alg2268.c
上传用户:lyxiangda
上传日期:2007-01-12
资源大小:3042k
文件大小:13k
- /*
- * alg2268.c - implementation of the algorithm in RFC 2268
- *
- * The contents of this file are subject to the Mozilla Public
- * License Version 1.1 (the "License"); you may not use this file
- * except in compliance with the License. You may obtain a copy of
- * the License at http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS
- * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
- * implied. See the License for the specific language governing
- * rights and limitations under the License.
- *
- * The Original Code is the Netscape security libraries.
- *
- * The Initial Developer of the Original Code is Netscape
- * Communications Corporation. Portions created by Netscape are
- * Copyright (C) 1994-2000 Netscape Communications Corporation. All
- * Rights Reserved.
- *
- * Contributor(s):
- *
- * Alternatively, the contents of this file may be used under the
- * terms of the GNU General Public License Version 2 or later (the
- * "GPL"), in which case the provisions of the GPL are applicable
- * instead of those above. If you wish to allow use of your
- * version of this file only under the terms of the GPL and not to
- * allow others to use your version of this file under the MPL,
- * indicate your decision by deleting the provisions above and
- * replace them with the notice and other provisions required by
- * the GPL. If you do not delete the provisions above, a recipient
- * may use your version of this file under either the MPL or the
- * GPL.
- *
- * $Id: alg2268.c,v 1.1 2000/05/27 01:29:35 nelsonb%netscape.com Exp $
- */
- #include "blapi.h"
- #include "secerr.h"
- #ifdef XP_UNIX_XXX
- #include <stddef.h> /* for ptrdiff_t */
- #endif
- /*
- ** RC2 symmetric block cypher
- */
- typedef SECStatus (rc2Func)(RC2Context *cx, unsigned char *output,
- unsigned char *input, unsigned int inputLen);
- /* forward declarations */
- static rc2Func rc2_EncryptECB;
- static rc2Func rc2_DecryptECB;
- static rc2Func rc2_EncryptCBC;
- static rc2Func rc2_DecryptCBC;
- typedef union {
- PRUint32 l[2];
- PRUint16 s[4];
- PRUint8 b[8];
- } RC2Block;
- struct RC2ContextStr {
- union {
- PRUint8 Kb[128];
- PRUint16 Kw[64];
- } u;
- RC2Block iv;
- rc2Func *enc;
- rc2Func *dec;
- };
- #define B u.Kb
- #define K u.Kw
- #define BYTESWAP(x) ((x) << 8 | (x) >> 8)
- #define SWAPK(i) cx->K[i] = (tmpS = cx->K[i], BYTESWAP(tmpS))
- #define RC2_BLOCK_SIZE 8
- #define LOAD_HARD(R)
- R[0] = (PRUint16)input[1] << 8 | input[0];
- R[1] = (PRUint16)input[3] << 8 | input[2];
- R[2] = (PRUint16)input[5] << 8 | input[4];
- R[3] = (PRUint16)input[7] << 8 | input[6];
- #define LOAD_EASY(R)
- R[0] = ((PRUint16 *)input)[0];
- R[1] = ((PRUint16 *)input)[1];
- R[2] = ((PRUint16 *)input)[2];
- R[3] = ((PRUint16 *)input)[3];
- #define STORE_HARD(R)
- output[0] = (PRUint8)(R[0]); output[1] = (PRUint8)(R[0] >> 8);
- output[2] = (PRUint8)(R[1]); output[3] = (PRUint8)(R[1] >> 8);
- output[4] = (PRUint8)(R[2]); output[5] = (PRUint8)(R[2] >> 8);
- output[6] = (PRUint8)(R[3]); output[7] = (PRUint8)(R[3] >> 8);
- #define STORE_EASY(R)
- ((PRUint16 *)output)[0] = R[0];
- ((PRUint16 *)output)[1] = R[1];
- ((PRUint16 *)output)[2] = R[2];
- ((PRUint16 *)output)[3] = R[3];
- #if defined (_X86_)
- #define LOAD(R) LOAD_EASY(R)
- #define STORE(R) STORE_EASY(R)
- #elif !defined(IS_LITTLE_ENDIAN)
- #define LOAD(R) LOAD_HARD(R)
- #define STORE(R) STORE_HARD(R)
