pqg.c
上传用户:lyxiangda
上传日期:2007-01-12
资源大小:3042k
文件大小:22k
- /*
- * The contents of this file are subject to the Mozilla Public
- * License Version 1.1 (the "License"); you may not use this file
- * except in compliance with the License. You may obtain a copy of
- * the License at http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS
- * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
- * implied. See the License for the specific language governing
- * rights and limitations under the License.
- *
- * The Original Code is the Netscape security libraries.
- *
- * The Initial Developer of the Original Code is Netscape
- * Communications Corporation. Portions created by Netscape are
- * Copyright (C) 1994-2000 Netscape Communications Corporation. All
- * Rights Reserved.
- *
- * Contributor(s):
- *
- * Alternatively, the contents of this file may be used under the
- * terms of the GNU General Public License Version 2 or later (the
- * "GPL"), in which case the provisions of the GPL are applicable
- * instead of those above. If you wish to allow use of your
- * version of this file only under the terms of the GPL and not to
- * allow others to use your version of this file under the MPL,
- * indicate your decision by deleting the provisions above and
- * replace them with the notice and other provisions required by
- * the GPL. If you do not delete the provisions above, a recipient
- * may use your version of this file under either the MPL or the
- * GPL.
- */
- /*
- * PQG parameter generation/verification. Based on FIPS 186-1.
- *
- * $Id: pqg.c,v 1.5 2000/09/29 04:03:34 nelsonb%netscape.com Exp $
- */
- #include "prerr.h"
- #include "secerr.h"
- #include "prtypes.h"
- #include "blapi.h"
- #include "secitem.h"
- #include "mpi.h"
- #include "mpprime.h"
- #include "mplogic.h"
- #include "secmpi.h"
- #define MAX_ITERATIONS 5 /* Maximum number of iterations of primegen */
- #define NUMITER 40 /* Number iterations for primality tests */
- /* XXX to be replaced by define in blapit.h */
- #define BITS_IN_Q 160
- /* For FIPS-compliance testing.
- ** The following array holds the seed defined in FIPS 186-1 appendix 5.
- ** This seed is used to generate P and Q according to appendix 2; use of
- ** this seed will exactly generate the PQG specified in appendix 2.
- */
- #ifdef FIPS_186_1_A5_TEST
- static const unsigned char fips_186_1_a5_pqseed[] = {
- 0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8,
- 0xb6, 0x21, 0x1b, 0x40, 0x62, 0xba, 0x32, 0x24,
- 0xe0, 0x42, 0x7d, 0xd3
- };
- #endif
- /* Get a seed for generating P and Q. If in testing mode, copy in the
- ** seed from FIPS 186-1 appendix 5. Otherwise, obtain bytes from the
- ** global random number generator.
- */
- static SECStatus
- getPQseed(SECItem *seed)
- {
- if (seed->data) {
- PORT_Free(seed->data);
- seed->data = NULL;
- }
- seed->data = (unsigned char*)PORT_ZAlloc(seed->len);
- if (!seed->data) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- return SECFailure;
- }
- #ifdef FIPS_186_1_A5_TEST
- memcpy(seed->data, fips_186_1_a5_pqseed, seed->len);
- return SECSuccess;
- #else
- return RNG_GenerateGlobalRandomBytes(seed->data, seed->len);
- #endif
- }
- /* Generate a candidate h value. If in testing mode, use the h value
- ** specified in FIPS 186-1 appendix 5, h = 2. Otherwise, obtain bytes
- ** from the global random number generator.
- */
- static SECStatus
- generate_h_candidate(SECItem *hit, mp_int *H)
- {
- SECStatus rv = SECSuccess;
- mp_err err = MP_OKAY;
- #ifdef FIPS_186_1_A5_TEST
- memset(hit->data, 0, hit->len);
- hit->data[hit->len-1] = 0x02;
- #else
- rv = RNG_GenerateGlobalRandomBytes(hit->data, hit->len);
- #endif
- if (rv)
- return SECFailure;
- err = mp_read_unsigned_octets(H, hit->data, hit->len);
- if (err) {
- MP_TO_SEC_ERROR(err);
- return SECFailure;
- }
- return SECSuccess;
- }
- /* Compute SHA[(SEED + addend) mod 2**g]
- ** Result is placed in shaOutBuf.
- ** This computation is used in steps 2 and 7 of FIPS 186 Appendix 2.2 .
