mpi.c
上传用户:lyxiangda
上传日期:2007-01-12
资源大小:3042k
文件大小:96k
- /*
- * mpi.c
- *
- * Arbitrary precision integer arithmetic library
- *
- * The contents of this file are subject to the Mozilla Public
- * License Version 1.1 (the "License"); you may not use this file
- * except in compliance with the License. You may obtain a copy of
- * the License at http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS
- * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
- * implied. See the License for the specific language governing
- * rights and limitations under the License.
- *
- * The Original Code is the MPI Arbitrary Precision Integer Arithmetic
- * library.
- *
- * The Initial Developer of the Original Code is Michael J. Fromberger.
- * Portions created by Michael J. Fromberger are
- * Copyright (C) 1998, 1999, 2000 Michael J. Fromberger.
- * All Rights Reserved.
- *
- * Contributor(s):
- * Netscape Communications Corporation
- *
- * Alternatively, the contents of this file may be used under the
- * terms of the GNU General Public License Version 2 or later (the
- * "GPL"), in which case the provisions of the GPL are applicable
- * instead of those above. If you wish to allow use of your
- * version of this file only under the terms of the GPL and not to
- * allow others to use your version of this file under the MPL,
- * indicate your decision by deleting the provisions above and
- * replace them with the notice and other provisions required by
- * the GPL. If you do not delete the provisions above, a recipient
- * may use your version of this file under either the MPL or the GPL.
- *
- * $Id: mpi.c,v 1.26.2.1 2000/11/21 03:32:37 nelsonb%netscape.com Exp $
- */
- #include "mpi-priv.h"
- #if MP_LOGTAB
- /*
- A table of the logs of 2 for various bases (the 0 and 1 entries of
- this table are meaningless and should not be referenced).
- This table is used to compute output lengths for the mp_toradix()
- function. Since a number n in radix r takes up about log_r(n)
- digits, we estimate the output size by taking the least integer
- greater than log_r(n), where:
- log_r(n) = log_2(n) * log_r(2)
- This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
- which are the output bases supported.
- */
- #include "logtab.h"
- #endif
- /* {{{ Constant strings */
- /* Constant strings returned by mp_strerror() */
- static const char *mp_err_string[] = {
- "unknown result code", /* say what? */
- "boolean true", /* MP_OKAY, MP_YES */
- "boolean false", /* MP_NO */
- "out of memory", /* MP_MEM */
- "argument out of range", /* MP_RANGE */
- "invalid input parameter", /* MP_BADARG */
- "result is undefined" /* MP_UNDEF */
- };
- /* Value to digit maps for radix conversion */
- /* s_dmap_1 - standard digits and letters */
- static const char *s_dmap_1 =
- "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
- /* }}} */
- unsigned long mp_allocs;
- unsigned long mp_frees;
- unsigned long mp_copies;
- /* {{{ Default precision manipulation */
- /* Default precision for newly created mp_int's */
- static mp_size s_mp_defprec = MP_DEFPREC;
- mp_size mp_get_prec(void)
- {
- return s_mp_defprec;
- } /* end mp_get_prec() */
- void mp_set_prec(mp_size prec)
- {
- if(prec == 0)
- s_mp_defprec = MP_DEFPREC;
- else
- s_mp_defprec = prec;
- } /* end mp_set_prec() */
- /* }}} */
- /*------------------------------------------------------------------------*/
- /* {{{ mp_init(mp) */
- /*
- mp_init(mp)
- Initialize a new zero-valued mp_int. Returns MP_OKAY if successful,
- MP_MEM if memory could not be allocated for the structure.
- */
- mp_err mp_init(mp_int *mp)
- {
- return mp_init_size(mp, s_mp_defprec);
- } /* end mp_init() */
- /* }}} */
- /* {{{ mp_init_size(mp, prec) */
- /*
- mp_init_size(mp, prec)
- Initialize a new zero-valued mp_int with at least the given
- precision; returns MP_OKAY if successful, or MP_MEM if memory could
- not be allocated for the structure.
- */
- mp_err mp_init_size(mp_int *mp, mp_size prec)
- {
- ARGCHK(mp != NULL && prec > 0, MP_BADARG);
- prec = MP_ROUNDUP(prec, s_mp_defprec);
- if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL)
- return MP_MEM;
- SIGN(mp) = ZPOS;
- USED(mp) = 1;
- ALLOC(mp) = prec;
- return MP_OKAY;
- } /* end mp_init_size() */
- /* }}} */
- /* {{{ mp_init_copy(mp, from) */
- /*
- mp_init_copy(mp, from)
- Initialize mp as an exact copy of from. Returns MP_OKAY if
- successful, MP_MEM if memory could not be allocated for the new
- structure.
- */
- mp_err mp_init_copy(mp_int *mp, const mp_int *from)
- {
- ARGCHK(mp != NULL && from != NULL, MP_BADARG);
- if(mp == from)
- return MP_OKAY;
- if((DIGITS(mp) = s_mp_alloc(ALLOC(from), sizeof(mp_digit))) == NULL)
- return MP_MEM;
- s_mp_copy(DIGITS(from), DIGITS(mp), USED(from));
- USED(mp) = USED(from);
- ALLOC(mp) = ALLOC(from);
- SIGN(mp) = SIGN(from);
- return MP_OKAY;
- } /* end mp_init_copy() */
- /* }}} */
- /* {{{ mp_copy(from, to) */
- /*
- mp_copy(from, to)
- Copies the mp_int 'from' to the mp_int 'to'. It is presumed that
- 'to' has already been initialized (if not, use mp_init_copy()
- instead). If 'from' and 'to' are identical, nothing happens.
- */
- mp_err mp_copy(const mp_int *from, mp_int *to)
- {
- ARGCHK(from != NULL && to != NULL, MP_BADARG);
- if(from == to)
- return MP_OKAY;
- ++mp_copies;
- { /* copy */
- mp_digit *tmp;
- /*
- If the allocated buffer in 'to' already has enough space to hold
- all the used digits of 'from', we'll re-use it to avoid hitting
- the memory allocater more than necessary; otherwise, we'd have
- to grow anyway, so we just allocate a hunk and make the copy as
- usual
- */
- if(ALLOC(to) >= USED(from)) {
- s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from));
- s_mp_copy(DIGITS(from), DIGITS(to), USED(from));
-
- } else {
- if((tmp = s_mp_alloc(ALLOC(from), sizeof(mp_digit))) == NULL)
- return MP_MEM;
- s_mp_copy(DIGITS(from), tmp, USED(from));
- if(DIGITS(to) != NULL) {
- #if MP_CRYPTO
- s_mp_setz(DIGITS(to), ALLOC(to));
- #endif
- s_mp_free(DIGITS(to));
- }
- DIGITS(to) = tmp;
- ALLOC(to) = ALLOC(from);
- }
- /* Copy the precision and sign from the original */
- USED(to) = USED(from);
- SIGN(to) = SIGN(from);
- } /* end copy */
- return MP_OKAY;
- } /* end mp_copy() */
- /* }}} */
- /* {{{ mp_exch(mp1, mp2) */
- /*
- mp_exch(mp1, mp2)
- Exchange mp1 and mp2 without allocating any intermediate memory
- (well, unless you count the stack space needed for this call and the
- locals it creates...). This cannot fail.
- */
- void mp_exch(mp_int *mp1, mp_int *mp2)
- {
- #if MP_ARGCHK == 2
- assert(mp1 != NULL && mp2 != NULL);
- #else
- if(mp1 == NULL || mp2 == NULL)
- return;
- #endif
- s_mp_exch(mp1, mp2);
- } /* end mp_exch() */
- /* }}} */
- /* {{{ mp_clear(mp) */
- /*
- mp_clear(mp)
- Release the storage used by an mp_int, and void its fields so that
- if someone calls mp_clear() again for the same int later, we won't
- get tollchocked.
- */
- void mp_clear(mp_int *mp)
- {
- if(mp == NULL)
- return;
- if(DIGITS(mp) != NULL) {
- #if MP_CRYPTO
- s_mp_setz(DIGITS(mp), ALLOC(mp));
- #endif
- s_mp_free(DIGITS(mp));
- DIGITS(mp) = NULL;
- }
- USED(mp) = 0;
- ALLOC(mp) = 0;
- } /* end mp_clear() */
- /* }}} */
- /* {{{ mp_zero(mp) */
- /*
- mp_zero(mp)
- Set mp to zero. Does not change the allocated size of the structure,
- and therefore cannot fail (except on a bad argument, which we ignore)
- */
- void mp_zero(mp_int *mp)
- {
- if(mp == NULL)
- return;
- s_mp_setz(DIGITS(mp), ALLOC(mp));
- USED(mp) = 1;
- SIGN(mp) = ZPOS;
- } /* end mp_zero() */
- /* }}} */
- /* {{{ mp_set(mp, d) */
- void mp_set(mp_int *mp, mp_digit d)
- {
- if(mp == NULL)
- return;
- mp_zero(mp);
- DIGIT(mp, 0) = d;
- } /* end mp_set() */
- /* }}} */
- /* {{{ mp_set_int(mp, z) */
- mp_err mp_set_int(mp_int *mp, long z)
- {
- int ix;
- unsigned long v = abs(z);
- mp_err res;
- ARGCHK(mp != NULL, MP_BADARG);
- mp_zero(mp);
- if(z == 0)
- return MP_OKAY; /* shortcut for zero */
- if (sizeof v <= sizeof(mp_digit)) {
- DIGIT(mp,0) = v;
- } else {
- for (ix = sizeof(long) - 1; ix >= 0; ix--) {
- if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY)
- return res;
- res = s_mp_add_d(mp, (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX));
- if (res != MP_OKAY)
- return res;
- }
- }
- if(z < 0)
- SIGN(mp) = NEG;
- return MP_OKAY;
- } /* end mp_set_int() */
- /* }}} */
- /* {{{ mp_set_ulong(mp, z) */
- mp_err mp_set_ulong(mp_int *mp, unsigned long z)
- {
- int ix;
- mp_err res;
- ARGCHK(mp != NULL, MP_BADARG);
- mp_zero(mp);
- if(z == 0)
- return MP_OKAY; /* shortcut for zero */
- if (sizeof z <= sizeof(mp_digit)) {
- DIGIT(mp,0) = z;
- } else {
- for (ix = sizeof(long) - 1; ix >= 0; ix--) {
- if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY)
- return res;
- res = s_mp_add_d(mp, (mp_digit)((z >> (ix * CHAR_BIT)) & UCHAR_MAX));
- if (res != MP_OKAY)
- return res;
- }
- }
- return MP_OKAY;
- } /* end mp_set_ulong() */
- /* }}} */
- /*------------------------------------------------------------------------*/
- /* {{{ Digit arithmetic */
- /* {{{ mp_add_d(a, d, b) */
- /*
- mp_add_d(a, d, b)
- Compute the sum b = a + d, for a single digit d. Respects the sign of
- its primary addend (single digits are unsigned anyway).