- #else
- #define LOAD(R) if ((ptrdiff_t)input & 1) { LOAD_HARD(R) } else { LOAD_EASY(R) }
- #define STORE(R) if ((ptrdiff_t)input & 1) { STORE_HARD(R) } else { STORE_EASY(R) }
- #endif
- static const PRUint8 S[256] = {
- 0331,0170,0371,0304,0031,0335,0265,0355,0050,0351,0375,0171,0112,0240,0330,0235,
- 0306,0176,0067,0203,0053,0166,0123,0216,0142,0114,0144,0210,0104,0213,0373,0242,
- 0027,0232,0131,0365,0207,0263,0117,0023,0141,0105,0155,0215,0011,0201,0175,0062,
- 0275,0217,0100,0353,0206,0267,0173,0013,0360,0225,0041,0042,0134,0153,0116,0202,
- 0124,0326,0145,0223,0316,0140,0262,0034,0163,0126,0300,0024,0247,0214,0361,0334,
- 0022,0165,0312,0037,0073,0276,0344,0321,0102,0075,0324,0060,0243,0074,0266,0046,
- 0157,0277,0016,0332,0106,0151,0007,0127,0047,0362,0035,0233,0274,0224,0103,0003,
- 0370,0021,0307,0366,0220,0357,0076,0347,0006,0303,0325,0057,0310,0146,0036,0327,
- 0010,0350,0352,0336,0200,0122,0356,0367,0204,0252,0162,0254,0065,0115,0152,0052,
- 0226,0032,0322,0161,0132,0025,0111,0164,0113,0237,0320,0136,0004,0030,0244,0354,
- 0302,0340,0101,0156,0017,0121,0313,0314,0044,0221,0257,0120,0241,0364,0160,0071,
- 0231,0174,0072,0205,0043,0270,0264,0172,0374,0002,0066,0133,0045,0125,0227,0061,
- 0055,0135,0372,0230,0343,0212,0222,0256,0005,0337,0051,0020,0147,0154,0272,0311,
- 0323,0000,0346,0317,0341,0236,0250,0054,0143,0026,0001,0077,0130,0342,0211,0251,
- 0015,0070,0064,0033,0253,0063,0377,0260,0273,0110,0014,0137,0271,0261,0315,0056,
- 0305,0363,0333,0107,0345,0245,0234,0167,0012,0246,0040,0150,0376,0177,0301,0255
- };
- /*
- ** Create a new RC2 context suitable for RC2 encryption/decryption.
- ** "key" raw key data
- ** "len" the number of bytes of key data
- ** "iv" is the CBC initialization vector (if mode is NSS_RC2_CBC)
- ** "mode" one of NSS_RC2 or NSS_RC2_CBC
- ** "effectiveKeyLen" in bytes, not bits.
- **
- ** When mode is set to NSS_RC2_CBC the RC2 cipher is run in "cipher block
- ** chaining" mode.
- */
- RC2Context *
- RC2_CreateContext(unsigned char *key, unsigned int len,
- unsigned char *input, int mode, unsigned efLen8)
- {
- RC2Context *cx;
- PRUint8 *L,*L2;
- int i;
- PRUint16 tmpS;
- PRUint8 tmpB;
- if (!key || len == 0 || len > (sizeof cx->B) || efLen8 > (sizeof cx->B)) {
- return NULL;
- }
- if (mode == NSS_RC2) {
- /* groovy */
- } else if (mode == NSS_RC2_CBC) {
- if (!input) {
- return NULL; /* not groovy */
- }
- } else {
- return NULL;
- }
- cx = PORT_ZNew(RC2Context);
- if (!cx)
- return cx;
- if (mode == NSS_RC2_CBC) {
- cx->enc = & rc2_EncryptCBC;
- cx->dec = & rc2_DecryptCBC;
- LOAD(cx->iv.s);
- } else {
- cx->enc = & rc2_EncryptECB;
- cx->dec = & rc2_DecryptECB;
- }
- /* Step 0. Copy key into table. */
- memcpy(cx->B, key, len);
- /* Step 1. Compute all values to the right of the key. */
- L2 = cx->B;
- L = L2 + len;
- tmpB = L[-1];
- for (i = (sizeof cx->B) - len; i > 0; --i) {
- *L++ = tmpB = S[ (PRUint8)(tmpB + *L2++) ];
- }
- /* step 2. Adjust left most byte of effective key. */
- i = (sizeof cx->B) - efLen8;
- L = cx->B + i;
- *L = tmpB = S[*L]; /* mask is always 0xff */
- /* step 3. Recompute all values to the left of effective key. */
- L2 = --L + efLen8;
- while(L >= cx->B) {
- *L-- = tmpB = S[ tmpB ^ *L2-- ];
- }
- #if !defined(IS_LITTLE_ENDIAN)
- for (i = 63; i >= 0; --i) {
- SWAPK(i); /* candidate for unrolling */
- }
- #endif
- return cx;
- }
- /*
- ** Destroy an RC2 encryption/decryption context.