- */
- static SECStatus
- addToSeedThenSHA(const SECItem * seed,
- unsigned long addend,
- int g,
- unsigned char * shaOutBuf)
- {
- SECItem str = { 0, 0, 0 };
- mp_int s, sum, modulus, tmp;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- MP_DIGITS(&s) = 0;
- MP_DIGITS(&sum) = 0;
- MP_DIGITS(&modulus) = 0;
- MP_DIGITS(&tmp) = 0;
- CHECK_MPI_OK( mp_init(&s) );
- CHECK_MPI_OK( mp_init(&sum) );
- CHECK_MPI_OK( mp_init(&modulus) );
- SECITEM_TO_MPINT(*seed, &s); /* s = seed */
- /* seed += addend */
- if (addend < MP_DIGIT_MAX) {
- CHECK_MPI_OK( mp_add_d(&s, (mp_digit)addend, &s) );
- } else {
- CHECK_MPI_OK( mp_init(&tmp) );
- CHECK_MPI_OK( mp_set_ulong(&tmp, addend) );
- CHECK_MPI_OK( mp_add(&s, &tmp, &s) );
- }
- CHECK_MPI_OK( mp_div_2d(&s, (mp_digit)g, NULL, &sum) );/*sum = s mod 2**g */
- MPINT_TO_SECITEM(&sum, &str, NULL);
- rv = SHA1_HashBuf(shaOutBuf, str.data, str.len); /* SHA1 hash result */
- cleanup:
- mp_clear(&s);
- mp_clear(&sum);
- mp_clear(&modulus);
- mp_clear(&tmp);
- if (str.data)
- SECITEM_ZfreeItem(&str, PR_FALSE);
- if (err) {
- MP_TO_SEC_ERROR(err);
- return SECFailure;
- }
- return rv;
- }
- /*
- ** Perform steps 2 and 3 of FIPS 186, appendix 2.2.
- ** Generate Q from seed.
- */
- static SECStatus
- makeQfromSeed(
- unsigned int g, /* input. Length of seed in bits. */
- const SECItem * seed, /* input. */
- mp_int * Q) /* output. */
- {
- unsigned char sha1[SHA1_LENGTH];
- unsigned char sha2[SHA1_LENGTH];
- unsigned char U[SHA1_LENGTH];
- SECStatus rv = SECSuccess;
- mp_err err = MP_OKAY;
- int i;
- /* ******************************************************************
- ** Step 2.
- ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]."
- **/
- CHECK_SEC_OK( SHA1_HashBuf(sha1, seed->data, seed->len) );
- CHECK_SEC_OK( addToSeedThenSHA(seed, 1, g, sha2) );
- for (i=0; i<SHA1_LENGTH; ++i)
- U[i] = sha1[i] ^ sha2[i];
- /* ******************************************************************
- ** Step 3.
- ** "Form Q from U by setting the most signficant bit (the 2**159 bit)
- ** and the least signficant bit to 1. In terms of boolean operations,
- ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160."
- */
- U[0] |= 0x80; /* U is MSB first */
- U[SHA1_LENGTH-1] |= 0x01;
- err = mp_read_unsigned_octets(Q, U, SHA1_LENGTH);
- cleanup:
- memset(U, 0, SHA1_LENGTH);
- memset(sha1, 0, SHA1_LENGTH);
- memset(sha2, 0, SHA1_LENGTH);
- if (err) {
- MP_TO_SEC_ERROR(err);
- return SECFailure;
- }
- return rv;
- }
- /* Perform steps 7, 8 and 9 of FIPS 186, appendix 2.2.
- ** Generate P from Q, seed, L, and offset.
- */
- static SECStatus
- makePfromQandSeed(
- unsigned int L, /* Length of P in bits. Per FIPS 186. */
- unsigned int offset, /* Per FIPS 186, appendix 2.2. */
- unsigned int g, /* input. Length of seed in bits. */
- const SECItem * seed, /* input. */
- const mp_int * Q, /* input. */
- mp_int * P) /* output. */
- {
- unsigned int k; /* Per FIPS 186, appendix 2.2. */
- unsigned int n; /* Per FIPS 186, appendix 2.2. */
- mp_digit b; /* Per FIPS 186, appendix 2.2. */
- unsigned char V_k[SHA1_LENGTH];
- mp_int W, X, c, twoQ, V_n, tmp;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- /* Initialize bignums */
- MP_DIGITS(&W) = 0;
- MP_DIGITS(&X) = 0;
- MP_DIGITS(&c) = 0;
- MP_DIGITS(&twoQ) = 0;
- MP_DIGITS(&V_n) = 0;
- MP_DIGITS(&tmp) = 0;
- CHECK_MPI_OK( mp_init(&W) );
- CHECK_MPI_OK( mp_init(&X) );
- CHECK_MPI_OK( mp_init(&c) );
- CHECK_MPI_OK( mp_init(&twoQ) );
- CHECK_MPI_OK( mp_init(&tmp) );
- CHECK_MPI_OK( mp_init(&V_n) );
- /* L - 1 = n*160 + b */
- n = (L - 1) / BITS_IN_Q;
- b = (L - 1) % BITS_IN_Q;
- /* ******************************************************************
- ** Step 7.
