jfdctfst.c
上传用户:tongfa
上传日期:2007-01-06
资源大小:1071k
文件大小:8k
源码类别:

图片显示

开发平台:

WINDOWS

  1. /*
  2.  * jfdctfst.c
  3.  *
  4.  * Copyright (C) 1994-1996, Thomas G. Lane.
  5.  * This file is part of the Independent JPEG Group's software.
  6.  * For conditions of distribution and use, see the accompanying README file.
  7.  *
  8.  * This file contains a fast, not so accurate integer implementation of the
  9.  * forward DCT (Discrete Cosine Transform).
  10.  *
  11.  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  12.  * on each column.  Direct algorithms are also available, but they are
  13.  * much more complex and seem not to be any faster when reduced to code.
  14.  *
  15.  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  16.  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
  17.  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  18.  * JPEG textbook (see REFERENCES section in file README).  The following code
  19.  * is based directly on figure 4-8 in P&M.
  20.  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  21.  * possible to arrange the computation so that many of the multiplies are
  22.  * simple scalings of the final outputs.  These multiplies can then be
  23.  * folded into the multiplications or divisions by the JPEG quantization
  24.  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
  25.  * to be done in the DCT itself.
  26.  * The primary disadvantage of this method is that with fixed-point math,
  27.  * accuracy is lost due to imprecise representation of the scaled
  28.  * quantization values.  The smaller the quantization table entry, the less
  29.  * precise the scaled value, so this implementation does worse with high-
  30.  * quality-setting files than with low-quality ones.
  31.  */
  32. #define JPEG_INTERNALS
  33. #include "jinclude.h"
  34. #include "jpeglib.h"
  35. #include "jdct.h" /* Private declarations for DCT subsystem */
  36. #ifdef DCT_IFAST_SUPPORTED
  37. /*
  38.  * This module is specialized to the case DCTSIZE = 8.
  39.  */
  40. #if DCTSIZE != 8
  41.   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  42. #endif
  43. /* Scaling decisions are generally the same as in the LL&M algorithm;
  44.  * see jfdctint.c for more details.  However, we choose to descale
  45.  * (right shift) multiplication products as soon as they are formed,
  46.  * rather than carrying additional fractional bits into subsequent additions.
  47.  * This compromises accuracy slightly, but it lets us save a few shifts.
  48.  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
  49.  * everywhere except in the multiplications proper; this saves a good deal
  50.  * of work on 16-bit-int machines.
  51.  *
  52.  * Again to save a few shifts, the intermediate results between pass 1 and
  53.  * pass 2 are not upscaled, but are represented only to integral precision.
  54.  *
  55.  * A final compromise is to represent the multiplicative constants to only
  56.  * 8 fractional bits, rather than 13.  This saves some shifting work on some
  57.  * machines, and may also reduce the cost of multiplication (since there
  58.  * are fewer one-bits in the constants).
  59.  */
  60. #define CONST_BITS  8
  61. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  62.  * causing a lot of useless floating-point operations at run time.
  63.  * To get around this we use the following pre-calculated constants.
  64.  * If you change CONST_BITS you may want to add appropriate values.
  65.  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  66.  */
  67. #if CONST_BITS == 8
  68. #define FIX_0_382683433  ((INT32)   98) /* FIX(0.382683433) */
  69. #define FIX_0_541196100  ((INT32)  139) /* FIX(0.541196100) */
  70. #define FIX_0_707106781  ((INT32)  181) /* FIX(0.707106781) */
  71. #define FIX_1_306562965  ((INT32)  334) /* FIX(1.306562965) */
  72. #else
  73. #define FIX_0_382683433  FIX(0.382683433)
  74. #define FIX_0_541196100  FIX(0.541196100)
  75. #define FIX_0_707106781  FIX(0.707106781)
  76. #define FIX_1_306562965  FIX(1.306562965)
  77. #endif
  78. /* We can gain a little more speed, with a further compromise in accuracy,
  79.  * by omitting the addition in a descaling shift.  This yields an incorrectly
  80.  * rounded result half the time...
  81.  */
  82. #ifndef USE_ACCURATE_ROUNDING
  83. #undef DESCALE
