rsa.c
上传用户:lyxiangda
上传日期:2007-01-12
资源大小:3042k
文件大小:13k
- /*
- * The contents of this file are subject to the Mozilla Public
- * License Version 1.1 (the "License"); you may not use this file
- * except in compliance with the License. You may obtain a copy of
- * the License at http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS
- * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
- * implied. See the License for the specific language governing
- * rights and limitations under the License.
- *
- * The Original Code is the Netscape security libraries.
- *
- * The Initial Developer of the Original Code is Netscape
- * Communications Corporation. Portions created by Netscape are
- * Copyright (C) 1994-2000 Netscape Communications Corporation. All
- * Rights Reserved.
- *
- * Contributor(s):
- *
- * Alternatively, the contents of this file may be used under the
- * terms of the GNU General Public License Version 2 or later (the
- * "GPL"), in which case the provisions of the GPL are applicable
- * instead of those above. If you wish to allow use of your
- * version of this file only under the terms of the GPL and not to
- * allow others to use your version of this file under the MPL,
- * indicate your decision by deleting the provisions above and
- * replace them with the notice and other provisions required by
- * the GPL. If you do not delete the provisions above, a recipient
- * may use your version of this file under either the MPL or the
- * GPL.
- *
- */
- /*
- * RSA key generation, public key op, private key op.
- *
- * $Id: rsa.c,v 1.17 2000/10/02 17:39:37 mcgreer%netscape.com Exp $
- */
- #include "secerr.h"
- #include "blapi.h"
- #include "mpi.h"
- #include "mpprime.h"
- #include "secmpi.h"
- #include "secitem.h"
- /*
- ** RSA encryption/decryption. When encrypting/decrypting the output
- ** buffer must be at least the size of the public key modulus.
- */
- static SECStatus
- rsa_keygen_from_primes(mp_int *p, mp_int *q, mp_int *e, RSAPrivateKey *key)
- {
- mp_int n, d, phi;
- mp_int psub1, qsub1, tmp;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- MP_DIGITS(&n) = 0;
- MP_DIGITS(&d) = 0;
- MP_DIGITS(&phi) = 0;
- MP_DIGITS(&psub1) = 0;
- MP_DIGITS(&qsub1) = 0;
- MP_DIGITS(&tmp) = 0;
- CHECK_MPI_OK( mp_init(&n) );
- CHECK_MPI_OK( mp_init(&d) );
- CHECK_MPI_OK( mp_init(&phi) );
- CHECK_MPI_OK( mp_init(&psub1) );
- CHECK_MPI_OK( mp_init(&qsub1) );
- CHECK_MPI_OK( mp_init(&tmp) );
- /* 1. Compute n = p*q */
- CHECK_MPI_OK( mp_mul(p, q, &n) );
- /* 2. Compute phi = (p-1)*(q-1) */
- CHECK_MPI_OK( mp_sub_d(p, 1, &psub1) );
- CHECK_MPI_OK( mp_sub_d(q, 1, &qsub1) );
- CHECK_MPI_OK( mp_mul(&psub1, &qsub1, &phi) );
- /* 3. Compute d = e**-1 mod(phi) using extended Euclidean algorithm */
- CHECK_MPI_OK( mp_xgcd(e, &phi, &tmp, &d, NULL) );
- CHECK_MPI_OK( mp_mod(&d, &phi, &d) );
- /* Verify that phi(n) and e have no common divisors */
- if (mp_cmp_d(&tmp, 1) != 0) {
- PORT_SetError(SEC_ERROR_NEED_RANDOM);
- rv = SECFailure;
- goto cleanup;
- }
- MPINT_TO_SECITEM(&n, &key->modulus, key->arena);
- MPINT_TO_SECITEM(&d, &key->privateExponent, key->arena);
- /* 4. Compute exponent1 = d mod (p-1) */
- CHECK_MPI_OK( mp_mod(&d, &psub1, &tmp) );
- MPINT_TO_SECITEM(&tmp, &key->exponent1, key->arena);
- /* 5. Compute exponent2 = d mod (q-1) */
- CHECK_MPI_OK( mp_mod(&d, &qsub1, &tmp) );
- MPINT_TO_SECITEM(&tmp, &key->exponent2, key->arena);
- /* 6. Compute coefficient = q**-1 mod p */
- CHECK_MPI_OK( mp_invmod(q, p, &tmp) );
- MPINT_TO_SECITEM(&tmp, &key->coefficient, key->arena);
- cleanup:
- mp_clear(&n);
- mp_clear(&d);
- mp_clear(&phi);
- mp_clear(&psub1);
- mp_clear(&qsub1);
- mp_clear(&tmp);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
- }
- /*
- ** Generate and return a new RSA public and private key.