- ** "for k = 0 ... n let
- ** V_k = SHA[(SEED + offset + k) mod 2**g]."
- **
- ** Step 8.
- ** "Let W be the integer
- ** W = V_0 + (V_1 * 2**160) + ... + (V_n-1 * 2**((n-1)*160))
- ** + ((V_n mod 2**b) * 2**(n*160))
- */
- for (k=0; k<n; ++k) { /* Do the first n terms of V_k */
- /* Do step 7 for iteration k.
- ** V_k = SHA[(seed + offset + k) mod 2**g]
- */
- CHECK_SEC_OK( addToSeedThenSHA(seed, offset + k, g, V_k) );
- /* Do step 8 for iteration k.
- ** W += V_k * 2**(k*160)
- */
- OCTETS_TO_MPINT(V_k, &tmp, SHA1_LENGTH); /* get bignum V_k */
- CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, k*160) ); /* tmp = V_k << k*160 */
- CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */
- }
- /* Step 8, continued.
- ** [W += ((V_n mod 2**b) * 2**(n*160))]
- */
- CHECK_SEC_OK( addToSeedThenSHA(seed, offset + n, g, V_k) );
- OCTETS_TO_MPINT(V_k, &V_n, SHA1_LENGTH); /* get bignum V_n */
- CHECK_MPI_OK( mp_div_2d(&V_n, b, NULL, &tmp) ); /* tmp = V_n mod 2**b */
- CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, n*160) ); /* tmp = tmp << n*160 */
- CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */
- /* Step 8, continued.
- ** "and let X = W + 2**(L-1).
- ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
- */
- CHECK_MPI_OK( mpl_set_bit(&X, (mp_size)(L-1), 1) ); /* X = 2**(L-1) */
- CHECK_MPI_OK( mp_add(&X, &W, &X) ); /* X += W */
- /*************************************************************
- ** Step 9.
- ** "Let c = X mod 2q and set p = X - (c - 1).
- ** Note that p is congruent to 1 mod 2q."
- */
- CHECK_MPI_OK( mp_mul_2(Q, &twoQ) ); /* 2q */
- CHECK_MPI_OK( mp_mod(&X, &twoQ, &c) ); /* c = X mod 2q */
- CHECK_MPI_OK( mp_sub_d(&c, 1, &c) ); /* c -= 1 */
- CHECK_MPI_OK( mp_sub(&X, &c, P) ); /* P = X - c */
- cleanup:
- mp_clear(&W);
- mp_clear(&X);
- mp_clear(&c);
- mp_clear(&twoQ);
- mp_clear(&V_n);
- mp_clear(&tmp);
- if (err) {
- MP_TO_SEC_ERROR(err);
- return SECFailure;
- }
- return rv;
- }
- /*
- ** Generate G from h, P, and Q.
- */
- static SECStatus
- makeGfromH(const mp_int *P, /* input. */
- const mp_int *Q, /* input. */
- mp_int *H, /* input and output. */
- mp_int *G, /* output. */
- PRBool *passed)
- {
- mp_int exp, pm1;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- *passed = PR_FALSE;
- MP_DIGITS(&exp) = 0;
- MP_DIGITS(&pm1) = 0;
- CHECK_MPI_OK( mp_init(&exp) );
- CHECK_MPI_OK( mp_init(&pm1) );
- CHECK_MPI_OK( mp_sub_d(P, 1, &pm1) ); /* P - 1 */
- if ( mp_cmp(H, &pm1) > 0) /* H = H mod (P-1) */
- CHECK_MPI_OK( mp_sub(H, &pm1, H) );
- /* Let b = 2**n (smallest power of 2 greater than P).
