coeffs->fbw[i],samples->channel[i],delay[i]);
- else
- imdct_do_512(coeffs->fbw[i],samples->channel[i],delay[i]);
- }
- //XXX We don't bother with the IMDCT for the LFE as it's currently
- //unused.
- //if (bsi->lfeon)
- // imdct_do_512(coeffs->lfe,samples->channel[5],delay[5]);
- //
- }
- void
- imdct_do_512(float x[],float y[],float delay[])
- {
- int i,k;
- int p,q;
- int m;
- int two_m;
- int two_m_plus_one;
- float tmp_a_i;
- float tmp_a_r;
- float tmp_b_i;
- float tmp_b_r;
- /* Pre IFFT complex multiply plus IFFT cmplx conjugate */
- for( i=0; i < N/4; i++)
- {
- /* z[i] = (X[N/2-2*i-1] + j * X[2*i]) * (xcos1[i] + j * xsin1[i]) ; */
- buf[i].real = (x[N/2-2*i-1] * xcos1[i]) - (x[2*i] * xsin1[i]);
- buf[i].imag = -1.0 * ((x[2*i] * xcos1[i]) + (x[N/2-2*i-1] * xsin1[i]));
- }
- //Bit reversed shuffling
- for(i=0; i<N/4; i++)
- {
- k = bit_reverse_512[i];
- if (k < i)
- swap_cmplx(&buf[i],&buf[k]);
- }
- /* FFT Merge */
- for (m=0; m < 7; m++)
- {
- two_m = (1 << m);
- two_m_plus_one = (1 << (m+1));
- for(k = 0; k < two_m; k++)
- {
- for(i = 0; i < 128; i += two_m_plus_one)
- {
- p = k + i;
- q = p + two_m;
- tmp_a_r = buf[p].real;
- tmp_a_i = buf[p].imag;
- tmp_b_r = buf[q].real * w[m][k].real - buf[q].imag * w[m][k].imag;
- tmp_b_i = buf[q].imag * w[m][k].real + buf[q].real * w[m][k].imag;
- buf[p].real = tmp_a_r + tmp_b_r;
- buf[p].imag = tmp_a_i + tmp_b_i;
- buf[q].real = tmp_a_r - tmp_b_r;
- buf[q].imag = tmp_a_i - tmp_b_i;
- }
- }
- }
- /* Post IFFT complex multiply plus IFFT complex conjugate*/
- for( i=0; i < N/4; i++)
- {
- /* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
- tmp_a_r = buf[i].real;
- tmp_a_i = -1.0 * buf[i].imag;
- buf[i].real =(tmp_a_r * xcos1[i]) - (tmp_a_i * xsin1[i]);
- buf[i].imag =(tmp_a_r * xsin1[i]) + (tmp_a_i * xcos1[i]);
- }
-
- /* Window and convert to real valued signal */
- for(i=0; i<N/8; i++)
- {
- y[0 + 2*i] = -buf[N/8+i].imag * window[0 + 2*i];
- y[0 + 2*i+1] = buf[N/8-i-1].real * window[0 + 2*i+1];
- y[128 + 2*i] = -buf[i].real * window[128 + 2*i];
- y[128 + 2*i+1] = buf[N/4-i-1].imag * window[128 + 2*i+1];
- y[256 + 2*i] = -buf[N/8+i].real * window[256 - 2*i-1];
- y[256 + 2*i+1] = buf[N/8-i-1].imag * window[256 - 2*i-2];
- y[384 + 2*i] = buf[i].imag * window[128 - 2*i-1];
- y[384 + 2*i+1] = -buf[N/4-i-1].real * window[128 - 2*i-2];
- }
- /* Overlap and add */
- for(i=0; i< 256; i++)
- {
- y[i] = 2.0 * (y[i] + delay[i]);
- delay[i] = y[256 +i];
- }
- }
- void
- imdct_do_256(float x[],float y[],float delay[])
- {
- int i,k;
- int p,q;
- int m;
- int two_m;
- int two_m_plus_one;
- float tmp_a_i;
- float tmp_a_r;
- float tmp_b_i;
- float tmp_b_r;
- complex_t *buf_1, *buf_2;
- buf_1 = &buf[0];
- buf_2 = &buf[64];
- /* Pre IFFT complex multiply plus IFFT cmplx conjugate */
- for(k=0; k<N/8; k++)
- {
- /* X1[k] = X[2*k] */