- */
- mp_err mp_add_d(const mp_int *a, mp_digit d, mp_int *b)
- {
- mp_int tmp;
- mp_err res;
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
- if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
- return res;
- if(SIGN(&tmp) == ZPOS) {
- if((res = s_mp_add_d(&tmp, d)) != MP_OKAY)
- goto CLEANUP;
- } else if(s_mp_cmp_d(&tmp, d) >= 0) {
- if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY)
- goto CLEANUP;
- } else {
- mp_neg(&tmp, &tmp);
- DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0);
- }
- if(s_mp_cmp_d(&tmp, 0) == 0)
- SIGN(&tmp) = ZPOS;
- s_mp_exch(&tmp, b);
- CLEANUP:
- mp_clear(&tmp);
- return res;
- } /* end mp_add_d() */
- /* }}} */
- /* {{{ mp_sub_d(a, d, b) */
- /*
- mp_sub_d(a, d, b)
- Compute the difference b = a - d, for a single digit d. Respects the
- sign of its subtrahend (single digits are unsigned anyway).
- */
- mp_err mp_sub_d(const mp_int *a, mp_digit d, mp_int *b)
- {
- mp_int tmp;
- mp_err res;
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
- if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
- return res;
- if(SIGN(&tmp) == NEG) {
- if((res = s_mp_add_d(&tmp, d)) != MP_OKAY)
- goto CLEANUP;
- } else if(s_mp_cmp_d(&tmp, d) >= 0) {
- if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY)
- goto CLEANUP;
- } else {
- mp_neg(&tmp, &tmp);
- DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0);
- SIGN(&tmp) = NEG;
- }
- if(s_mp_cmp_d(&tmp, 0) == 0)
- SIGN(&tmp) = ZPOS;
- s_mp_exch(&tmp, b);
- CLEANUP:
- mp_clear(&tmp);
- return res;
- } /* end mp_sub_d() */
- /* }}} */
- /* {{{ mp_mul_d(a, d, b) */
- /*
- mp_mul_d(a, d, b)
- Compute the product b = a * d, for a single digit d. Respects the sign
- of its multiplicand (single digits are unsigned anyway)
- */
- mp_err mp_mul_d(const mp_int *a, mp_digit d, mp_int *b)
- {
- mp_err res;
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
- if(d == 0) {
- mp_zero(b);
- return MP_OKAY;
- }
- if((res = mp_copy(a, b)) != MP_OKAY)
- return res;
- res = s_mp_mul_d(b, d);
- return res;
- } /* end mp_mul_d() */
- /* }}} */
- /* {{{ mp_mul_2(a, c) */
- mp_err mp_mul_2(const mp_int *a, mp_int *c)
- {
- mp_err res;
- ARGCHK(a != NULL && c != NULL, MP_BADARG);
- if((res = mp_copy(a, c)) != MP_OKAY)
- return res;
- return s_mp_mul_2(c);
- } /* end mp_mul_2() */
- /* }}} */
- /* {{{ mp_div_d(a, d, q, r) */
- /*
- mp_div_d(a, d, q, r)
- Compute the quotient q = a / d and remainder r = a mod d, for a
- single digit d. Respects the sign of its divisor (single digits are
- unsigned anyway).
- */
- mp_err mp_div_d(const mp_int *a, mp_digit d, mp_int *q, mp_digit *r)
- {
- mp_err res;
- mp_int qp;
- mp_digit rem;
- int pow;
- ARGCHK(a != NULL, MP_BADARG);
- if(d == 0)
- return MP_RANGE;
- /* Shortcut for powers of two ... */
- if((pow = s_mp_ispow2d(d)) >= 0) {
- mp_digit mask;
- mask = ((mp_digit)1 << pow) - 1;
- rem = DIGIT(a, 0) & mask;
- if(q) {
- mp_copy(a, q);
- s_mp_div_2d(q, pow);
- }
- if(r)
- *r = rem;
- return MP_OKAY;
- }
- if((res = mp_init_copy(&qp, a)) != MP_OKAY)
- return res;
- res = s_mp_div_d(&qp, d, &rem);
- if(s_mp_cmp_d(&qp, 0) == 0)
- SIGN(q) = ZPOS;
- if(r)
- *r = rem;
- if(q)
- s_mp_exch(&qp, q);
- mp_clear(&qp);
- return res;
- } /* end mp_div_d() */
- /* }}} */
- /* {{{ mp_div_2(a, c) */
- /*
- mp_div_2(a, c)
- Compute c = a / 2, disregarding the remainder.
- */
- mp_err mp_div_2(const mp_int *a, mp_int *c)
- {
- mp_err res;
- ARGCHK(a != NULL && c != NULL, MP_BADARG);
- if((res = mp_copy(a, c)) != MP_OKAY)
- return res;
- s_mp_div_2(c);
- return MP_OKAY;
- } /* end mp_div_2() */
- /* }}} */
- /* {{{ mp_expt_d(a, d, b) */
- mp_err mp_expt_d(const mp_int *a, mp_digit d, mp_int *c)
- {
- mp_int s, x;
- mp_err res;
- ARGCHK(a != NULL && c != NULL, MP_BADARG);
- if((res = mp_init(&s)) != MP_OKAY)
- return res;
- if((res = mp_init_copy(&x, a)) != MP_OKAY)
- goto X;
- DIGIT(&s, 0) = 1;
- while(d != 0) {
- if(d & 1) {
- if((res = s_mp_mul(&s, &x)) != MP_OKAY)
- goto CLEANUP;
- }
- d /= 2;
- if((res = s_mp_sqr(&x)) != MP_OKAY)
- goto CLEANUP;
- }
- s_mp_exch(&s, c);
- CLEANUP:
- mp_clear(&x);
- X:
- mp_clear(&s);
- return res;
- } /* end mp_expt_d() */
- /* }}} */
- /* }}} */
- /*------------------------------------------------------------------------*/
- /* {{{ Full arithmetic */
- /* {{{ mp_abs(a, b) */
- /*
- mp_abs(a, b)
- Compute b = |a|. 'a' and 'b' may be identical.
- */
- mp_err mp_abs(const mp_int *a, mp_int *b)
- {
- mp_err res;
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
- if((res = mp_copy(a, b)) != MP_OKAY)
- return res;
- SIGN(b) = ZPOS;
- return MP_OKAY;
- } /* end mp_abs() */
- /* }}} */
- /* {{{ mp_neg(a, b) */
- /*
- mp_neg(a, b)
- Compute b = -a. 'a' and 'b' may be identical.
- */
- mp_err mp_neg(const mp_int *a, mp_int *b)
- {
- mp_err res;
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
- if((res = mp_copy(a, b)) != MP_OKAY)
- return res;
- if(s_mp_cmp_d(b, 0) == MP_EQ)
- SIGN(b) = ZPOS;
- else
- SIGN(b) = (SIGN(b) == NEG) ? ZPOS : NEG;
- return MP_OKAY;
- } /* end mp_neg() */
- /* }}} */
- /* {{{ mp_add(a, b, c) */
- /*
- mp_add(a, b, c)
- Compute c = a + b. All parameters may be identical.
- */
- mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c)
- {
- mp_err res;
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
- if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */
- MP_CHECKOK( s_mp_add_3arg(a, b, c) );
- } else if(s_mp_cmp(a, b) >= 0) { /* different sign: |a| >= |b| */
- MP_CHECKOK( s_mp_sub_3arg(a, b, c) );
- } else { /* different sign: |a| < |b| */
- MP_CHECKOK( s_mp_sub_3arg(b, a, c) );
- }
- if (s_mp_cmp_d(c, 0) == MP_EQ)
- SIGN(c) = ZPOS;
- CLEANUP:
- return res;
- } /* end mp_add() */
- /* }}} */
- /* {{{ mp_sub(a, b, c) */
- /*
- mp_sub(a, b, c)
- Compute c = a - b. All parameters may be identical.
- */
- mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
- {
- mp_err res;
- int magDiff;
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
- if (a == b) {
- mp_zero(c);
- return MP_OKAY;
- }
- if (MP_SIGN(a) != MP_SIGN(b)) {
- MP_CHECKOK( s_mp_add_3arg(a, b, c) );
- } else if (!(magDiff = s_mp_cmp(a, b))) {
- mp_zero(c);
- res = MP_OKAY;
- } else if (magDiff > 0) {
- MP_CHECKOK( s_mp_sub_3arg(a, b, c) );
- } else {
- MP_CHECKOK( s_mp_sub_3arg(b, a, c) );
- MP_SIGN(c) = !MP_SIGN(a);
- }
- if (s_mp_cmp_d(c, 0) == MP_EQ)
- MP_SIGN(c) = MP_ZPOS;
- CLEANUP:
- return res;
- } /* end mp_sub() */
- /* }}} */
- /* {{{ mp_mul(a, b, c) */
- /*
- mp_mul(a, b, c)
- Compute c = a * b. All parameters may be identical.
- */
- mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int * c)
- {
- mp_digit *pb;
- mp_int tmp;
- mp_err res;
- mp_size ib;
- mp_size useda, usedb;
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
- if (a == c) {
- if ((res = mp_init_copy(&tmp, a)) != MP_OKAY)
- return res;
- if (a == b)
- b = &tmp;
- a = &tmp;
- } else if (b == c) {
- if ((res = mp_init_copy(&tmp, b)) != MP_OKAY)
- return res;
- b = &tmp;
- } else {
- MP_DIGITS(&tmp) = 0;
- }
- if (MP_USED(a) < MP_USED(b)) {
- const mp_int *xch = b; /* switch a and b, to do fewer outer loops */
- b = a;
- a = xch;
- }
- MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
- if((res = s_mp_pad(c, USED(a) + USED(b))) != MP_OKAY)
- goto CLEANUP;
- pb = MP_DIGITS(b);
- s_mpv_mul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));
- /* Outer loop: Digits of b */
- useda = MP_USED(a);
- usedb = MP_USED(b);
- for (ib = 1; ib < usedb; ib++) {
- mp_digit b_i = *pb++;
- /* Inner product: Digits of a */
- if (b_i)
- s_mpv_mul_d_add(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
- else
- MP_DIGIT(c, ib + useda) = b_i;
- }
- s_mp_clamp(c);
- if(SIGN(a) == SIGN(b) || s_mp_cmp_d(c, 0) == MP_EQ)
- SIGN(c) = ZPOS;
- else
- SIGN(c) = NEG;
- CLEANUP:
- mp_clear(&tmp);
- return res;
- } /* end mp_mul() */
- /* }}} */
- /* {{{ mp_sqr(a, sqr) */
- #if MP_SQUARE
- /*
- Computes the square of a. This can be done more
- efficiently than a general multiplication, because many of the
- computation steps are redundant when squaring. The inner product
- step is a bit more complicated, but we save a fair number of
- iterations of the multiplication loop.