- ** "cx" the context
- ** "freeit" if PR_TRUE then free the object as well as its sub-objects
- */
- void
- RC2_DestroyContext(RC2Context *cx, PRBool freeit)
- {
- if (cx) {
- memset(cx, 0, sizeof *cx);
- if (freeit) {
- PORT_Free(cx);
- }
- }
- }
- #define ROL(x,k) (x << k | x >> (16-k))
- #define MIX(j)
- R0 = R0 + cx->K[ 4*j+0] + (R3 & R2) + (~R3 & R1); R0 = ROL(R0,1);
- R1 = R1 + cx->K[ 4*j+1] + (R0 & R3) + (~R0 & R2); R1 = ROL(R1,2);
- R2 = R2 + cx->K[ 4*j+2] + (R1 & R0) + (~R1 & R3); R2 = ROL(R2,3);
- R3 = R3 + cx->K[ 4*j+3] + (R2 & R1) + (~R2 & R0); R3 = ROL(R3,5)
- #define MASH
- R0 = R0 + cx->K[R3 & 63];
- R1 = R1 + cx->K[R0 & 63];
- R2 = R2 + cx->K[R1 & 63];
- R3 = R3 + cx->K[R2 & 63]
- /* Encrypt one block */
- static void
- rc2_Encrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
- {
- register PRUint16 R0, R1, R2, R3;
- /* step 1. Initialize input. */
- R0 = input->s[0];
- R1 = input->s[1];
- R2 = input->s[2];
- R3 = input->s[3];
- /* step 2. Expand Key (already done, in context) */
- /* step 3. j = 0 */
- /* step 4. Perform 5 mixing rounds. */
- MIX(0);
- MIX(1);
- MIX(2);
- MIX(3);
- MIX(4);
- /* step 5. Perform 1 mashing round. */
- MASH;
- /* step 6. Perform 6 mixing rounds. */
- MIX(5);
- MIX(6);
- MIX(7);
- MIX(8);
- MIX(9);
- MIX(10);
- /* step 7. Perform 1 mashing round. */
- MASH;
- /* step 8. Perform 5 mixing rounds. */
- MIX(11);
- MIX(12);
- MIX(13);
- MIX(14);
- MIX(15);
- /* output results */
- output->s[0] = R0;
- output->s[1] = R1;
- output->s[2] = R2;
- output->s[3] = R3;
- }
- #define ROR(x,k) (x >> k | x << (16-k))
- #define R_MIX(j)
- R3 = ROR(R3,5); R3 = R3 - cx->K[ 4*j+3] - (R2 & R1) - (~R2 & R0);
- R2 = ROR(R2,3); R2 = R2 - cx->K[ 4*j+2] - (R1 & R0) - (~R1 & R3);
- R1 = ROR(R1,2); R1 = R1 - cx->K[ 4*j+1] - (R0 & R3) - (~R0 & R2);
- R0 = ROR(R0,1); R0 = R0 - cx->K[ 4*j+0] - (R3 & R2) - (~R3 & R1)
- #define R_MASH
- R3 = R3 - cx->K[R2 & 63];
- R2 = R2 - cx->K[R1 & 63];
- R1 = R1 - cx->K[R0 & 63];
- R0 = R0 - cx->K[R3 & 63]
- /* Encrypt one block */
- static void
- rc2_Decrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
- {
- register PRUint16 R0, R1, R2, R3;
- /* step 1. Initialize input. */
- R0 = input->s[0];
- R1 = input->s[1];
- R2 = input->s[2];
- R3 = input->s[3];
- /* step 2. Expand Key (already done, in context) */
- /* step 3. j = 63 */
- /* step 4. Perform 5 r_mixing rounds. */
- R_MIX(15);
- R_MIX(14);
- R_MIX(13);
- R_MIX(12);
- R_MIX(11);
- /* step 5. Perform 1 r_mashing round. */
- R_MASH;
- /* step 6. Perform 6 r_mixing rounds. */
- R_MIX(10);
- R_MIX(9);
- R_MIX(8);
- R_MIX(7);
- R_MIX(6);
- R_MIX(5);
- /* step 7. Perform 1 r_mashing round. */
- R_MASH;
- /* step 8. Perform 5 r_mixing rounds. */
- R_MIX(4);
- R_MIX(3);
- R_MIX(2);
- R_MIX(1);
- R_MIX(0);
- /* output results */
- output->s[0] = R0;
- output->s[1] = R1;
- output->s[2] = R2;
- output->s[3] = R3;
- }
- static SECStatus
- rc2_EncryptECB(RC2Context *cx, unsigned char *output,
- unsigned char *input, unsigned int inputLen)
- {
- RC2Block iBlock;
- while (inputLen > 0) {
- LOAD(iBlock.s)
- rc2_Encrypt1Block(cx, &iBlock, &iBlock);
- STORE(iBlock.s)
- output += RC2_BLOCK_SIZE;
- input += RC2_BLOCK_SIZE;