- ** Since P-1 >= b/2, and H < b, quotient(H/(P-1)) = 0 or 1
- ** so the above operation safely computes H mod (P-1)
- */
- /* Check for H = to 0 or 1. Regen H if so. (Regen means return error). */
- if (mp_cmp_d(H, 1) <= 0) {
- rv = SECFailure;
- goto cleanup;
- }
- /* Compute G, according to the equation G = (H ** ((P-1)/Q)) mod P */
- CHECK_MPI_OK( mp_div(&pm1, Q, &exp, NULL) ); /* exp = (P-1)/Q */
- CHECK_MPI_OK( mp_exptmod(H, &exp, P, G) ); /* G = H ** exp mod P */
- /* Check for G == 0 or G == 1, return error if so. */
- if (mp_cmp_d(G, 1) <= 0) {
- rv = SECFailure;
- goto cleanup;
- }
- *passed = PR_TRUE;
- cleanup:
- mp_clear(&exp);
- mp_clear(&pm1);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
- }
- SECStatus
- PQG_ParamGen(unsigned int j, PQGParams **pParams, PQGVerify **pVfy)
- {
- unsigned int L; /* Length of P in bits. Per FIPS 186. */
- unsigned int seedBytes;
- if (j > 8 || !pParams || !pVfy) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- L = 512 + (j * 64); /* bits in P */
- seedBytes = L/8;
- return PQG_ParamGenSeedLen(j, seedBytes, pParams, pVfy);
- }
- /* This code uses labels and gotos, so that it can follow the numbered
- ** steps in the algorithms from FIPS 186 appendix 2.2 very closely,
- ** and so that the correctness of this code can be easily verified.
- ** So, please forgive the ugly c code.
- **/
- SECStatus
- PQG_ParamGenSeedLen(unsigned int j, unsigned int seedBytes,
- PQGParams **pParams, PQGVerify **pVfy)
- {
- unsigned int L; /* Length of P in bits. Per FIPS 186. */
- unsigned int n; /* Per FIPS 186, appendix 2.2. */
- unsigned int b; /* Per FIPS 186, appendix 2.2. */
- unsigned int g; /* Per FIPS 186, appendix 2.2. */
- unsigned int counter; /* Per FIPS 186, appendix 2.2. */
- unsigned int offset; /* Per FIPS 186, appendix 2.2. */
- SECItem *seed; /* Per FIPS 186, appendix 2.2. */
- PRArenaPool *arena = NULL;
- PQGParams *params = NULL;
- PQGVerify *verify = NULL;
- PRBool passed;
- SECItem hit = { 0, 0, 0 };
- mp_int P, Q, G, H, l;
- mp_err err = MP_OKAY;
- SECStatus rv = SECFailure;
- int iterations = 0;
- if (j > 8 || !pParams || !pVfy) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- /* Initialize an arena for the params. */
- arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
- if (!arena) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- return SECFailure;
- }
- params = (PQGParams *)PORT_ArenaZAlloc(arena, sizeof(PQGParams));
- if (!params) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- PORT_FreeArena(arena, PR_TRUE);
- return SECFailure;
- }
- params->arena = arena;
- /* Initialize an arena for the verify. */
- arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
- if (!arena) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- return SECFailure;
- }
- verify = (PQGVerify *)PORT_ArenaZAlloc(arena, sizeof(PQGVerify));
- if (!verify) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- PORT_FreeArena(arena, PR_TRUE);
- PORT_FreeArena(params->arena, PR_TRUE);
- return SECFailure;
- }
- verify->arena = arena;
- seed = &verify->seed;
- arena = NULL;
- /* Initialize bignums */
- MP_DIGITS(&P) = 0;
- MP_DIGITS(&Q) = 0;
- MP_DIGITS(&G) = 0;
- MP_DIGITS(&H) = 0;
- MP_DIGITS(&l) = 0;
- CHECK_MPI_OK( mp_init(&P) );
- CHECK_MPI_OK( mp_init(&Q) );
- CHECK_MPI_OK( mp_init(&G) );
- CHECK_MPI_OK( mp_init(&H) );
- CHECK_MPI_OK( mp_init(&l) );
- /* Compute lengths. */
- L = 512 + (j * 64); /* bits in P */
- n = (L - 1) / BITS_IN_Q; /* BITS_IN_Q is 160 */
- b = (L - 1) % BITS_IN_Q;
- g = seedBytes * BITS_PER_BYTE; /* bits in seed, NOT G of PQG. */
- step_1:
- /* ******************************************************************
- ** Step 1.
- ** "Choose an abitrary sequence of at least 160 bits and call it SEED.
- ** Let g be the length of SEED in bits."