- */
- /* sqr = a^2; Caller provides both a and tmp; */
- mp_err mp_sqr(const mp_int *a, mp_int *sqr)
- {
- mp_digit *pa;
- mp_digit d;
- mp_err res;
- mp_size ix;
- mp_int tmp;
- int count;
- ARGCHK(a != NULL && sqr != NULL, MP_BADARG);
- if (a == sqr) {
- if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
- return res;
- a = &tmp;
- } else {
- DIGITS(&tmp) = 0;
- res = MP_OKAY;
- }
- ix = 2 * MP_USED(a);
- if (ix > MP_ALLOC(sqr)) {
- MP_USED(sqr) = 1;
- MP_CHECKOK( s_mp_grow(sqr, ix) );
- }
- MP_USED(sqr) = ix;
- MP_DIGIT(sqr, 0) = 0;
- pa = MP_DIGITS(a);
- count = MP_USED(a) - 1;
- if (count > 0) {
- d = *pa++;
- s_mpv_mul_d(pa, count, d, MP_DIGITS(sqr) + 1);
- for (ix = 3; --count > 0; ix += 2) {
- d = *pa++;
- s_mpv_mul_d_add(pa, count, d, MP_DIGITS(sqr) + ix);
- } /* for(ix ...) */
- MP_DIGIT(sqr, MP_USED(sqr)-1) = 0; /* above loop stopped short of this. */
- /* now sqr *= 2 */
- s_mp_mul_2(sqr);
- } else {
- MP_DIGIT(sqr, 1) = 0;
- }
- /* now add the squares of the digits of a to sqr. */
- s_mpv_sqr_add_prop(MP_DIGITS(a), MP_USED(a), MP_DIGITS(sqr));
- SIGN(sqr) = ZPOS;
- s_mp_clamp(sqr);
- CLEANUP:
- mp_clear(&tmp);
- return res;
- } /* end mp_sqr() */
- #endif
- /* }}} */
- /* {{{ mp_div(a, b, q, r) */
- /*
- mp_div(a, b, q, r)
- Compute q = a / b and r = a mod b. Input parameters may be re-used
- as output parameters. If q or r is NULL, that portion of the
- computation will be discarded (although it will still be computed)
- */
- mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r)
- {
- mp_err res;
- mp_int *pQ, *pR;
- mp_int qtmp, rtmp;
- int cmp;
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
- if(mp_cmp_z(b) == MP_EQ)
- return MP_RANGE;
- DIGITS(&qtmp) = 0;
- DIGITS(&rtmp) = 0;
- /* Set up some temporaries... */
- if (!q || q == a || q == b) {
- if((res = mp_init_copy(&qtmp, a)) != MP_OKAY)
- return res;
- pQ = &qtmp;
- } else {
- if((res = mp_copy(a, q)) != MP_OKAY)
- return res;
- pQ = q;
- }
- if (!r || r == a || r == b) {
- if((res = mp_init_copy(&rtmp, b)) != MP_OKAY)
- goto CLEANUP;
- pR = &rtmp;
- } else {
- if((res = mp_copy(b, r)) != MP_OKAY)
- goto CLEANUP;
- pR = r;
- }
- /*
- If a <= b, we can compute the solution without division;
- otherwise, we actually do the work required.
- */
- if((cmp = s_mp_cmp(pQ, pR)) < 0) {
- s_mp_exch(pQ, pR);
- mp_zero(pQ);
- } else if(cmp == 0) {
- mp_set(pQ, 1);
- mp_zero(pR);
- } else {
- if((res = s_mp_div(pQ, pR)) != MP_OKAY)
- goto CLEANUP;
- }
- /* Compute the signs for the output */
- SIGN(pR) = SIGN(a); /* Sr = Sa */
- if(SIGN(a) == SIGN(b))
- SIGN(pQ) = ZPOS; /* Sq = ZPOS if Sa = Sb */
- else
- SIGN(pQ) = NEG; /* Sq = NEG if Sa != Sb */
- if(s_mp_cmp_d(pQ, 0) == MP_EQ)
- SIGN(pQ) = ZPOS;
- if(s_mp_cmp_d(pR, 0) == MP_EQ)
- SIGN(pR) = ZPOS;
- /* Copy output, if it is needed */
- if(q && q != pQ)
- s_mp_exch(pQ, q);
- if(r && r != pR)
- s_mp_exch(pR, r);
- CLEANUP:
- mp_clear(&rtmp);
- mp_clear(&qtmp);
- return res;
- } /* end mp_div() */
- /* }}} */
- /* {{{ mp_div_2d(a, d, q, r) */
- mp_err mp_div_2d(const mp_int *a, mp_digit d, mp_int *q, mp_int *r)
- {
- mp_err res;
- ARGCHK(a != NULL, MP_BADARG);
- if(q) {
- if((res = mp_copy(a, q)) != MP_OKAY)
- return res;
- }
- if(r) {
- if((res = mp_copy(a, r)) != MP_OKAY)
- return res;
- }
- if(q) {
- s_mp_div_2d(q, d);
- }
- if(r) {
- s_mp_mod_2d(r, d);
- }
- return MP_OKAY;
- } /* end mp_div_2d() */
- /* }}} */
- /* {{{ mp_expt(a, b, c) */
- /*
- mp_expt(a, b, c)
- Compute c = a ** b, that is, raise a to the b power. Uses a
- standard iterative square-and-multiply technique.
- */
- mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
- {
- mp_int s, x;
- mp_err res;
- mp_digit d;
- int dig, bit;
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
- if(mp_cmp_z(b) < 0)
- return MP_RANGE;
- if((res = mp_init(&s)) != MP_OKAY)
- return res;
- mp_set(&s, 1);
- if((res = mp_init_copy(&x, a)) != MP_OKAY)
- goto X;
- /* Loop over low-order digits in ascending order */
- for(dig = 0; dig < (USED(b) - 1); dig++) {
- d = DIGIT(b, dig);
- /* Loop over bits of each non-maximal digit */
- for(bit = 0; bit < DIGIT_BIT; bit++) {
- if(d & 1) {
- if((res = s_mp_mul(&s, &x)) != MP_OKAY)
- goto CLEANUP;
- }
- d >>= 1;
-
- if((res = s_mp_sqr(&x)) != MP_OKAY)
- goto CLEANUP;
- }
- }
- /* Consider now the last digit... */
- d = DIGIT(b, dig);
- while(d) {
- if(d & 1) {
- if((res = s_mp_mul(&s, &x)) != MP_OKAY)
- goto CLEANUP;
- }
- d >>= 1;
- if((res = s_mp_sqr(&x)) != MP_OKAY)
- goto CLEANUP;
- }
-
- if(mp_iseven(b))
- SIGN(&s) = SIGN(a);
- res = mp_copy(&s, c);
- CLEANUP:
- mp_clear(&x);
- X:
- mp_clear(&s);
- return res;
- } /* end mp_expt() */
- /* }}} */
- /* {{{ mp_2expt(a, k) */
- /* Compute a = 2^k */
- mp_err mp_2expt(mp_int *a, mp_digit k)
- {
- ARGCHK(a != NULL, MP_BADARG);
- return s_mp_2expt(a, k);
- } /* end mp_2expt() */
- /* }}} */
- /* {{{ mp_mod(a, m, c) */
- /*
- mp_mod(a, m, c)
- Compute c = a (mod m). Result will always be 0 <= c < m.
- */
- mp_err mp_mod(const mp_int *a, const mp_int *m, mp_int *c)
- {
- mp_err res;
- int mag;
- ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
- if(SIGN(m) == NEG)
- return MP_RANGE;
- /*
- If |a| > m, we need to divide to get the remainder and take the
- absolute value.
- If |a| < m, we don't need to do any division, just copy and adjust
- the sign (if a is negative).
- If |a| == m, we can simply set the result to zero.
- This order is intended to minimize the average path length of the
- comparison chain on common workloads -- the most frequent cases are
- that |a| != m, so we do those first.
- */
- if((mag = s_mp_cmp(a, m)) > 0) {
- if((res = mp_div(a, m, NULL, c)) != MP_OKAY)
- return res;
-
- if(SIGN(c) == NEG) {
- if((res = mp_add(c, m, c)) != MP_OKAY)
- return res;
- }
- } else if(mag < 0) {
- if((res = mp_copy(a, c)) != MP_OKAY)
- return res;
- if(mp_cmp_z(a) < 0) {
- if((res = mp_add(c, m, c)) != MP_OKAY)
- return res;
- }
-
- } else {
- mp_zero(c);
- }
- return MP_OKAY;
- } /* end mp_mod() */
- /* }}} */
- /* {{{ mp_mod_d(a, d, c) */
- /*
- mp_mod_d(a, d, c)
- Compute c = a (mod d). Result will always be 0 <= c < d
- */
- mp_err mp_mod_d(const mp_int *a, mp_digit d, mp_digit *c)
- {
- mp_err res;
- mp_digit rem;
- ARGCHK(a != NULL && c != NULL, MP_BADARG);
- if(s_mp_cmp_d(a, d) > 0) {
- if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY)
- return res;
- } else {
- if(SIGN(a) == NEG)
- rem = d - DIGIT(a, 0);
- else
- rem = DIGIT(a, 0);
- }
- if(c)
- *c = rem;
- return MP_OKAY;
- } /* end mp_mod_d() */
- /* }}} */
- /* {{{ mp_sqrt(a, b) */
- /*
- mp_sqrt(a, b)
- Compute the integer square root of a, and store the result in b.
- Uses an integer-arithmetic version of Newton's iterative linear
- approximation technique to determine this value; the result has the
- following two properties:
- b^2 <= a
- (b+1)^2 >= a
- It is a range error to pass a negative value.