- /* X2[k] = X[2*k+1] */
- p = 2 * (N/4-2*k-1);
- q = 2 * (2 * k);
- /* Z1[k] = (X1[N/4-2*k-1] + j * X1[2*k]) * (xcos2[k] + j * xsin2[k]); */
- buf_1[k].real = x[p] * xcos2[k] - x[q] * xsin2[k];
- buf_1[k].imag = -1.0 * (x[q] * xcos2[k] + x[p] * xsin2[k]);
- /* Z2[k] = (X2[N/4-2*k-1] + j * X2[2*k]) * (xcos2[k] + j * xsin2[k]); */
- buf_2[k].real = x[p + 1] * xcos2[k] - x[q + 1] * xsin2[k];
- buf_2[k].imag = -1.0 * ( x[q + 1] * xcos2[k] + x[p + 1] * xsin2[k]);
- }
- //IFFT Bit reversed shuffling
- for(i=0; i<N/8; i++)
- {
- k = bit_reverse_256[i];
- if (k < i)
- {
- swap_cmplx(&buf_1[i],&buf_1[k]);
- swap_cmplx(&buf_2[i],&buf_2[k]);
- }
- }
- /* FFT Merge */
- for (m=0; m < 6; m++)
- {
- two_m = (1 << m);
- two_m_plus_one = (1 << (m+1));
- for(k = 0; k < two_m; k++)
- {
- for(i = 0; i < 64; i += two_m_plus_one)
- {
- p = k + i;
- q = p + two_m;
- //Do block 1
- tmp_a_r = buf_1[p].real;
- tmp_a_i = buf_1[p].imag;
- tmp_b_r = buf_1[q].real * w[m][k].real - buf_1[q].imag * w[m][k].imag;
- tmp_b_i = buf_1[q].imag * w[m][k].real + buf_1[q].real * w[m][k].imag;
- buf_1[p].real = tmp_a_r + tmp_b_r;
- buf_1[p].imag = tmp_a_i + tmp_b_i;
- buf_1[q].real = tmp_a_r - tmp_b_r;
- buf_1[q].imag = tmp_a_i - tmp_b_i;
- //Do block 2
- tmp_a_r = buf_2[p].real;
- tmp_a_i = buf_2[p].imag;
- tmp_b_r = buf_2[q].real * w[m][k].real - buf_2[q].imag * w[m][k].imag;
- tmp_b_i = buf_2[q].imag * w[m][k].real + buf_2[q].real * w[m][k].imag;
- buf_2[p].real = tmp_a_r + tmp_b_r;
- buf_2[p].imag = tmp_a_i + tmp_b_i;
- buf_2[q].real = tmp_a_r - tmp_b_r;
- buf_2[q].imag = tmp_a_i - tmp_b_i;
- }
- }
- }
- /* Post IFFT complex multiply */
- for( i=0; i < N/8; i++)
- {
- /* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */
- tmp_a_r = buf_1[i].real;
- tmp_a_i = -1.0 * buf_1[i].imag;
- buf_1[i].real =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]);
- buf_1[i].imag =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]);
- /* y2[n] = z2[n] * (xcos2[n] + j * xsin2[n]) ; */
- tmp_a_r = buf_2[i].real;
- tmp_a_i = -1.0 * buf_2[i].imag;
- buf_2[i].real =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]);
- buf_2[i].imag =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]);
- }
-
- /* Window and convert to real valued signal */
- for(i=0; i<N/8; i++)
- {
- y[2*i] = -buf_1[i].imag * window[2*i];
- y[2*i+1] = buf_1[N/8-i-1].real * window[2*i+1];
- y[N/4+2*i] = -buf_1[i].real * window[N/4+2*i];
- y[N/4+2*i+1] = buf_1[N/8-i-1].imag * window[N/4+2*i+1];
- y[N/2+2*i] = -buf_2[i].real * window[N/2-2*i-1];
- y[N/2+2*i+1] = buf_2[N/8-i-1].imag * window[N/2-2*i-2];
- y[3*N/4+2*i] = buf_2[i].imag * window[N/4-2*i-1];
- y[3*N/4+2*i+1] = -buf_2[N/8-i-1].real * window[N/4-2*i-2];
- }
-
- /* Overlap and add */
- for(i=0; i<N/2; i++)
- {
- y[i] = 2 * (y[i] + delay[i]);
- delay[i] = y[N/2+i];
- }
- }