geqo_erx.c
上传用户:blenddy
上传日期:2007-01-07
资源大小:6495k
文件大小:11k
- /*------------------------------------------------------------------------
- *
- * geqo_erx.c
- * edge recombination crossover [ER]
- *
- * $Id: geqo_erx.c,v 1.11.2.1 1999/08/02 05:57:04 scrappy Exp $
- *
- *-------------------------------------------------------------------------
- */
- /* contributed by:
- =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
- * Martin Utesch * Institute of Automatic Control *
- = = University of Mining and Technology =
- * utesch@aut.tu-freiberg.de * Freiberg, Germany *
- =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
- */
- /* the edge recombination algorithm is adopted from Genitor : */
- /*************************************************************/
- /* */
- /* Copyright (c) 1990 */
- /* Darrell L. Whitley */
- /* Computer Science Department */
- /* Colorado State University */
- /* */
- /* Permission is hereby granted to copy all or any part of */
- /* this program for free distribution. The author's name */
- /* and this copyright notice must be included in any copy. */
- /* */
- /*************************************************************/
- #include "postgres.h"
- #include "optimizer/geqo_recombination.h"
- #include "optimizer/geqo_random.h"
- static int gimme_edge(Gene gene1, Gene gene2, Edge *edge_table);
- static void remove_gene(Gene gene, Edge edge, Edge *edge_table);
- static Gene gimme_gene(Edge edge, Edge *edge_table);
- static Gene edge_failure(Gene *gene, int index, Edge *edge_table, int num_gene);
- /* alloc_edge_table
- *
- * allocate memory for edge table
- *
- */
- Edge *
- alloc_edge_table(int num_gene)
- {
- Edge *edge_table;
- /*
- * palloc one extra location so that nodes numbered 1..n can be
- * indexed directly; 0 will not be used
- */
- edge_table = (Edge *) palloc((num_gene + 1) * sizeof(Edge));
- return edge_table;
- }
- /* free_edge_table
- *
- * deallocate memory of edge table
- *
- */
- void
- free_edge_table(Edge *edge_table)
- {
- pfree(edge_table);
- }
- /* gimme_edge_table
- *
- * fills a data structure which represents the set of explicit
- * edges between points in the (2) input genes
- *
- * assumes circular tours and bidirectional edges
- *
- * gimme_edge() will set "shared" edges to negative values
- *
- * returns average number edges/city in range 2.0 - 4.0
- * where 2.0=homogeneous; 4.0=diverse
- *
- */
- float
- gimme_edge_table(Gene *tour1, Gene *tour2, int num_gene, Edge *edge_table)
- {
- int i,
- index1,
- index2;
- int edge_total; /* total number of unique edges in two
- * genes */
- /* at first clear the edge table's old data */
- for (i = 1; i <= num_gene; i++)
- {
- edge_table[i].total_edges = 0;
- edge_table[i].unused_edges = 0;
- }
- /* fill edge table with new data */
- edge_total = 0;
- for (index1 = 0; index1 < num_gene; index1++)
- {
- /*
- * presume the tour is circular, i.e. 1->2, 2->3, 3->1 this
- * operaton maps n back to 1
- */
- index2 = (index1 + 1) % num_gene;
- /*
- * edges are bidirectional, i.e. 1->2 is same as 2->1 call
- * gimme_edge twice per edge
- */
- edge_total += gimme_edge(tour1[index1], tour1[index2], edge_table);
- gimme_edge(tour1[index2], tour1[index1], edge_table);
- edge_total += gimme_edge(tour2[index1], tour2[index2], edge_table);
- gimme_edge(tour2[index2], tour2[index1], edge_table);
- }
- /* return average number of edges per index */
- return ((float) (edge_total * 2) / (float) num_gene);
- }
- /* gimme_edge
- *
- * registers edge from city1 to city2 in input edge table
- *
- * no assumptions about directionality are made;
- * therefor it is up to the calling routine to
- * call gimme_edge twice to make a bi-directional edge
- * between city1 and city2;
- * uni-directional edges are possible as well (just call gimme_edge
- * once with the direction from city1 to city2)
- *
- * returns 1 if edge was not already registered and was just added;
- * 0 if edge was already registered and edge_table is unchanged
- */
- static int
- gimme_edge(Gene gene1, Gene gene2, Edge *edge_table)
- {
- int i;
- int edges;
- int city1 = (int) gene1;
- int city2 = (int) gene2;
- /* check whether edge city1->city2 already exists */
- edges = edge_table[city1].total_edges;
- for (i = 0; i < edges; i++)
- {
- if ((Gene) Abs(edge_table[city1].edge_list[i]) == city2)
- {
- /* mark shared edges as negative */
- edge_table[city1].edge_list[i] = 0 - city2;
- return 0;
- }
- }
- /* add city1->city2; */
- edge_table[city1].edge_list[edges] = city2;
- /* increment the number of edges from city1 */
- edge_table[city1].total_edges++;
- edge_table[city1].unused_edges++;
- return 1;
- }
- /* gimme_tour
- *
- * creates a new tour using edges from the edge table.