- */
- mp_err mp_sqrt(const mp_int *a, mp_int *b)
- {
- mp_int x, t;
- mp_err res;
- mp_size used;
- ARGCHK(a != NULL && b != NULL, MP_BADARG);
- /* Cannot take square root of a negative value */
- if(SIGN(a) == NEG)
- return MP_RANGE;
- /* Special cases for zero and one, trivial */
- if(mp_cmp_d(a, 1) <= 0)
- return mp_copy(a, b);
-
- /* Initialize the temporaries we'll use below */
- if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
- return res;
- /* Compute an initial guess for the iteration as a itself */
- if((res = mp_init_copy(&x, a)) != MP_OKAY)
- goto X;
- used = MP_USED(&x);
- if (used > 1) {
- s_mp_rshd(&x, used / 2);
- }
- for(;;) {
- /* t = (x * x) - a */
- mp_copy(&x, &t); /* can't fail, t is big enough for original x */
- if((res = mp_sqr(&t, &t)) != MP_OKAY ||
- (res = mp_sub(&t, a, &t)) != MP_OKAY)
- goto CLEANUP;
- /* t = t / 2x */
- s_mp_mul_2(&x);
- if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY)
- goto CLEANUP;
- s_mp_div_2(&x);
- /* Terminate the loop, if the quotient is zero */
- if(mp_cmp_z(&t) == MP_EQ)
- break;
- /* x = x - t */
- if((res = mp_sub(&x, &t, &x)) != MP_OKAY)
- goto CLEANUP;
- }
- /* Copy result to output parameter */
- mp_sub_d(&x, 1, &x);
- s_mp_exch(&x, b);
- CLEANUP:
- mp_clear(&x);
- X:
- mp_clear(&t);
- return res;
- } /* end mp_sqrt() */
- /* }}} */
- /* }}} */
- /*------------------------------------------------------------------------*/
- /* {{{ Modular arithmetic */
- #if MP_MODARITH
- /* {{{ mp_addmod(a, b, m, c) */
- /*
- mp_addmod(a, b, m, c)
- Compute c = (a + b) mod m
- */
- mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c)
- {
- mp_err res;
- ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
- if((res = mp_add(a, b, c)) != MP_OKAY)
- return res;
- if((res = mp_mod(c, m, c)) != MP_OKAY)
- return res;
- return MP_OKAY;
- }
- /* }}} */
- /* {{{ mp_submod(a, b, m, c) */
- /*
- mp_submod(a, b, m, c)
- Compute c = (a - b) mod m
- */
- mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c)
- {
- mp_err res;
- ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
- if((res = mp_sub(a, b, c)) != MP_OKAY)
- return res;
- if((res = mp_mod(c, m, c)) != MP_OKAY)
- return res;
- return MP_OKAY;
- }
- /* }}} */
- /* {{{ mp_mulmod(a, b, m, c) */
- /*
- mp_mulmod(a, b, m, c)
- Compute c = (a * b) mod m
- */
- mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c)
- {
- mp_err res;
- ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
- if((res = mp_mul(a, b, c)) != MP_OKAY)
- return res;
- if((res = mp_mod(c, m, c)) != MP_OKAY)
- return res;
- return MP_OKAY;
- }
- /* }}} */
- /* {{{ mp_sqrmod(a, m, c) */
- #if MP_SQUARE
- mp_err mp_sqrmod(const mp_int *a, const mp_int *m, mp_int *c)
- {
- mp_err res;
- ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
- if((res = mp_sqr(a, c)) != MP_OKAY)
- return res;
- if((res = mp_mod(c, m, c)) != MP_OKAY)
- return res;
- return MP_OKAY;
- } /* end mp_sqrmod() */
- #endif
- /* }}} */
- /* {{{ s_mp_exptmod(a, b, m, c) */
- /*
- s_mp_exptmod(a, b, m, c)
- Compute c = (a ** b) mod m. Uses a standard square-and-multiply
- method with modular reductions at each step. (This is basically the
- same code as mp_expt(), except for the addition of the reductions)
-
- The modular reductions are done using Barrett's algorithm (see
- s_mp_reduce() below for details)
- */
- mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c)
- {
- mp_int s, x, mu;
- mp_err res;
- mp_digit d;
- int dig, bit;
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
- if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0)
- return MP_RANGE;
- if((res = mp_init(&s)) != MP_OKAY)
- return res;
- if((res = mp_init_copy(&x, a)) != MP_OKAY ||
- (res = mp_mod(&x, m, &x)) != MP_OKAY)
- goto X;
- if((res = mp_init(&mu)) != MP_OKAY)
- goto MU;
- mp_set(&s, 1);
- /* mu = b^2k / m */
- s_mp_add_d(&mu, 1);
- s_mp_lshd(&mu, 2 * USED(m));
- if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY)
- goto CLEANUP;
- /* Loop over digits of b in ascending order, except highest order */
- for(dig = 0; dig < (USED(b) - 1); dig++) {
- d = DIGIT(b, dig);
- /* Loop over the bits of the lower-order digits */
- for(bit = 0; bit < DIGIT_BIT; bit++) {
- if(d & 1) {
- if((res = s_mp_mul(&s, &x)) != MP_OKAY)
- goto CLEANUP;
- if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
- goto CLEANUP;
- }
- d >>= 1;
- if((res = s_mp_sqr(&x)) != MP_OKAY)
- goto CLEANUP;
- if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
- goto CLEANUP;
- }
- }
- /* Now do the last digit... */
- d = DIGIT(b, dig);
- while(d) {
- if(d & 1) {
- if((res = s_mp_mul(&s, &x)) != MP_OKAY)
- goto CLEANUP;
- if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
- goto CLEANUP;
- }
- d >>= 1;
- if((res = s_mp_sqr(&x)) != MP_OKAY)
- goto CLEANUP;
- if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
- goto CLEANUP;
- }
- s_mp_exch(&s, c);
- CLEANUP:
- mp_clear(&mu);
- MU:
- mp_clear(&x);
- X:
- mp_clear(&s);
- return res;
- } /* end s_mp_exptmod() */
- /* }}} */
- /* {{{ mp_exptmod_d(a, d, m, c) */
- mp_err mp_exptmod_d(const mp_int *a, mp_digit d, const mp_int *m, mp_int *c)
- {
- mp_int s, x;
- mp_err res;
- ARGCHK(a != NULL && c != NULL, MP_BADARG);
- if((res = mp_init(&s)) != MP_OKAY)
- return res;
- if((res = mp_init_copy(&x, a)) != MP_OKAY)
- goto X;
- mp_set(&s, 1);
- while(d != 0) {
- if(d & 1) {
- if((res = s_mp_mul(&s, &x)) != MP_OKAY ||
- (res = mp_mod(&s, m, &s)) != MP_OKAY)
- goto CLEANUP;
- }
- d /= 2;
- if((res = s_mp_sqr(&x)) != MP_OKAY ||
- (res = mp_mod(&x, m, &x)) != MP_OKAY)
- goto CLEANUP;
- }
- s_mp_exch(&s, c);
- CLEANUP:
- mp_clear(&x);
- X:
- mp_clear(&s);
- return res;
- } /* end mp_exptmod_d() */
- /* }}} */
- #endif /* if MP_MODARITH */
- /* }}} */
- /*------------------------------------------------------------------------*/
- /* {{{ Comparison functions */
- /* {{{ mp_cmp_z(a) */
- /*
- mp_cmp_z(a)
- Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0.
- */
- int mp_cmp_z(const mp_int *a)
- {
- if(SIGN(a) == NEG)
- return MP_LT;
- else if(USED(a) == 1 && DIGIT(a, 0) == 0)
- return MP_EQ;
- else
- return MP_GT;
- } /* end mp_cmp_z() */
- /* }}} */
- /* {{{ mp_cmp_d(a, d) */
- /*
- mp_cmp_d(a, d)
- Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d
- */
- int mp_cmp_d(const mp_int *a, mp_digit d)
- {
- ARGCHK(a != NULL, MP_EQ);
- if(SIGN(a) == NEG)
- return MP_LT;
- return s_mp_cmp_d(a, d);
- } /* end mp_cmp_d() */
- /* }}} */
- /* {{{ mp_cmp(a, b) */
- int mp_cmp(const mp_int *a, const mp_int *b)
- {
- ARGCHK(a != NULL && b != NULL, MP_EQ);
- if(SIGN(a) == SIGN(b)) {
- int mag;
- if((mag = s_mp_cmp(a, b)) == MP_EQ)
- return MP_EQ;
- if(SIGN(a) == ZPOS)
- return mag;
- else
- return -mag;
- } else if(SIGN(a) == ZPOS) {
- return MP_GT;
- } else {
- return MP_LT;
- }
- } /* end mp_cmp() */
- /* }}} */
- /* {{{ mp_cmp_mag(a, b) */
- /*
- mp_cmp_mag(a, b)
- Compares |a| <=> |b|, and returns an appropriate comparison result
- */
- int mp_cmp_mag(mp_int *a, mp_int *b)
- {
- ARGCHK(a != NULL && b != NULL, MP_EQ);
- return s_mp_cmp(a, b);
- } /* end mp_cmp_mag() */
- /* }}} */
- /* {{{ mp_cmp_int(a, z) */
- /*
- This just converts z to an mp_int, and uses the existing comparison
- routines. This is sort of inefficient, but it's not clear to me how
- frequently this wil get used anyway. For small positive constants,
- you can always use mp_cmp_d(), and for zero, there is mp_cmp_z().
- */
- int mp_cmp_int(const mp_int *a, long z)
- {
- mp_int tmp;
- int out;
- ARGCHK(a != NULL, MP_EQ);
-
- mp_init(&tmp); mp_set_int(&tmp, z);
- out = mp_cmp(a, &tmp);
- mp_clear(&tmp);
- return out;
- } /* end mp_cmp_int() */
- /* }}} */
- /* {{{ mp_isodd(a) */
- /*
- mp_isodd(a)
- Returns a true (non-zero) value if a is odd, false (zero) otherwise.
- */
- int mp_isodd(const mp_int *a)
- {
- ARGCHK(a != NULL, 0);
- return (int)(DIGIT(a, 0) & 1);
- } /* end mp_isodd() */
- /* }}} */
- /* {{{ mp_iseven(a) */
- int mp_iseven(const mp_int *a)
- {
- return !mp_isodd(a);
- } /* end mp_iseven() */
- /* }}} */
- /* }}} */
- /*------------------------------------------------------------------------*/
- /* {{{ Number theoretic functions */
- #if MP_NUMTH
- /* {{{ mp_gcd(a, b, c) */
- /*
- Like the old mp_gcd() function, except computes the GCD using the
- binary algorithm due to Josef Stein in 1961 (via Knuth).
- */
- mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c)
- {
- mp_err res;
- mp_int u, v, t;
- mp_size k = 0;
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
- if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ)
- return MP_RANGE;
- if(mp_cmp_z(a) == MP_EQ) {
- return mp_copy(b, c);
- } else if(mp_cmp_z(b) == MP_EQ) {
- return mp_copy(a, c);
- }
- if((res = mp_init(&t)) != MP_OKAY)
- return res;
- if((res = mp_init_copy(&u, a)) != MP_OKAY)
- goto U;
- if((res = mp_init_copy(&v, b)) != MP_OKAY)
- goto V;
- SIGN(&u) = ZPOS;
- SIGN(&v) = ZPOS;
- /* Divide out common factors of 2 until at least 1 of a, b is even */
- while(mp_iseven(&u) && mp_iseven(&v)) {
- s_mp_div_2(&u);
- s_mp_div_2(&v);
- ++k;
- }
- /* Initialize t */
- if(mp_isodd(&u)) {
- if((res = mp_copy(&v, &t)) != MP_OKAY)
- goto CLEANUP;
-
- /* t = -v */
- if(SIGN(&v) == ZPOS)
- SIGN(&t) = NEG;
- else
- SIGN(&t) = ZPOS;
-
- } else {
- if((res = mp_copy(&u, &t)) != MP_OKAY)
- goto CLEANUP;
- }
- for(;;) {
- while(mp_iseven(&t)) {
- s_mp_div_2(&t);
- }
- if(mp_cmp_z(&t) == MP_GT) {
- if((res = mp_copy(&t, &u)) != MP_OKAY)
- goto CLEANUP;
- } else {
- if((res = mp_copy(&t, &v)) != MP_OKAY)
- goto CLEANUP;
- /* v = -t */
- if(SIGN(&t) == ZPOS)
- SIGN(&v) = NEG;
- else
- SIGN(&v) = ZPOS;
- }
- if((res = mp_sub(&u, &v, &t)) != MP_OKAY)
- goto CLEANUP;
- if(s_mp_cmp_d(&t, 0) == MP_EQ)
- break;
- }
- s_mp_2expt(&v, k); /* v = 2^k */
- res = mp_mul(&u, &v, c); /* c = u * v */
- CLEANUP:
- mp_clear(&v);
- V:
- mp_clear(&u);
- U:
- mp_clear(&t);
- return res;
- } /* end mp_gcd() */
- /* }}} */
- /* {{{ mp_lcm(a, b, c) */
- /* We compute the least common multiple using the rule:
- ab = [a, b](a, b)
- ... by computing the product, and dividing out the gcd.