- inputLen -= RC2_BLOCK_SIZE;
- }
- return SECSuccess;
- }
- static SECStatus
- rc2_DecryptECB(RC2Context *cx, unsigned char *output,
- unsigned char *input, unsigned int inputLen)
- {
- RC2Block iBlock;
- while (inputLen > 0) {
- LOAD(iBlock.s)
- rc2_Decrypt1Block(cx, &iBlock, &iBlock);
- STORE(iBlock.s)
- output += RC2_BLOCK_SIZE;
- input += RC2_BLOCK_SIZE;
- inputLen -= RC2_BLOCK_SIZE;
- }
- return SECSuccess;
- }
- static SECStatus
- rc2_EncryptCBC(RC2Context *cx, unsigned char *output,
- unsigned char *input, unsigned int inputLen)
- {
- RC2Block iBlock;
- while (inputLen > 0) {
- LOAD(iBlock.s)
- iBlock.l[0] ^= cx->iv.l[0];
- iBlock.l[1] ^= cx->iv.l[1];
- rc2_Encrypt1Block(cx, &iBlock, &iBlock);
- cx->iv = iBlock;
- STORE(iBlock.s)
- output += RC2_BLOCK_SIZE;
- input += RC2_BLOCK_SIZE;
- inputLen -= RC2_BLOCK_SIZE;
- }
- return SECSuccess;
- }
- static SECStatus
- rc2_DecryptCBC(RC2Context *cx, unsigned char *output,
- unsigned char *input, unsigned int inputLen)
- {
- RC2Block iBlock;
- RC2Block oBlock;
- while (inputLen > 0) {
- LOAD(iBlock.s)
- rc2_Decrypt1Block(cx, &oBlock, &iBlock);
- oBlock.l[0] ^= cx->iv.l[0];
- oBlock.l[1] ^= cx->iv.l[1];
- cx->iv = iBlock;
- STORE(oBlock.s)
- output += RC2_BLOCK_SIZE;
- input += RC2_BLOCK_SIZE;
- inputLen -= RC2_BLOCK_SIZE;
- }
- return SECSuccess;
- }
- /*
- ** Perform RC2 encryption.
- ** "cx" the context
- ** "output" the output buffer to store the encrypted data.
- ** "outputLen" how much data is stored in "output". Set by the routine
- ** after some data is stored in output.
- ** "maxOutputLen" the maximum amount of data that can ever be
- ** stored in "output"
- ** "input" the input data
- ** "inputLen" the amount of input data
- */
- SECStatus RC2_Encrypt(RC2Context *cx, unsigned char *output,
- unsigned int *outputLen, unsigned int maxOutputLen,
- unsigned char *input, unsigned int inputLen)
- {
- SECStatus rv = SECSuccess;
- if (inputLen) {
- if (inputLen % RC2_BLOCK_SIZE) {
- PORT_SetError(SEC_ERROR_INPUT_LEN);
- return SECFailure;
- }
- if (maxOutputLen < inputLen) {
- PORT_SetError(SEC_ERROR_OUTPUT_LEN);
- return SECFailure;
- }
- rv = (*cx->enc)(cx, output, input, inputLen);
- }
- if (rv == SECSuccess) {
- *outputLen = inputLen;
- }
- return rv;
- }
- /*
- ** Perform RC2 decryption.
- ** "cx" the context
- ** "output" the output buffer to store the decrypted data.
- ** "outputLen" how much data is stored in "output". Set by the routine
- ** after some data is stored in output.
- ** "maxOutputLen" the maximum amount of data that can ever be
- ** stored in "output"
- ** "input" the input data
- ** "inputLen" the amount of input data
- */
- SECStatus RC2_Decrypt(RC2Context *cx, unsigned char *output,
- unsigned int *outputLen, unsigned int maxOutputLen,
- unsigned char *input, unsigned int inputLen)
- {
- SECStatus rv = SECSuccess;
- if (inputLen) {
- if (inputLen % RC2_BLOCK_SIZE) {
- PORT_SetError(SEC_ERROR_INPUT_LEN);
- return SECFailure;
- }
- if (maxOutputLen < inputLen) {
- PORT_SetError(SEC_ERROR_OUTPUT_LEN);
- return SECFailure;
- }
- rv = (*cx->dec)(cx, output, input, inputLen);
- }
- if (rv == SECSuccess) {
- *outputLen = inputLen;
- }
- return rv;
- }