- ** Both keys are encoded in a single RSAPrivateKey structure.
- ** "cx" is the random number generator context
- ** "keySizeInBits" is the size of the key to be generated, in bits.
- ** 512, 1024, etc.
- ** "publicExponent" when not NULL is a pointer to some data that
- ** represents the public exponent to use. The data is a byte
- ** encoded integer, in "big endian" order.
- */
- RSAPrivateKey *
- RSA_NewKey(int keySizeInBits, SECItem *publicExponent)
- {
- unsigned char *pb = NULL, *qb = NULL;
- unsigned int primeLen;
- unsigned long counter;
- mp_int p, q, e;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- int prerr = 0;
- RSAPrivateKey *key = NULL;
- PRArenaPool *arena = NULL;
- /* Require key size to be a multiple of 16 bits. */
- if (!publicExponent || keySizeInBits % 16 != 0) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return NULL;
- }
- /* length of primes p and q (in bytes) */
- primeLen = keySizeInBits / (2 * BITS_PER_BYTE);
- MP_DIGITS(&p) = 0;
- MP_DIGITS(&q) = 0;
- MP_DIGITS(&e) = 0;
- CHECK_MPI_OK( mp_init(&p) );
- CHECK_MPI_OK( mp_init(&q) );
- CHECK_MPI_OK( mp_init(&e) );
- /* 1. Allocate arena & key */
- arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
- if (!arena) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- return NULL;
- }
- key = (RSAPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(RSAPrivateKey));
- if (!key) {
- PORT_SetError(SEC_ERROR_NO_MEMORY);
- PORT_FreeArena(arena, PR_TRUE);
- return NULL;
- }
- key->arena = arena;
- /* 2. Set the version number (PKCS1 v1.5 says it should be zero) */
- SECITEM_AllocItem(arena, &key->version, 1);
- key->version.data[0] = 0;
- /* 3. Set the public exponent */
- SECITEM_CopyItem(arena, &key->publicExponent, publicExponent);
- SECITEM_TO_MPINT(*publicExponent, &e);
- /* 4. Generate primes p and q */
- pb = PORT_Alloc(primeLen);
- qb = PORT_Alloc(primeLen);
- do {
- CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(pb, primeLen) );
- CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(qb, primeLen) );
- pb[0] |= 0x80; /* set high-order bit */
- pb[primeLen-1] |= 0x01; /* set low-order bit */
- qb[0] |= 0x80; /* set high-order bit */
- qb[primeLen-1] |= 0x01; /* set low-order bit */
- CHECK_MPI_OK( mp_read_unsigned_octets(&p, pb, primeLen) );
- CHECK_MPI_OK( mp_read_unsigned_octets(&q, qb, primeLen) );
- CHECK_MPI_OK( mpp_make_prime(&p, primeLen * 8, PR_FALSE, &counter) );
- CHECK_MPI_OK( mpp_make_prime(&q, primeLen * 8, PR_FALSE, &counter) );
- rv = rsa_keygen_from_primes(&p, &q, &e, key);
- if (rv == SECSuccess)
- break; /* generated two good primes */
- prerr = PORT_GetError();
- } while (prerr == SEC_ERROR_NEED_RANDOM); /* loop until have primes */
- MPINT_TO_SECITEM(&p, &key->prime1, arena);
- MPINT_TO_SECITEM(&q, &key->prime2, arena);
- cleanup:
- mp_clear(&p);
- mp_clear(&q);
- mp_clear(&e);
- if (pb)
- PORT_ZFree(pb, primeLen);
- if (qb)
- PORT_ZFree(qb, primeLen);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- if (rv && arena) {
- PORT_FreeArena(arena, PR_TRUE);
- }
- return key;
- }
- static unsigned int
- rsa_modulusLen(SECItem *modulus)
- {
- unsigned char byteZero = modulus->data[0];
- unsigned int modLen = modulus->len - !byteZero;
- return modLen;
- }
- /*
- ** Perform a raw public-key operation
- ** Length of input and output buffers are equal to key's modulus len.