- */
- mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c)
- {
- mp_int gcd, prod;
- mp_err res;
- ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
- /* Set up temporaries */
- if((res = mp_init(&gcd)) != MP_OKAY)
- return res;
- if((res = mp_init(&prod)) != MP_OKAY)
- goto GCD;
- if((res = mp_mul(a, b, &prod)) != MP_OKAY)
- goto CLEANUP;
- if((res = mp_gcd(a, b, &gcd)) != MP_OKAY)
- goto CLEANUP;
- res = mp_div(&prod, &gcd, c, NULL);
- CLEANUP:
- mp_clear(&prod);
- GCD:
- mp_clear(&gcd);
- return res;
- } /* end mp_lcm() */
- /* }}} */
- /* {{{ mp_xgcd(a, b, g, x, y) */
- /*
- mp_xgcd(a, b, g, x, y)
- Compute g = (a, b) and values x and y satisfying Bezout's identity
- (that is, ax + by = g). This uses the binary extended GCD algorithm
- based on the Stein algorithm used for mp_gcd()
- See algorithm 14.61 in Handbook of Applied Cryptogrpahy.
- */
- mp_err mp_xgcd(const mp_int *a, const mp_int *b, mp_int *g, mp_int *x, mp_int *y)
- {
- mp_int gx, xc, yc, u, v, A, B, C, D;
- mp_int *clean[9];
- mp_err res;
- int last = -1;
- if(mp_cmp_z(b) == 0)
- return MP_RANGE;
- /* Initialize all these variables we need */
- MP_CHECKOK( mp_init(&u) );
- clean[++last] = &u;
- MP_CHECKOK( mp_init(&v) );
- clean[++last] = &v;
- MP_CHECKOK( mp_init(&gx) );
- clean[++last] = &gx;
- MP_CHECKOK( mp_init(&A) );
- clean[++last] = &A;
- MP_CHECKOK( mp_init(&B) );
- clean[++last] = &B;
- MP_CHECKOK( mp_init(&C) );
- clean[++last] = &C;
- MP_CHECKOK( mp_init(&D) );
- clean[++last] = &D;
- MP_CHECKOK( mp_init_copy(&xc, a) );
- clean[++last] = &xc;
- mp_abs(&xc, &xc);
- MP_CHECKOK( mp_init_copy(&yc, b) );
- clean[++last] = &yc;
- mp_abs(&yc, &yc);
- mp_set(&gx, 1);
- /* Divide by two until at least one of them is odd */
- while(mp_iseven(&xc) && mp_iseven(&yc)) {
- mp_size nx = mp_trailing_zeros(&xc);
- mp_size ny = mp_trailing_zeros(&yc);
- mp_size n = MP_MIN(nx, ny);
- s_mp_div_2d(&xc,n);
- s_mp_div_2d(&yc,n);
- MP_CHECKOK( s_mp_mul_2d(&gx,n) );
- }
- mp_copy(&xc, &u);
- mp_copy(&yc, &v);
- mp_set(&A, 1); mp_set(&D, 1);
- /* Loop through binary GCD algorithm */
- do {
- while(mp_iseven(&u)) {
- s_mp_div_2(&u);
- if(mp_iseven(&A) && mp_iseven(&B)) {
- s_mp_div_2(&A); s_mp_div_2(&B);
- } else {
- MP_CHECKOK( mp_add(&A, &yc, &A) );
- s_mp_div_2(&A);
- MP_CHECKOK( mp_sub(&B, &xc, &B) );
- s_mp_div_2(&B);
- }
- }
- while(mp_iseven(&v)) {
- s_mp_div_2(&v);
- if(mp_iseven(&C) && mp_iseven(&D)) {
- s_mp_div_2(&C); s_mp_div_2(&D);
- } else {
- MP_CHECKOK( mp_add(&C, &yc, &C) );
- s_mp_div_2(&C);
- MP_CHECKOK( mp_sub(&D, &xc, &D) );
- s_mp_div_2(&D);
- }
- }
- if(mp_cmp(&u, &v) >= 0) {
- MP_CHECKOK( mp_sub(&u, &v, &u) );
- MP_CHECKOK( mp_sub(&A, &C, &A) );
- MP_CHECKOK( mp_sub(&B, &D, &B) );
- } else {
- MP_CHECKOK( mp_sub(&v, &u, &v) );
- MP_CHECKOK( mp_sub(&C, &A, &C) );
- MP_CHECKOK( mp_sub(&D, &B, &D) );
- }
- } while (mp_cmp_z(&u) != 0);
- /* copy results to output */
- if(x)
- MP_CHECKOK( mp_copy(&C, x) );
- if(y)
- MP_CHECKOK( mp_copy(&D, y) );
-
- if(g)
- MP_CHECKOK( mp_mul(&gx, &v, g) );
- CLEANUP:
- while(last >= 0)
- mp_clear(clean[last--]);
- return res;
- } /* end mp_xgcd() */
- /* }}} */
- mp_size mp_trailing_zeros(const mp_int *mp)
- {
- mp_digit d;
- mp_size n = 0;
- int ix;
- if (!mp || !MP_DIGITS(mp) || !mp_cmp_z(mp))
- return n;
- for (ix = 0; !(d = MP_DIGIT(mp,ix)) && (ix < MP_USED(mp)); ++ix)
- n += MP_DIGIT_BIT;
- if (!d)
- return 0; /* shouldn't happen, but ... */
- #if (MP_DIGIT_MAX > MP_32BIT_MAX)
- if (!(d & 0xffffffffU)) {
- d >>= 32;
- n += 32;
- }
- #endif
- if (!(d & 0xffffU)) {
- d >>= 16;
- n += 16;
- }
- if (!(d & 0xffU)) {
- d >>= 8;
- n += 8;
- }
- if (!(d & 0xfU)) {
- d >>= 4;
- n += 4;
- }
- if (!(d & 0x3U)) {
- d >>= 2;
- n += 2;
- }
- if (!(d & 0x1U)) {
- d >>= 1;
- n += 1;
- }
- #if MP_ARGCHK == 2
- assert(0 != (d & 1));
- #endif
- return n;
- }
- /* Given a and prime p, computes c and k such that a*c == 2**k (mod p).
- ** Returns k (positive) or error (negative).
- ** This technique from the paper "Fast Modular Reciprocals" (unpublished)
- ** by Richard Schroeppel (a.k.a. Captain Nemo).
- */
- mp_err s_mp_almost_inverse(const mp_int *a, const mp_int *p, mp_int *c)
- {
- mp_err res;
- mp_err k = 0;
- mp_int d, f, g;
- ARGCHK(a && p && c, MP_BADARG);
- MP_DIGITS(&d) = 0;
- MP_DIGITS(&f) = 0;
- MP_DIGITS(&g) = 0;
- MP_CHECKOK( mp_init(&d) );
- MP_CHECKOK( mp_init_copy(&f, a) ); /* f = a */
- MP_CHECKOK( mp_init_copy(&g, p) ); /* g = p */
- mp_set(c, 1);
- mp_zero(&d);
- if (mp_cmp_z(&f) == 0) {
- res = MP_UNDEF;
- } else
- for (;;) {
- int diff_sign;
- while (mp_iseven(&f)) {
- mp_size n = mp_trailing_zeros(&f);
- if (!n) {
- res = MP_UNDEF;
- goto CLEANUP;
- }
- s_mp_div_2d(&f, n);
- MP_CHECKOK( s_mp_mul_2d(&d, n) );
- k += n;
- }
- if (mp_cmp_d(&f, 1) == MP_EQ) { /* f == 1 */
- res = k;
- break;
- }
- diff_sign = mp_cmp(&f, &g);
- if (diff_sign < 0) { /* f < g */
- s_mp_exch(&f, &g);
- s_mp_exch(c, &d);
- } else if (diff_sign == 0) { /* f == g */
- res = MP_UNDEF; /* a and p are not relatively prime */
- break;
- }
- if ((MP_DIGIT(&f,0) % 4) == (MP_DIGIT(&g,0) % 4)) {
- MP_CHECKOK( mp_sub(&f, &g, &f) ); /* f = f - g */
- MP_CHECKOK( mp_sub(c, &d, c) ); /* c = c - d */
- } else {
- MP_CHECKOK( mp_add(&f, &g, &f) ); /* f = f + g */
- MP_CHECKOK( mp_add(c, &d, c) ); /* c = c + d */
- }
- }
- if (res >= 0) {
- while (MP_SIGN(c) != MP_ZPOS) {
- MP_CHECKOK( mp_add(c, p, c) );
- }
- res = k;
- }
- CLEANUP:
- mp_clear(&d);
- mp_clear(&f);
- mp_clear(&g);
- return res;
- }
- /* Compute T = (P ** -1) mod MP_RADIX. Also works for 16-bit mp_digits.
- ** This technique from the paper "Fast Modular Reciprocals" (unpublished)
- ** by Richard Schroeppel (a.k.a. Captain Nemo).
- */
- mp_digit s_mp_invmod_radix(mp_digit P)
- {
- mp_digit T = P;
- T *= 2 - (P * T);
- T *= 2 - (P * T);
- T *= 2 - (P * T);
- T *= 2 - (P * T);
- #if MP_DIGIT_MAX > MP_32BIT_MAX
- T *= 2 - (P * T);
- T *= 2 - (P * T);
- #endif
- return T;
- }
- /* Given c, k, and prime p, where a*c == 2**k (mod p),
- ** Compute x = (a ** -1) mod p. This is similar to Montgomery reduction.
- ** This technique from the paper "Fast Modular Reciprocals" (unpublished)
- ** by Richard Schroeppel (a.k.a. Captain Nemo).