- */
- if (++iterations > MAX_ITERATIONS) { /* give up after a while */
- PORT_SetError(SEC_ERROR_NEED_RANDOM);
- goto cleanup;
- }
- seed->len = seedBytes;
- CHECK_SEC_OK( getPQseed(seed) );
- /* ******************************************************************
- ** Step 2.
- ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]."
- **
- ** Step 3.
- ** "Form Q from U by setting the most signficant bit (the 2**159 bit)
- ** and the least signficant bit to 1. In terms of boolean operations,
- ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160."
- */
- CHECK_SEC_OK( makeQfromSeed(g, seed, &Q) );
- /* ******************************************************************
- ** Step 4.
- ** "Use a robust primality testing algorithm to test whether q is prime."
- **
- ** Appendix 2.1 states that a Rabin test with at least 50 iterations
- ** "will give an acceptable probability of error."
- */
- /*CHECK_SEC_OK( prm_RabinTest(&Q, &passed) );*/
- err = mpp_pprime(&Q, 40);
- passed = (err == MP_YES) ? SECSuccess : SECFailure;
- /* ******************************************************************
- ** Step 5. "If q is not prime, goto step 1."
- */
- if (passed != SECSuccess)
- goto step_1;
- /* ******************************************************************
- ** Step 6. "Let counter = 0 and offset = 2."
- */
- counter = 0;
- offset = 2;
- step_7:
- /* ******************************************************************
- ** Step 7.
- ** "for k = 0 ... n let
- ** V_k = SHA[(SEED + offset + k) mod 2**g]."
- **
- ** Step 8.
- ** "Let W be the sum of (V_k * 2**(k*160)) for k = 0 ... n
- ** and let X = W + 2**(L-1).
- ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
- **
- ** Step 9.
- ** "Let c = X mod 2q and set p = X - (c - 1).
- ** Note that p is congruent to 1 mod 2q."
- */
- CHECK_SEC_OK( makePfromQandSeed(L, offset, g, seed, &Q, &P) );
- /*************************************************************
- ** Step 10.
- ** "if p < 2**(L-1), then goto step 13."
- */
- CHECK_MPI_OK( mpl_set_bit(&l, (mp_size)(L-1), 1) ); /* l = 2**(L-1) */
- if (mp_cmp(&P, &l) < 0)
- goto step_13;
- /************************************************************
- ** Step 11.
- ** "Perform a robust primality test on p."
- */
- /*CHECK_SEC_OK( prm_RabinTest(&P, &passed) );*/
- err = mpp_pprime(&P, 40);
- passed = (err == MP_YES) ? SECSuccess : SECFailure;
- /* ******************************************************************
- ** Step 12. "If p passes the test performed in step 11, go to step 15."
- */
- if (passed == SECSuccess)
- goto step_15;
- step_13:
- /* ******************************************************************
- ** Step 13. "Let counter = counter + 1 and offset = offset + n + 1."
- */
- counter++;
- offset += n + 1;
- /* ******************************************************************
- ** Step 14. "If counter >= 4096 goto step 1, otherwise go to step 7."
- */
- if (counter >= 4096)
- goto step_1;
- goto step_7;
- step_15:
- /* ******************************************************************
- ** Step 15.
- ** "Save the value of SEED and the value of counter for use
- ** in certifying the proper generation of p and q."