- * priority is given to "shared" edges (i.e. edges which
- * all parent genes possess and are marked as negative
- * in the edge table.)
- *
- */
- int
- gimme_tour(Edge *edge_table, Gene *new_gene, int num_gene)
- {
- int i;
- int edge_failures = 0;
- new_gene[0] = (Gene) geqo_randint(num_gene, 1); /* choose int between 1
- * and num_gene */
- for (i = 1; i < num_gene; i++)
- {
- /*
- * as each point is entered into the tour, remove it from the edge
- * table
- */
- remove_gene(new_gene[i - 1], edge_table[(int) new_gene[i - 1]], edge_table);
- /* find destination for the newly entered point */
- if (edge_table[new_gene[i - 1]].unused_edges > 0)
- new_gene[i] = gimme_gene(edge_table[(int) new_gene[i - 1]], edge_table);
- else
- { /* cope with fault */
- edge_failures++;
- new_gene[i] = edge_failure(new_gene, i - 1, edge_table, num_gene);
- }
- /* mark this node as incorporated */
- edge_table[(int) new_gene[i - 1]].unused_edges = -1;
- } /* for (i=1; i<num_gene; i++) */
- return edge_failures;
- }
- /* remove_gene
- *
- * removes input gene from edge_table.
- * input edge is used
- * to identify deletion locations within edge table.
- *
- */
- static void
- remove_gene(Gene gene, Edge edge, Edge *edge_table)
- {
- int i,
- j;
- int possess_edge;
- int genes_remaining;
- /*
- * do for every gene known to have an edge to input gene (i.e. in
- * edge_list for input edge)
- */
- for (i = 0; i < edge.unused_edges; i++)
- {
- possess_edge = (int) Abs(edge.edge_list[i]);
- genes_remaining = edge_table[possess_edge].unused_edges;
- /* find the input gene in all edge_lists and delete it */
- for (j = 0; j < genes_remaining; j++)
- {
- if ((Gene) Abs(edge_table[possess_edge].edge_list[j]) == gene)
- {
- edge_table[possess_edge].unused_edges--;
- edge_table[possess_edge].edge_list[j] =
- edge_table[possess_edge].edge_list[genes_remaining - 1];
- break;
- }
- }
- }
- }
- /* gimme_gene
- *
- * priority is given to "shared" edges
- * (i.e. edges which both genes possess)
- *
- */
- static Gene
- gimme_gene(Edge edge, Edge *edge_table)
- {
- int i;
- Gene friend;
- int minimum_edges;
- int minimum_count = -1;
- int rand_decision;
- /*
- * no point has edges to more than 4 other points thus, this contrived
- * minimum will be replaced
- */
- minimum_edges = 5;
- /* consider candidate destination points in edge list */
- for (i = 0; i < edge.unused_edges; i++)
- {
- friend = (Gene) edge.edge_list[i];
- /*
- * give priority to shared edges that are negative; so return 'em
- */
- /*
- * negative values are caught here so we need not worry about
- * converting to absolute values
- */
- if (friend < 0)
- return (Gene) Abs(friend);
- /*
- * give priority to candidates with fewest remaining unused edges;
- * find out what the minimum number of unused edges is
- * (minimum_edges); if there is more than one cadidate with the
- * minimum number of unused edges keep count of this number
- * (minimum_count);
- */
- /*
- * The test for minimum_count can probably be removed at some
- * point but comments should probably indicate exactly why it is
- * guaranteed that the test will always succeed the first time