- */
- mp_err s_mp_fixup_reciprocal(const mp_int *c, const mp_int *p, int k, mp_int *x)
- {
- int k_orig = k;
- mp_digit r;
- mp_size ix;
- mp_err res;
- if (mp_cmp_z(c) < 0) { /* c < 0 */
- MP_CHECKOK( mp_add(c, p, x) ); /* x = c + p */
- } else {
- MP_CHECKOK( mp_copy(c, x) ); /* x = c */
- }
- /* make sure x is large enough */
- ix = MP_HOWMANY(k, MP_DIGIT_BIT) + MP_USED(p) + 1;
- ix = MP_MAX(ix, MP_USED(x));
- MP_CHECKOK( s_mp_pad(x, ix) );
- r = 0 - s_mp_invmod_radix(MP_DIGIT(p,0));
- for (ix = 0; k > 0; ix++) {
- int j = MP_MIN(k, MP_DIGIT_BIT);
- mp_digit v = r * MP_DIGIT(x, ix);
- if (j < MP_DIGIT_BIT) {
- v &= ((mp_digit)1 << j) - 1; /* v = v mod (2 ** j) */
- }
- s_mp_mul_d_add_offset(p, v, x, ix); /* x += p * v * (RADIX ** ix) */
- k -= j;
- }
- s_mp_clamp(x);
- s_mp_div_2d(x, k_orig);
- res = MP_OKAY;
- CLEANUP:
- return res;
- }
- /* compute mod inverse using Schroeppel's method, only if m is odd */
- mp_err s_mp_invmod_odd_m(const mp_int *a, const mp_int *m, mp_int *c)
- {
- int k;
- mp_err res;
- mp_int x;
- ARGCHK(a && m && c, MP_BADARG);
- if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
- return MP_RANGE;
- if (mp_iseven(m))
- return MP_UNDEF;
- MP_DIGITS(&x) = 0;
- if (a == c) {
- if ((res = mp_init_copy(&x, a)) != MP_OKAY)
- return res;
- if (a == m)
- m = &x;
- a = &x;
- } else if (m == c) {
- if ((res = mp_init_copy(&x, m)) != MP_OKAY)
- return res;
- m = &x;
- } else {
- MP_DIGITS(&x) = 0;
- }
- MP_CHECKOK( s_mp_almost_inverse(a, m, c) );
- k = res;
- MP_CHECKOK( s_mp_fixup_reciprocal(c, m, k, c) );
- CLEANUP:
- mp_clear(&x);
- return res;
- }
- /* Known good algorithm for computing modular inverse. But slow. */
- mp_err mp_invmod_xgcd(const mp_int *a, const mp_int *m, mp_int *c)
- {
- mp_int g, x;
- mp_err res;
- ARGCHK(a && m && c, MP_BADARG);
- if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
- return MP_RANGE;
- MP_DIGITS(&g) = 0;
- MP_DIGITS(&x) = 0;
- MP_CHECKOK( mp_init(&x) );
- MP_CHECKOK( mp_init(&g) );
- MP_CHECKOK( mp_xgcd(a, m, &g, &x, NULL) );
- if (mp_cmp_d(&g, 1) != MP_EQ) {
- res = MP_UNDEF;
- goto CLEANUP;
- }
- res = mp_mod(&x, m, c);
- SIGN(c) = SIGN(a);
- CLEANUP:
- mp_clear(&x);
- mp_clear(&g);
- return res;
- }
- /* modular inverse where modulus is 2**k. */
- /* c = a**-1 mod 2**k */
- mp_err s_mp_invmod_2d(const mp_int *a, mp_size k, mp_int *c)
- {
- mp_err res;
- mp_size ix = k + 4;
- mp_int t0, t1, val, tmp, two2k;
- static const mp_digit d2 = 2;
- static const mp_int two = { MP_ZPOS, 1, 1, (mp_digit *)&d2 };
- if (mp_iseven(a))
- return MP_UNDEF;
- if (k <= MP_DIGIT_BIT) {
- mp_digit i = s_mp_invmod_radix(MP_DIGIT(a,0));
- if (k < MP_DIGIT_BIT)
- i &= ((mp_digit)1 << k) - (mp_digit)1;
- mp_set(c, i);
- return MP_OKAY;
- }
- MP_DIGITS(&t0) = 0;
- MP_DIGITS(&t1) = 0;
- MP_DIGITS(&val) = 0;
- MP_DIGITS(&tmp) = 0;
- MP_DIGITS(&two2k) = 0;
- MP_CHECKOK( mp_init_copy(&val, a) );
- s_mp_mod_2d(&val, k);
- MP_CHECKOK( mp_init_copy(&t0, &val) );
- MP_CHECKOK( mp_init_copy(&t1, &t0) );
- MP_CHECKOK( mp_init(&tmp) );
- MP_CHECKOK( mp_init(&two2k) );
- MP_CHECKOK( s_mp_2expt(&two2k, k) );
- do {
- MP_CHECKOK( mp_mul(&val, &t1, &tmp) );
- MP_CHECKOK( mp_sub(&two, &tmp, &tmp) );
- MP_CHECKOK( mp_mul(&t1, &tmp, &t1) );
- s_mp_mod_2d(&t1, k);
- while (MP_SIGN(&t1) != MP_ZPOS) {
- MP_CHECKOK( mp_add(&t1, &two2k, &t1) );
- }
- if (mp_cmp(&t1, &t0) == MP_EQ)
- break;
- MP_CHECKOK( mp_copy(&t1, &t0) );
- } while (--ix > 0);
- if (!ix) {
- res = MP_UNDEF;
- } else {
- mp_exch(c, &t1);
- }
- CLEANUP:
- mp_clear(&t0);
- mp_clear(&t1);
- mp_clear(&val);
- mp_clear(&tmp);
- mp_clear(&two2k);
- return res;
- }
- mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c)
- {
- mp_err res;
- mp_size k;
- mp_int oddFactor, evenFactor; /* factors of the modulus */
- mp_int oddPart, evenPart; /* parts to combine via CRT. */
- mp_int C2, tmp1, tmp2;
- static const mp_digit d1 = 1;
- static const mp_int one = { MP_ZPOS, 1, 1, (mp_digit *)&d1 };
- if ((res = s_mp_ispow2(m)) >= 0) {
- k = res;
- return s_mp_invmod_2d(a, k, c);
- }
- MP_DIGITS(&oddFactor) = 0;
- MP_DIGITS(&evenFactor) = 0;
- MP_DIGITS(&oddPart) = 0;
- MP_DIGITS(&evenPart) = 0;
- MP_DIGITS(&C2) = 0;
- MP_DIGITS(&tmp1) = 0;
- MP_DIGITS(&tmp2) = 0;
- MP_CHECKOK( mp_init_copy(&oddFactor, m) ); /* oddFactor = m */
- MP_CHECKOK( mp_init(&evenFactor) );
- MP_CHECKOK( mp_init(&oddPart) );
- MP_CHECKOK( mp_init(&evenPart) );
- MP_CHECKOK( mp_init(&C2) );
- MP_CHECKOK( mp_init(&tmp1) );
- MP_CHECKOK( mp_init(&tmp2) );
- k = mp_trailing_zeros(m);
- s_mp_div_2d(&oddFactor, k);
- MP_CHECKOK( s_mp_2expt(&evenFactor, k) );
- /* compute a**-1 mod oddFactor. */
- MP_CHECKOK( s_mp_invmod_odd_m(a, &oddFactor, &oddPart) );
- /* compute a**-1 mod evenFactor, where evenFactor == 2**k. */
- MP_CHECKOK( s_mp_invmod_2d( a, k, &evenPart) );
- /* Use Chinese Remainer theorem to compute a**-1 mod m. */
- /* let m1 = oddFactor, v1 = oddPart,
- * let m2 = evenFactor, v2 = evenPart.
- */
- /* Compute C2 = m1**-1 mod m2. */
- MP_CHECKOK( s_mp_invmod_2d(&oddFactor, k, &C2) );
- /* compute u = (v2 - v1)*C2 mod m2 */
- MP_CHECKOK( mp_sub(&evenPart, &oddPart, &tmp1) );
- MP_CHECKOK( mp_mul(&tmp1, &C2, &tmp2) );
- s_mp_mod_2d(&tmp2, k);
- while (MP_SIGN(&tmp2) != MP_ZPOS) {
- MP_CHECKOK( mp_add(&tmp2, &evenFactor, &tmp2) );
- }
- /* compute answer = v1 + u*m1 */
- MP_CHECKOK( mp_mul(&tmp2, &oddFactor, c) );
- MP_CHECKOK( mp_add(&oddPart, c, c) );
- /* not sure this is necessary, but it's low cost if not. */
- MP_CHECKOK( mp_mod(c, m, c) );
- CLEANUP:
- mp_clear(&oddFactor);
- mp_clear(&evenFactor);
- mp_clear(&oddPart);
- mp_clear(&evenPart);
- mp_clear(&C2);
- mp_clear(&tmp1);
- mp_clear(&tmp2);
- return res;
- }
- /* {{{ mp_invmod(a, m, c) */
- /*
- mp_invmod(a, m, c)
- Compute c = a^-1 (mod m), if there is an inverse for a (mod m).
- This is equivalent to the question of whether (a, m) = 1. If not,
- MP_UNDEF is returned, and there is no inverse.
- */
- mp_err mp_invmod(const mp_int *a, const mp_int *m, mp_int *c)
- {
- ARGCHK(a && m && c, MP_BADARG);
- if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
- return MP_RANGE;
- if (mp_isodd(m)) {
- return s_mp_invmod_odd_m(a, m, c);
- }
- if (mp_iseven(a))
- return MP_UNDEF; /* not invertable */
- return s_mp_invmod_even_m(a, m, c);
- } /* end mp_invmod() */
- /* }}} */
- #endif /* if MP_NUMTH */
- /* }}} */
- /*------------------------------------------------------------------------*/
- /* {{{ mp_print(mp, ofp) */
- #if MP_IOFUNC
- /*
- mp_print(mp, ofp)
- Print a textual representation of the given mp_int on the output
- stream 'ofp'. Output is generated using the internal radix.
- */
- void mp_print(mp_int *mp, FILE *ofp)
- {
- int ix;
- if(mp == NULL || ofp == NULL)
- return;
- fputc((SIGN(mp) == NEG) ? '-' : '+', ofp);
- for(ix = USED(mp) - 1; ix >= 0; ix--) {
- fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix));
- }
- } /* end mp_print() */
- #endif /* if MP_IOFUNC */
- /* }}} */
- /*------------------------------------------------------------------------*/
- /* {{{ More I/O Functions */
- /* {{{ mp_read_raw(mp, str, len) */
- /*
- mp_read_raw(mp, str, len)
- Read in a raw value (base 256) into the given mp_int
- */
- mp_err mp_read_raw(mp_int *mp, char *str, int len)
- {
- int ix;
- mp_err res;
- unsigned char *ustr = (unsigned char *)str;
- ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
- mp_zero(mp);
- /* Get sign from first byte */
- if(ustr[0])
- SIGN(mp) = NEG;
- else
- SIGN(mp) = ZPOS;
- /* Read the rest of the digits */
- for(ix = 1; ix < len; ix++) {
- #if DIGIT_MAX < 256
- if((res = s_mp_lshd(mp, 1)) != MP_OKAY)
- return res;
- #else
- if((res = mp_mul_d(mp, 256, mp)) != MP_OKAY)
- return res;
- #endif
- if((res = mp_add_d(mp, ustr[ix], mp)) != MP_OKAY)
- return res;
- }
- return MP_OKAY;
- } /* end mp_read_raw() */
- /* }}} */
- /* {{{ mp_raw_size(mp) */
- int mp_raw_size(mp_int *mp)
- {
- ARGCHK(mp != NULL, 0);
- return (USED(mp) * sizeof(mp_digit)) + 1;
- } /* end mp_raw_size() */
- /* }}} */
- /* {{{ mp_toraw(mp, str) */
- mp_err mp_toraw(mp_int *mp, char *str)
- {
- int ix, jx, pos = 1;
- ARGCHK(mp != NULL && str != NULL, MP_BADARG);
- str[0] = (char)SIGN(mp);
- /* Iterate over each digit... */
- for(ix = USED(mp) - 1; ix >= 0; ix--) {
- mp_digit d = DIGIT(mp, ix);
- /* Unpack digit bytes, high order first */
- for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) {
- str[pos++] = (char)(d >> (jx * CHAR_BIT));
- }
- }
- return MP_OKAY;
- } /* end mp_toraw() */
- /* }}} */
- /* {{{ mp_read_radix(mp, str, radix) */
- /*
- mp_read_radix(mp, str, radix)
- Read an integer from the given string, and set mp to the resulting
- value. The input is presumed to be in base 10. Leading non-digit
- characters are ignored, and the function reads until a non-digit
- character or the end of the string.