  84. #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
  85. #endif
  86. /* Multiply a DCTELEM variable by an INT32 constant, and immediately
  87.  * descale to yield a DCTELEM result.
  88.  */
  89. #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
  90. /*
  91.  * Perform the forward DCT on one block of samples.
  92.  */
  93. GLOBAL(void)
  94. jpeg_fdct_ifast (DCTELEM * data)
  95. {
  96.   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  97.   DCTELEM tmp10, tmp11, tmp12, tmp13;
  98.   DCTELEM z1, z2, z3, z4, z5, z11, z13;
  99.   DCTELEM *dataptr;
  100.   int ctr;
  101.   SHIFT_TEMPS
  102.   /* Pass 1: process rows. */
  103.   dataptr = data;
  104.   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  105.     tmp0 = dataptr[0] + dataptr[7];
  106.     tmp7 = dataptr[0] - dataptr[7];
  107.     tmp1 = dataptr[1] + dataptr[6];
  108.     tmp6 = dataptr[1] - dataptr[6];
  109.     tmp2 = dataptr[2] + dataptr[5];
  110.     tmp5 = dataptr[2] - dataptr[5];
  111.     tmp3 = dataptr[3] + dataptr[4];
  112.     tmp4 = dataptr[3] - dataptr[4];
  113.     
  114.     /* Even part */
  115.     
  116.     tmp10 = tmp0 + tmp3; /* phase 2 */
  117.     tmp13 = tmp0 - tmp3;
  118.     tmp11 = tmp1 + tmp2;
  119.     tmp12 = tmp1 - tmp2;
  120.     
  121.     dataptr[0] = tmp10 + tmp11; /* phase 3 */
  122.     dataptr[4] = tmp10 - tmp11;
  123.     
  124.     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
  125.     dataptr[2] = tmp13 + z1; /* phase 5 */
  126.     dataptr[6] = tmp13 - z1;
  127.     
  128.     /* Odd part */
  129.     tmp10 = tmp4 + tmp5; /* phase 2 */
  130.     tmp11 = tmp5 + tmp6;
  131.     tmp12 = tmp6 + tmp7;
  132.     /* The rotator is modified from fig 4-8 to avoid extra negations. */
  133.     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
  134.     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
  135.     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
  136.     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
  137.     z11 = tmp7 + z3; /* phase 5 */
  138.     z13 = tmp7 - z3;
  139.     dataptr[5] = z13 + z2; /* phase 6 */
  140.     dataptr[3] = z13 - z2;
  141.     dataptr[1] = z11 + z4;
  142.     dataptr[7] = z11 - z4;
  143.     dataptr += DCTSIZE; /* advance pointer to next row */
  144.   }
  145.   /* Pass 2: process columns. */
  146.   dataptr = data;
  147.   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  148.     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
  149.     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
  150.     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
  151.     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
  152.     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
  153.     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
  154.     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
  155.     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
  156.     
  157.     /* Even part */
  158.     
  159.     tmp10 = tmp0 + tmp3; /* phase 2 */
  160.     tmp13 = tmp0 - tmp3;
  161.     tmp11 = tmp1 + tmp2;
  162.     tmp12 = tmp1 - tmp2;
  163.     
  164.     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
  165.     dataptr[DCTSIZE*4] = tmp10 - tmp11;
  166.     
  167.     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
  168.     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
  169.     dataptr[DCTSIZE*6] = tmp13 - z1;
  170.     
  171.     /* Odd part */
  172.     tmp10 = tmp4 + tmp5; /* phase 2 */
  173.     tmp11 = tmp5 + tmp6;
  174.     tmp12 = tmp6 + tmp7;
  175.     /* The rotator is modified from fig 4-8 to avoid extra negations. */
  176.     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
  177.     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
  178.     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
  179.     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
  180.     z11 = tmp7 + z3; /* phase 5 */
  181.     z13 = tmp7 - z3;
  182.     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
  183.     dataptr[DCTSIZE*3] = z13 - z2;
  184.     dataptr[DCTSIZE*1] = z11 + z4;
  185.     dataptr[DCTSIZE*7] = z11 - z4;
  186.     dataptr++; /* advance pointer to next column */
  187.   }
  188. }
  189. #endif /* DCT_IFAST_SUPPORTED */