mpi-priv.h
上传用户:lyxiangda
上传日期:2007-01-12
资源大小:3042k
文件大小:10k
- /*
- * mpi-priv.h - Private header file for MPI
- * Arbitrary precision integer arithmetic library
- *
- * NOTE WELL: the content of this header file is NOT part of the "public"
- * API for the MPI library, and may change at any time.
- * Application programs that use libmpi should NOT include this header file.
- *
- * The contents of this file are subject to the Mozilla Public
- * License Version 1.1 (the "License"); you may not use this file
- * except in compliance with the License. You may obtain a copy of
- * the License at http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS
- * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
- * implied. See the License for the specific language governing
- * rights and limitations under the License.
- *
- * The Original Code is the MPI Arbitrary Precision Integer Arithmetic
- * library.
- *
- * The Initial Developer of the Original Code is Michael J. Fromberger.
- * Portions created by Michael J. Fromberger are
- * Copyright (C) 1998, 1999, 2000 Michael J. Fromberger.
- * All Rights Reserved.
- *
- * Contributor(s):
- * Netscape Communications Corporation
- *
- * Alternatively, the contents of this file may be used under the
- * terms of the GNU General Public License Version 2 or later (the
- * "GPL"), in which case the provisions of the GPL are applicable
- * instead of those above. If you wish to allow use of your
- * version of this file only under the terms of the GPL and not to
- * allow others to use your version of this file under the MPL,
- * indicate your decision by deleting the provisions above and
- * replace them with the notice and other provisions required by
- * the GPL. If you do not delete the provisions above, a recipient
- * may use your version of this file under either the MPL or the GPL.
- *
- * $Id: mpi-priv.h,v 1.11.2.1 2000/11/21 03:32:39 nelsonb%netscape.com Exp $
- */
- #ifndef _MPI_PRIV_H_
- #define _MPI_PRIV_H_ 1
- #include "mpi.h"
- #include <stdlib.h>
- #include <string.h>
- #include <ctype.h>
- #if MP_DEBUG
- #include <stdio.h>
- #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('n',stderr);}
- #else
- #define DIAG(T,V)
- #endif
- /* If we aren't using a wired-in logarithm table, we need to include
- the math library to get the log() function
- */
- /* {{{ s_logv_2[] - log table for 2 in various bases */
- #if MP_LOGTAB
- /*
- A table of the logs of 2 for various bases (the 0 and 1 entries of
- this table are meaningless and should not be referenced).
- This table is used to compute output lengths for the mp_toradix()
- function. Since a number n in radix r takes up about log_r(n)
- digits, we estimate the output size by taking the least integer
- greater than log_r(n), where:
- log_r(n) = log_2(n) * log_r(2)
- This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
- which are the output bases supported.
- */
- extern const float s_logv_2[];
- #define LOG_V_2(R) s_logv_2[(R)]
- #else
- /*
- If MP_LOGTAB is not defined, use the math library to compute the
- logarithms on the fly. Otherwise, use the table.
- Pick which works best for your system.
- */
- #include <math.h>
- #define LOG_V_2(R) (log(2.0)/log(R))
- #endif /* if MP_LOGTAB */
- /* }}} */
- /* {{{ Digit arithmetic macros */
- /*
- When adding and multiplying digits, the results can be larger than
- can be contained in an mp_digit. Thus, an mp_word is used. These
- macros mask off the upper and lower digits of the mp_word (the
- mp_word may be more than 2 mp_digits wide, but we only concern
- ourselves with the low-order 2 mp_digits)
- */
- #define CARRYOUT(W) (mp_digit)((W)>>DIGIT_BIT)
- #define ACCUM(W) (mp_digit)(W)
- #define MP_MIN(a,b) (((a) < (b)) ? (a) : (b))
- #define MP_MAX(a,b) (((a) > (b)) ? (a) : (b))
- #define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b))
- #define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b))
- /* }}} */
- /* {{{ Comparison constants */
- #define MP_LT -1
- #define MP_EQ 0
- #define MP_GT 1
- /* }}} */
- /* {{{ private function declarations */
- /*
- If MP_MACRO is false, these will be defined as actual functions;
- otherwise, suitable macro definitions will be used. This works
- around the fact that ANSI C89 doesn't support an 'inline' keyword
- (although I hear C9x will ... about bloody time). At present, the
- macro definitions are identical to the function bodies, but they'll
- expand in place, instead of generating a function call.