- */
- mp_err mp_read_radix(mp_int *mp, const char *str, int radix)
- {
- int ix = 0, val = 0;
- mp_err res;
- mp_sign sig = ZPOS;
- ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX,
- MP_BADARG);
- mp_zero(mp);
- /* Skip leading non-digit characters until a digit or '-' or '+' */
- while(str[ix] &&
- (s_mp_tovalue(str[ix], radix) < 0) &&
- str[ix] != '-' &&
- str[ix] != '+') {
- ++ix;
- }
- if(str[ix] == '-') {
- sig = NEG;
- ++ix;
- } else if(str[ix] == '+') {
- sig = ZPOS; /* this is the default anyway... */
- ++ix;
- }
- while((val = s_mp_tovalue(str[ix], radix)) >= 0) {
- if((res = s_mp_mul_d(mp, radix)) != MP_OKAY)
- return res;
- if((res = s_mp_add_d(mp, val)) != MP_OKAY)
- return res;
- ++ix;
- }
- if(s_mp_cmp_d(mp, 0) == MP_EQ)
- SIGN(mp) = ZPOS;
- else
- SIGN(mp) = sig;
- return MP_OKAY;
- } /* end mp_read_radix() */
- /* }}} */
- /* {{{ mp_radix_size(mp, radix) */
- int mp_radix_size(mp_int *mp, int radix)
- {
- int bits;
- if(!mp || radix < 2 || radix > MAX_RADIX)
- return 0;
- bits = USED(mp) * DIGIT_BIT - 1;
-
- return s_mp_outlen(bits, radix);
- } /* end mp_radix_size() */
- /* }}} */
- /* {{{ mp_toradix(mp, str, radix) */
- mp_err mp_toradix(mp_int *mp, char *str, int radix)
- {
- int ix, pos = 0;
- ARGCHK(mp != NULL && str != NULL, MP_BADARG);
- ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE);
- if(mp_cmp_z(mp) == MP_EQ) {
- str[0] = '0';
- str[1] = ' ';
- } else {
- mp_err res;
- mp_int tmp;
- mp_sign sgn;
- mp_digit rem, rdx = (mp_digit)radix;
- char ch;
- if((res = mp_init_copy(&tmp, mp)) != MP_OKAY)
- return res;
- /* Save sign for later, and take absolute value */
- sgn = SIGN(&tmp); SIGN(&tmp) = ZPOS;
- /* Generate output digits in reverse order */
- while(mp_cmp_z(&tmp) != 0) {
- if((res = mp_div_d(&tmp, rdx, &tmp, &rem)) != MP_OKAY) {
- mp_clear(&tmp);
- return res;
- }
- /* Generate digits, use capital letters */
- ch = s_mp_todigit(rem, radix, 0);
- str[pos++] = ch;
- }
- /* Add - sign if original value was negative */
- if(sgn == NEG)
- str[pos++] = '-';
- /* Add trailing NUL to end the string */
- str[pos--] = ' ';
- /* Reverse the digits and sign indicator */
- ix = 0;
- while(ix < pos) {
- char tmp = str[ix];
- str[ix] = str[pos];
- str[pos] = tmp;
- ++ix;
- --pos;
- }
-
- mp_clear(&tmp);
- }
- return MP_OKAY;
- } /* end mp_toradix() */
- /* }}} */
- /* {{{ mp_tovalue(ch, r) */
- int mp_tovalue(char ch, int r)
- {
- return s_mp_tovalue(ch, r);
- } /* end mp_tovalue() */
- /* }}} */
- /* }}} */
- /* {{{ mp_strerror(ec) */
- /*
- mp_strerror(ec)
- Return a string describing the meaning of error code 'ec'. The
- string returned is allocated in static memory, so the caller should
- not attempt to modify or free the memory associated with this
- string.
- */
- const char *mp_strerror(mp_err ec)
- {
- int aec = (ec < 0) ? -ec : ec;
- /* Code values are negative, so the senses of these comparisons
- are accurate */
- if(ec < MP_LAST_CODE || ec > MP_OKAY) {
- return mp_err_string[0]; /* unknown error code */
- } else {
- return mp_err_string[aec + 1];
- }
- } /* end mp_strerror() */
- /* }}} */
- /*========================================================================*/
- /*------------------------------------------------------------------------*/
- /* Static function definitions (internal use only) */
- /* {{{ Memory management */
- /* {{{ s_mp_grow(mp, min) */
- /* Make sure there are at least 'min' digits allocated to mp */
- mp_err s_mp_grow(mp_int *mp, mp_size min)
- {
- if(min > ALLOC(mp)) {
- mp_digit *tmp;
- /* Set min to next nearest default precision block size */
- min = MP_ROUNDUP(min, s_mp_defprec);
- if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL)
- return MP_MEM;
- s_mp_copy(DIGITS(mp), tmp, USED(mp));
- #if MP_CRYPTO
- s_mp_setz(DIGITS(mp), ALLOC(mp));
- #endif
- s_mp_free(DIGITS(mp));
- DIGITS(mp) = tmp;
- ALLOC(mp) = min;
- }
- return MP_OKAY;
- } /* end s_mp_grow() */
- /* }}} */
- /* {{{ s_mp_pad(mp, min) */
- /* Make sure the used size of mp is at least 'min', growing if needed */
- mp_err s_mp_pad(mp_int *mp, mp_size min)
- {
- if(min > USED(mp)) {
- mp_err res;
- /* Make sure there is room to increase precision */
- if (min > ALLOC(mp)) {
- if ((res = s_mp_grow(mp, min)) != MP_OKAY)
- return res;
- } else {
- /* s_mp_setz(DIGITS(mp) + USED(mp), min - USED(mp)); */
- }
- /* Increase precision; should already be 0-filled */
- USED(mp) = min;
- }
- return MP_OKAY;
- } /* end s_mp_pad() */
- /* }}} */
- /* {{{ s_mp_setz(dp, count) */
- #if MP_MACRO == 0
- /* Set 'count' digits pointed to by dp to be zeroes */
- void s_mp_setz(mp_digit *dp, mp_size count)
- {
- #if MP_MEMSET == 0
- int ix;
- for(ix = 0; ix < count; ix++)
- dp[ix] = 0;
- #else
- memset(dp, 0, count * sizeof(mp_digit));
- #endif
- } /* end s_mp_setz() */
- #endif
- /* }}} */
- /* {{{ s_mp_copy(sp, dp, count) */
- #if MP_MACRO == 0
- /* Copy 'count' digits from sp to dp */
- void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count)
- {
- #if MP_MEMCPY == 0
- int ix;
- for(ix = 0; ix < count; ix++)
- dp[ix] = sp[ix];
- #else
- memcpy(dp, sp, count * sizeof(mp_digit));
- #endif
- } /* end s_mp_copy() */
- #endif
- /* }}} */
- /* {{{ s_mp_alloc(nb, ni) */
- #if MP_MACRO == 0
- /* Allocate ni records of nb bytes each, and return a pointer to that */
- void *s_mp_alloc(size_t nb, size_t ni)
- {
- ++mp_allocs;
- return calloc(nb, ni);
- } /* end s_mp_alloc() */
- #endif
- /* }}} */
- /* {{{ s_mp_free(ptr) */
- #if MP_MACRO == 0
- /* Free the memory pointed to by ptr */
- void s_mp_free(void *ptr)
- {
- if(ptr) {
- ++mp_frees;
- free(ptr);
- }
- } /* end s_mp_free() */
- #endif
- /* }}} */
- /* {{{ s_mp_clamp(mp) */
- #if MP_MACRO == 0
- /* Remove leading zeroes from the given value */
- void s_mp_clamp(mp_int *mp)
- {
- mp_size used = MP_USED(mp);
- while (used > 1 && DIGIT(mp, used - 1) == 0)
- --used;
- MP_USED(mp) = used;
- } /* end s_mp_clamp() */
- #endif
- /* }}} */
- /* {{{ s_mp_exch(a, b) */
- /* Exchange the data for a and b; (b, a) = (a, b) */
- void s_mp_exch(mp_int *a, mp_int *b)
- {
- mp_int tmp;
- tmp = *a;
- *a = *b;
- *b = tmp;
- } /* end s_mp_exch() */
- /* }}} */
- /* }}} */
- /* {{{ Arithmetic helpers */
- /* {{{ s_mp_lshd(mp, p) */
- /*
- Shift mp leftward by p digits, growing if needed, and zero-filling
- the in-shifted digits at the right end. This is a convenient
- alternative to multiplication by powers of the radix
- The value of USED(mp) must already have been set to the value for
- the shifted result.
- */
- mp_err s_mp_lshd(mp_int *mp, mp_size p)
- {
- mp_err res;
- mp_size pos;
- int ix;
- if(p == 0)
- return MP_OKAY;
- if (MP_USED(mp) == 1 && MP_DIGIT(mp, 0) == 0)
- return MP_OKAY;
- if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY)
- return res;
- pos = USED(mp) - 1;
- /* Shift all the significant figures over as needed */
- for(ix = pos - p; ix >= 0; ix--)
- DIGIT(mp, ix + p) = DIGIT(mp, ix);
- /* Fill the bottom digits with zeroes */
- for(ix = 0; ix < p; ix++)
- DIGIT(mp, ix) = 0;
- return MP_OKAY;
- } /* end s_mp_lshd() */
- /* }}} */
- /* {{{ s_mp_mul_2d(mp, d) */
- /*
- Multiply the integer by 2^d, where d is a number of bits. This
- amounts to a bitwise shift of the value.