- * around. If it can fail then the code is in error
- */
- if (edge_table[(int) friend].unused_edges < minimum_edges)
- {
- minimum_edges = edge_table[(int) friend].unused_edges;
- minimum_count = 1;
- }
- else if (minimum_count == -1)
- elog(ERROR, "gimme_gene: Internal error - minimum_count not set");
- else if (edge_table[(int) friend].unused_edges == minimum_edges)
- minimum_count++;
- } /* for (i=0; i<edge.unused_edges; i++) */
- /* random decision of the possible candidates to use */
- rand_decision = (int) geqo_randint(minimum_count - 1, 0);
- for (i = 0; i < edge.unused_edges; i++)
- {
- friend = (Gene) edge.edge_list[i];
- /* return the chosen candidate point */
- if (edge_table[(int) friend].unused_edges == minimum_edges)
- {
- minimum_count--;
- if (minimum_count == rand_decision)
- return friend;
- }
- }
- /* ... should never be reached */
- elog(ERROR, "gimme_gene: neither shared nor minimum number nor random edge found");
- return 0; /* to keep the compiler quiet */
- }
- /* edge_failure
- *
- * routine for handling edge failure
- *
- */
- static Gene
- edge_failure(Gene *gene, int index, Edge *edge_table, int num_gene)
- {
- int i;
- Gene fail_gene = gene[index];
- int remaining_edges = 0;
- int four_count = 0;
- int rand_decision;
- /*
- * how many edges remain? how many gene with four total (initial)
- * edges remain?
- */
- for (i = 1; i <= num_gene; i++)
- {
- if ((edge_table[i].unused_edges != -1) && (i != (int) fail_gene))
- {
- remaining_edges++;
- if (edge_table[i].total_edges == 4)
- four_count++;
- }
- }
- /*
- * random decision of the gene with remaining edges and whose
- * total_edges == 4
- */
- if (four_count != 0)
- {
- rand_decision = (int) geqo_randint(four_count - 1, 0);
- for (i = 1; i <= num_gene; i++)
- {
- if ((Gene) i != fail_gene &&
- edge_table[i].unused_edges != -1 &&
- edge_table[i].total_edges == 4)
- {
- four_count--;
- if (rand_decision == four_count)
- return (Gene) i;
- }
- }
- elog(DEBUG, "edge_failure(1): no edge found via random decision and total_edges == 4");
- }
- else
- /* random decision of the gene with remaining edges */
- if (remaining_edges != 0)
- {
- rand_decision = (int) geqo_randint(remaining_edges - 1, 0);
- for (i = 1; i <= num_gene; i++)
- {
- if ((Gene) i != fail_gene &&
- edge_table[i].unused_edges != -1)
- {
- remaining_edges--;
- if (rand_decision == remaining_edges)
- return i;
- }
- }
- elog(DEBUG, "edge_failure(2): no edge found via random decision and remainig edges");
- }
- /*
- * edge table seems to be empty; this happens sometimes on the last
- * point due to the fact that the first point is removed from the
- * table even though only one of its edges has been determined
- */
- else
- { /* occurs only at the last point in the
- * tour; simply look for the point which
- * is not yet used */
- for (i = 1; i <= num_gene; i++)
- if (edge_table[i].unused_edges >= 0)
- return (Gene) i;
- elog(DEBUG, "edge_failure(3): no edge found via looking for the last ununsed point");
- }
- /* ... should never be reached */
- elog(ERROR, "edge_failure: no edge detected");
- return 0; /* to keep the compiler quiet */
- }