- */
- SECStatus
- RSA_PublicKeyOp(RSAPublicKey *key,
- unsigned char *output,
- unsigned char *input)
- {
- unsigned int modLen;
- mp_int n, e, m, c;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- if (!key || !output || !input) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- MP_DIGITS(&n) = 0;
- MP_DIGITS(&e) = 0;
- MP_DIGITS(&m) = 0;
- MP_DIGITS(&c) = 0;
- CHECK_MPI_OK( mp_init(&n) );
- CHECK_MPI_OK( mp_init(&e) );
- CHECK_MPI_OK( mp_init(&m) );
- CHECK_MPI_OK( mp_init(&c) );
- modLen = rsa_modulusLen(&key->modulus);
- /* 1. Obtain public key (n, e) */
- SECITEM_TO_MPINT(key->modulus, &n);
- SECITEM_TO_MPINT(key->publicExponent, &e);
- /* 2. Represent message as integer in range [0..n-1] */
- CHECK_MPI_OK( mp_read_unsigned_octets(&m, input, modLen) );
- /* 3. Compute c = m**e mod n */
- #ifdef USE_MPI_EXPT_D
- /* XXX see which is faster */
- if (MP_USED(&e) == 1) {
- CHECK_MPI_OK( mp_exptmod_d(&m, MP_DIGIT(&e, 0), &n, &c) );
- } else
- #endif
- CHECK_MPI_OK( mp_exptmod(&m, &e, &n, &c) );
- /* 4. result c is ciphertext */
- err = mp_to_fixlen_octets(&c, output, modLen);
- if (err >= 0) err = MP_OKAY;
- cleanup:
- mp_clear(&n);
- mp_clear(&e);
- mp_clear(&m);
- mp_clear(&c);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
- }
- /*
- ** RSA Private key operation (no CRT).
- */
- static SECStatus
- rsa_PrivateKeyOp(RSAPrivateKey *key,
- unsigned char *output,
- unsigned char *input)
- {
- mp_int n, d, m, c;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- unsigned int modLen;
- modLen = rsa_modulusLen(&key->modulus);
- MP_DIGITS(&n) = 0;
- MP_DIGITS(&d) = 0;
- MP_DIGITS(&m) = 0;
- MP_DIGITS(&c) = 0;
- CHECK_MPI_OK( mp_init(&n) );
- CHECK_MPI_OK( mp_init(&d) );
- CHECK_MPI_OK( mp_init(&m) );
- CHECK_MPI_OK( mp_init(&c) );
- /* copy private key parameters into mp integers */
- SECITEM_TO_MPINT(key->modulus, &n); /* n */
- SECITEM_TO_MPINT(key->privateExponent, &d); /* d */
- /* copy input into mp integer c */
- OCTETS_TO_MPINT(input, &c, modLen);
- /* 1. m = c**d mod n */
- CHECK_MPI_OK( mp_exptmod(&c, &d, &n, &m) );
- /* m is the output */
- err = mp_to_fixlen_octets(&m, output, modLen);
- if (err >= 0) err = MP_OKAY;
- cleanup:
- mp_clear(&n);
- mp_clear(&d);
- mp_clear(&m);
- mp_clear(&c);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
- }
- /*
- ** RSA Private key operation using CRT.