- I chose these particular functions to be made into macros because
- some profiling showed they are called a lot on a typical workload,
- and yet they are primarily housekeeping.
- */
- #if MP_MACRO == 0
- void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */
- void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
- void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */
- void s_mp_free(void *ptr); /* general free function */
- extern unsigned long mp_allocs;
- extern unsigned long mp_frees;
- extern unsigned long mp_copies;
- #else
- /* Even if these are defined as macros, we need to respect the settings
- of the MP_MEMSET and MP_MEMCPY configuration options...
- */
- #if MP_MEMSET == 0
- #define s_mp_setz(dp, count)
- {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
- #else
- #define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
- #endif /* MP_MEMSET */
- #if MP_MEMCPY == 0
- #define s_mp_copy(sp, dp, count)
- {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
- #else
- #define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
- #endif /* MP_MEMCPY */
- #define s_mp_alloc(nb, ni) calloc(nb, ni)
- #define s_mp_free(ptr) {if(ptr) free(ptr);}
- #endif /* MP_MACRO */
- mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */
- mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */
- #if MP_MACRO == 0
- void s_mp_clamp(mp_int *mp); /* clip leading zeroes */
- #else
- #define s_mp_clamp(mp)
- { mp_size used = MP_USED(mp);
- while (used > 1 && DIGIT(mp, used - 1) == 0) --used;
- MP_USED(mp) = used;
- }
- #endif /* MP_MACRO */
- void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */
- mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */
- void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */
- mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */
- void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */
- void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */
- void s_mp_div_2(mp_int *mp); /* divide by 2 in place */
- mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */
- mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd);
- /* normalize for division */
- mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */
- mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */
- mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */
- mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
- /* unsigned digit divide */
- mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
- /* Barrett reduction */
- mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition */
- mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);
- mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract */
- mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);
- mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);
- /* a += b * RADIX^offset */
- mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply */
- #if MP_SQUARE
- mp_err s_mp_sqr(mp_int *a); /* magnitude square */
- #else
- #define s_mp_sqr(a) s_mp_mul(a, a)
- #endif
- mp_err s_mp_div(mp_int *a, mp_int *b); /* magnitude divide */
- mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
- mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */
- int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */
- int s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */
- int s_mp_ispow2(const mp_int *v); /* is v a power of 2? */
- int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */
- int s_mp_tovalue(char ch, int r); /* convert ch to value */
- char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */
- int s_mp_outlen(int bits, int r); /* output length in bytes */
- mp_digit s_mp_invmod_radix(mp_digit P); /* returns (P ** -1) mod RADIX */
- mp_err s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c);
- mp_err s_mp_invmod_2d( const mp_int *a, mp_size k, mp_int *c);
- mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);
- /* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */
- void s_mpv_mul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c);
- void s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, mp_digit b,
- mp_digit *c);
- void s_mpv_mul_d_add_prop(const mp_digit *a, mp_size a_len, mp_digit b,
- mp_digit *c);
- void s_mpv_sqr_add_prop(const mp_digit *a, mp_size a_len, mp_digit *sqrs);
- mp_err s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, mp_digit divisor,
- mp_digit *quot, mp_digit *rem);
- /* c += a * b * (MP_RADIX ** offset); */
- #define s_mp_mul_d_add_offset(a, b, c, off)
- (s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY)
- /* }}} */
- #endif