- */
- /* Generate h. */
- SECITEM_AllocItem(NULL, &hit, seedBytes); /* h is no longer than p */
- if (!hit.data) goto cleanup;
- do {
- /* loop generate h until 1<h<p-1 and (h**[(p-1)/q])mod p > 1 */
- CHECK_SEC_OK( generate_h_candidate(&hit, &H) );
- CHECK_SEC_OK( makeGfromH(&P, &Q, &H, &G, &passed) );
- } while (passed != PR_TRUE);
- /* All generation is done. Now, save the PQG params. */
- MPINT_TO_SECITEM(&P, ¶ms->prime, params->arena);
- MPINT_TO_SECITEM(&Q, ¶ms->subPrime, params->arena);
- MPINT_TO_SECITEM(&G, ¶ms->base, params->arena);
- MPINT_TO_SECITEM(&H, &verify->h, verify->arena);
- verify->counter = counter;
- *pParams = params;
- *pVfy = verify;
- cleanup:
- mp_clear(&P);
- mp_clear(&Q);
- mp_clear(&G);
- mp_clear(&H);
- mp_clear(&l);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- if (rv) {
- PORT_FreeArena(params->arena, PR_TRUE);
- PORT_FreeArena(verify->arena, PR_TRUE);
- }
- return rv;
- }
- SECStatus
- PQG_VerifyParams(const PQGParams *params,
- const PQGVerify *vfy, SECStatus *result)
- {
- SECStatus rv = SECSuccess;
- int passed;
- unsigned int g, n, L, offset;
- mp_int P, Q, G, P_, Q_, G_, r, h;
- mp_err err = MP_OKAY;
- int j;
- #define CHECKPARAM(cond)
- if (!(cond)) {
- *result = SECFailure;
- goto cleanup;
- }
- if (!params || !vfy || !result) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- MP_DIGITS(&P) = 0;
- MP_DIGITS(&Q) = 0;
- MP_DIGITS(&G) = 0;
- MP_DIGITS(&P_) = 0;
- MP_DIGITS(&Q_) = 0;
- MP_DIGITS(&G_) = 0;
- MP_DIGITS(&r) = 0;
- MP_DIGITS(&h) = 0;
- CHECK_MPI_OK( mp_init(&P) );
- CHECK_MPI_OK( mp_init(&Q) );
- CHECK_MPI_OK( mp_init(&G) );
- CHECK_MPI_OK( mp_init(&P_) );
- CHECK_MPI_OK( mp_init(&Q_) );
- CHECK_MPI_OK( mp_init(&G_) );
- CHECK_MPI_OK( mp_init(&r) );
- CHECK_MPI_OK( mp_init(&h) );
- *result = SECSuccess;
- SECITEM_TO_MPINT(params->prime, &P);
- SECITEM_TO_MPINT(params->subPrime, &Q);
- SECITEM_TO_MPINT(params->base, &G);
- /* 1. Q is 160 bits long. */
- CHECKPARAM( mpl_significant_bits(&Q) == 160 );
- /* 2. P is one of the 9 valid lengths. */
- L = mpl_significant_bits(&P);
- j = PQG_PBITS_TO_INDEX(L);
- CHECKPARAM( j >= 0 && j <= 8 );
- /* 3. G < P */
- CHECKPARAM( mp_cmp(&G, &P) < 0 );
- /* 4. P % Q == 1 */
- CHECK_MPI_OK( mp_mod(&P, &Q, &r) );
- CHECKPARAM( mp_cmp_d(&r, 1) == 0 );
- /* 5. Q is prime */
- CHECKPARAM( mpp_pprime(&Q, NUMITER) == MP_YES );
- /* 6. P is prime */
- CHECKPARAM( mpp_pprime(&P, NUMITER) == MP_YES );
- /* Steps 7-12 are done only if the optional PQGVerify is supplied. */
- if (!vfy) goto cleanup;
- /* 7. counter < 4096 */
- CHECKPARAM( vfy->counter < 4096 );
- /* 8. g >= 160 and g < 2048 (g is length of seed in bits) */
- g = vfy->seed.len * 8;
- CHECKPARAM( g >= 160 && g < 2048 );
- /* 9. Q generated from SEED matches Q in PQGParams. */
- CHECK_SEC_OK( makeQfromSeed(g, &vfy->seed, &Q_) );
- CHECKPARAM( mp_cmp(&Q, &Q_) == 0 );
- /* 10. P generated from (L, counter, g, SEED, Q) matches P in PQGParams. */
- n = (L - 1) / BITS_IN_Q;
- offset = vfy->counter * (n + 1) + 2;
- CHECK_SEC_OK( makePfromQandSeed(L, offset, g, &vfy->seed, &Q, &P_) );
- CHECKPARAM( mp_cmp(&P, &P_) == 0 );
- /* Next two are optional: if h == 0 ignore */
- if (vfy->h.len == 0) goto cleanup;
- /* 11. 1 < h < P-1 */
- SECITEM_TO_MPINT(vfy->h, &h);
- CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) ); /* P is prime, p-1 == zero 1st bit */
- CHECKPARAM( mp_cmp_d(&h, 1) > 0 && mp_cmp(&h, &P) );
- CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */
- /* 12. G generated from h matches G in PQGParams. */
- CHECK_SEC_OK( makeGfromH(&P, &Q, &h, &G_, &passed) );
- CHECKPARAM( passed && mp_cmp(&G, &G_) == 0 );
- cleanup:
- mp_clear(&P);
- mp_clear(&Q);
- mp_clear(&G);
- mp_clear(&P_);
- mp_clear(&Q_);
- mp_clear(&G_);
- mp_clear(&r);
- mp_clear(&h);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
- }