- */
- static SECStatus
- rsa_PrivateKeyOpCRT(RSAPrivateKey *key,
- unsigned char *output,
- unsigned char *input)
- {
- mp_int p, q, d_p, d_q, qInv;
- mp_int m, m1, m2, b2, h, c, ctmp;
- mp_err err = MP_OKAY;
- SECStatus rv = SECSuccess;
- unsigned int modLen;
- modLen = rsa_modulusLen(&key->modulus);
- MP_DIGITS(&p) = 0;
- MP_DIGITS(&q) = 0;
- MP_DIGITS(&d_p) = 0;
- MP_DIGITS(&d_q) = 0;
- MP_DIGITS(&qInv) = 0;
- MP_DIGITS(&m) = 0;
- MP_DIGITS(&m1) = 0;
- MP_DIGITS(&m2) = 0;
- MP_DIGITS(&b2) = 0;
- MP_DIGITS(&h) = 0;
- MP_DIGITS(&c) = 0;
- MP_DIGITS(&ctmp) = 0;
- CHECK_MPI_OK( mp_init(&p) );
- CHECK_MPI_OK( mp_init(&q) );
- CHECK_MPI_OK( mp_init(&d_p) );
- CHECK_MPI_OK( mp_init(&d_q) );
- CHECK_MPI_OK( mp_init(&qInv) );
- CHECK_MPI_OK( mp_init(&m) );
- CHECK_MPI_OK( mp_init(&m1) );
- CHECK_MPI_OK( mp_init(&m2) );
- CHECK_MPI_OK( mp_init(&b2) );
- CHECK_MPI_OK( mp_init(&h) );
- CHECK_MPI_OK( mp_init(&c) );
- CHECK_MPI_OK( mp_init(&ctmp) );
- /* copy private key parameters into mp integers */
- SECITEM_TO_MPINT(key->prime1, &p); /* p */
- SECITEM_TO_MPINT(key->prime2, &q); /* q */
- SECITEM_TO_MPINT(key->exponent1, &d_p); /* d_p = d mod (p-1) */
- SECITEM_TO_MPINT(key->exponent2, &d_q); /* d_p = d mod (q-1) */
- SECITEM_TO_MPINT(key->coefficient, &qInv); /* qInv = q**-1 mod p */
- /* copy input into mp integer c */
- OCTETS_TO_MPINT(input, &c, modLen);
- /* 1. m1 = c**d_p mod p */
- CHECK_MPI_OK( mp_mod(&c, &p, &ctmp) );
- CHECK_MPI_OK( mp_exptmod(&ctmp, &d_p, &p, &m1) );
- /* 2. m2 = c**d_q mod q */
- CHECK_MPI_OK( mp_mod(&c, &q, &ctmp) );
- CHECK_MPI_OK( mp_exptmod(&ctmp, &d_q, &q, &m2) );
- /* 3. h = (m1 - m2) * qInv mod p */
- CHECK_MPI_OK( mp_submod(&m1, &m2, &p, &h) );
- CHECK_MPI_OK( mp_mulmod(&h, &qInv, &p, &h) );
- /* 4. m = m2 + h * q */
- CHECK_MPI_OK( mp_mul(&h, &q, &m) );
- CHECK_MPI_OK( mp_add(&m, &m2, &m) );
- /* m is the output */
- err = mp_to_fixlen_octets(&m, output, modLen);
- if (err >= 0) err = MP_OKAY;
- cleanup:
- mp_clear(&p);
- mp_clear(&q);
- mp_clear(&d_p);
- mp_clear(&d_q);
- mp_clear(&qInv);
- mp_clear(&m);
- mp_clear(&m1);
- mp_clear(&m2);
- mp_clear(&b2);
- mp_clear(&h);
- mp_clear(&c);
- if (err) {
- MP_TO_SEC_ERROR(err);
- rv = SECFailure;
- }
- return rv;
- }
- /*
- ** Perform a raw private-key operation
- ** Length of input and output buffers are equal to key's modulus len.
- */
- SECStatus
- RSA_PrivateKeyOp(RSAPrivateKey *key,
- unsigned char *output,
- unsigned char *input)
- {
- unsigned int modLen;
- unsigned int offset;
- if (!key || !output || !input) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- /* check input out of range (needs to be in range [0..n-1]) */
- modLen = rsa_modulusLen(&key->modulus);
- offset = (key->modulus.data[0] == 0) ? 1 : 0; /* may be leading 0 */
- if (memcmp(input, key->modulus.data + offset, modLen) >= 0) {
- PORT_SetError(SEC_ERROR_INVALID_ARGS);
- return SECFailure;
- }
- if ( key->prime1.len == 0 ||
- key->prime2.len == 0 ||
- key->exponent1.len == 0 ||
- key->exponent2.len == 0 ||
- key->coefficient.len == 0) {
- return rsa_PrivateKeyOp(key, output, input);
- } else {
- return rsa_PrivateKeyOpCRT(key, output, input);
- }
- }