- */
- mp_err s_mp_mul_2d(mp_int *mp, mp_digit d)
- {
- mp_err res;
- mp_digit dshift, bshift;
- mp_digit mask;
- ARGCHK(mp != NULL, MP_BADARG);
- dshift = d / MP_DIGIT_BIT;
- bshift = d % MP_DIGIT_BIT;
- /* bits to be shifted out of the top word */
- mask = ((mp_digit)~0 << (MP_DIGIT_BIT - bshift));
- mask &= MP_DIGIT(mp, MP_USED(mp) - 1);
- if (MP_OKAY != (res = s_mp_pad(mp, MP_USED(mp) + dshift + (mask != 0) )))
- return res;
- if (dshift && MP_OKAY != (res = s_mp_lshd(mp, dshift)))
- return res;
- if (bshift) {
- mp_digit *pa = MP_DIGITS(mp);
- mp_digit *alim = pa + MP_USED(mp);
- mp_digit prev = 0;
- for (pa += dshift; pa < alim; ) {
- mp_digit x = *pa;
- *pa++ = (x << bshift) | prev;
- prev = x >> (DIGIT_BIT - bshift);
- }
- }
- s_mp_clamp(mp);
- return MP_OKAY;
- } /* end s_mp_mul_2d() */
- /* {{{ s_mp_rshd(mp, p) */
- /*
- Shift mp rightward by p digits. Maintains the invariant that
- digits above the precision are all zero. Digits shifted off the
- end are lost. Cannot fail.
- */
- void s_mp_rshd(mp_int *mp, mp_size p)
- {
- mp_size ix;
- mp_digit *src, *dst;
- if(p == 0)
- return;
- /* Shortcut when all digits are to be shifted off */
- if(p >= USED(mp)) {
- s_mp_setz(DIGITS(mp), ALLOC(mp));
- USED(mp) = 1;
- SIGN(mp) = ZPOS;
- return;
- }
- /* Shift all the significant figures over as needed */
- dst = MP_DIGITS(mp);
- src = dst + p;
- for (ix = USED(mp) - p; ix > 0; ix--)
- *dst++ = *src++;
- MP_USED(mp) -= p;
- /* Fill the top digits with zeroes */
- while (p-- > 0)
- *dst++ = 0;
- #if 0
- /* Strip off any leading zeroes */
- s_mp_clamp(mp);
- #endif
- } /* end s_mp_rshd() */
- /* }}} */
- /* {{{ s_mp_div_2(mp) */
- /* Divide by two -- take advantage of radix properties to do it fast */
- void s_mp_div_2(mp_int *mp)
- {
- s_mp_div_2d(mp, 1);
- } /* end s_mp_div_2() */
- /* }}} */
- /* {{{ s_mp_mul_2(mp) */
- mp_err s_mp_mul_2(mp_int *mp)
- {
- mp_digit *pd;
- int ix, used;
- mp_digit kin = 0;
- /* Shift digits leftward by 1 bit */
- used = MP_USED(mp);
- pd = MP_DIGITS(mp);
- for (ix = 0; ix < used; ix++) {
- mp_digit d = *pd;
- *pd++ = (d << 1) | kin;
- kin = (d >> (DIGIT_BIT - 1));
- }
- /* Deal with rollover from last digit */
- if (kin) {
- if (ix >= ALLOC(mp)) {
- mp_err res;
- if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY)
- return res;
- }
- DIGIT(mp, ix) = kin;
- USED(mp) += 1;
- }
- return MP_OKAY;
- } /* end s_mp_mul_2() */
- /* }}} */
- /* {{{ s_mp_mod_2d(mp, d) */
- /*
- Remainder the integer by 2^d, where d is a number of bits. This
- amounts to a bitwise AND of the value, and does not require the full
- division code
- */
- void s_mp_mod_2d(mp_int *mp, mp_digit d)
- {
- mp_size ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT);
- mp_size ix;
- mp_digit dmask;
- if(ndig >= USED(mp))
- return;
- /* Flush all the bits above 2^d in its digit */
- dmask = ((mp_digit)1 << nbit) - 1;
- DIGIT(mp, ndig) &= dmask;
- /* Flush all digits above the one with 2^d in it */
- for(ix = ndig + 1; ix < USED(mp); ix++)
- DIGIT(mp, ix) = 0;
- s_mp_clamp(mp);
- } /* end s_mp_mod_2d() */
- /* }}} */
- /* {{{ s_mp_div_2d(mp, d) */
- /*
- Divide the integer by 2^d, where d is a number of bits. This
- amounts to a bitwise shift of the value, and does not require the
- full division code (used in Barrett reduction, see below)
- */
- void s_mp_div_2d(mp_int *mp, mp_digit d)
- {
- int ix;
- mp_digit save, next, mask;
- s_mp_rshd(mp, d / DIGIT_BIT);
- d %= DIGIT_BIT;
- if (d) {
- mask = ((mp_digit)1 << d) - 1;
- save = 0;
- for(ix = USED(mp) - 1; ix >= 0; ix--) {
- next = DIGIT(mp, ix) & mask;
- DIGIT(mp, ix) = (DIGIT(mp, ix) >> d) | (save << (DIGIT_BIT - d));
- save = next;
- }
- }
- s_mp_clamp(mp);
- } /* end s_mp_div_2d() */
- /* }}} */
- /* {{{ s_mp_norm(a, b, *d) */
- /*
- s_mp_norm(a, b, *d)
- Normalize a and b for division, where b is the divisor. In order
- that we might make good guesses for quotient digits, we want the
- leading digit of b to be at least half the radix, which we
- accomplish by multiplying a and b by a power of 2. The exponent
- (shift count) is placed in *pd, so that the remainder can be shifted
- back at the end of the division process.
- */
- mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd)
- {
- mp_digit d;
- mp_digit mask;
- mp_digit b_msd;
- mp_err res = MP_OKAY;
- d = 0;
- mask = DIGIT_MAX & ~(DIGIT_MAX >> 1); /* mask is msb of digit */
- b_msd = DIGIT(b, USED(b) - 1);
- while (!(b_msd & mask)) {
- b_msd <<= 1;
- ++d;
- }
- if (d) {
- MP_CHECKOK( s_mp_mul_2d(a, d) );
- MP_CHECKOK( s_mp_mul_2d(b, d) );
- }
- *pd = d;
- CLEANUP:
- return res;
- } /* end s_mp_norm() */
- /* }}} */
- /* }}} */
- /* {{{ Primitive digit arithmetic */
- /* {{{ s_mp_add_d(mp, d) */
- /* Add d to |mp| in place */
- mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */
- {
- #if !defined(MP_NO_MP_WORD)
- mp_word w, k = 0;
- mp_size ix = 1;
- w = (mp_word)DIGIT(mp, 0) + d;
- DIGIT(mp, 0) = ACCUM(w);
- k = CARRYOUT(w);
- while(ix < USED(mp) && k) {
- w = (mp_word)DIGIT(mp, ix) + k;
- DIGIT(mp, ix) = ACCUM(w);
- k = CARRYOUT(w);
- ++ix;
- }
- if(k != 0) {
- mp_err res;
- if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY)
- return res;
- DIGIT(mp, ix) = (mp_digit)k;
- }
- return MP_OKAY;
- #else
- mp_digit * pmp = MP_DIGITS(mp);
- mp_digit sum, mp_i, carry = 0;
- mp_err res = MP_OKAY;
- int used = (int)MP_USED(mp);
- mp_i = *pmp;
- *pmp++ = sum = d + mp_i;
- carry = (sum < d);
- while (carry && --used > 0) {
- mp_i = *pmp;
- *pmp++ = sum = carry + mp_i;
- carry = !sum;
- }
- if (carry && !used) {
- /* mp is growing */
- used = MP_USED(mp);
- MP_CHECKOK( s_mp_pad(mp, used + 1) );
- MP_DIGIT(mp, used) = carry;
- }
- CLEANUP:
- return res;
- #endif
- } /* end s_mp_add_d() */
- /* }}} */
- /* {{{ s_mp_sub_d(mp, d) */
- /* Subtract d from |mp| in place, assumes |mp| > d */
- mp_err s_mp_sub_d(mp_int *mp, mp_digit d) /* unsigned digit subtract */
- {
- #if !defined(MP_NO_MP_WORD)
- mp_word w, b = 0;
- mp_size ix = 1;
- /* Compute initial subtraction */
- w = (RADIX + (mp_word)DIGIT(mp, 0)) - d;
- b = CARRYOUT(w) ? 0 : 1;
- DIGIT(mp, 0) = ACCUM(w);
- /* Propagate borrows leftward */
- while(b && ix < USED(mp)) {
- w = (RADIX + (mp_word)DIGIT(mp, ix)) - b;
- b = CARRYOUT(w) ? 0 : 1;
- DIGIT(mp, ix) = ACCUM(w);
- ++ix;
- }
- /* Remove leading zeroes */
- s_mp_clamp(mp);
- /* If we have a borrow out, it's a violation of the input invariant */
- if(b)
- return MP_RANGE;
- else
- return MP_OKAY;
- #else
- mp_digit *pmp = MP_DIGITS(mp);
- mp_digit mp_i, diff, borrow;
- mp_size used = MP_USED(mp);
- mp_i = *pmp;
- *pmp++ = diff = mp_i - d;
- borrow = (diff > mp_i);
- while (borrow && --used) {
- mp_i = *pmp;
- *pmp++ = diff = mp_i - borrow;
- borrow = (diff > mp_i);
- }
- s_mp_clamp(mp);
- return (borrow && !used) ? MP_RANGE : MP_OKAY;
- #endif
- } /* end s_mp_sub_d() */
- /* }}} */
- /* {{{ s_mp_mul_d(a, d) */
- /* Compute a = a * d, single digit multiplication */
- mp_err s_mp_mul_d(mp_int *a, mp_digit d)
- {
- mp_err res;
- mp_size used;
- int pow;
- if (!d) {
- mp_zero(a);
- return MP_OKAY;
- }
- if (d == 1)
- return MP_OKAY;
- if (0 <= (pow = s_mp_ispow2d(d))) {
- return s_mp_mul_2d(a, (mp_digit)pow);
- }
- used = MP_USED(a);
- MP_CHECKOK( s_mp_pad(a, used + 1) );
- s_mpv_mul_d(MP_DIGITS(a), used, d, MP_DIGITS(a));
- s_mp_clamp(a);
- CLEANUP:
- return res;
-
- } /* end s_mp_mul_d() */
- /* }}} */
- /* {{{ s_mp_div_d(mp, d, r) */
- /*
- s_mp_div_d(mp, d, r)
- Compute the quotient mp = mp / d and remainder r = mp mod d, for a
- single digit d. If r is null, the remainder will be discarded.
- */
- mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r)
- {
- #if !defined(MP_NO_MP_WORD)
- mp_word w = 0, q;
- #else
- mp_digit w, q;
- #endif
- int ix;
- mp_err res;
- mp_int quot;
- mp_int rem;
- if(d == 0)
- return MP_RANGE;
- if (d == 1) {
- if (r)
- *r = 0;
- return MP_OKAY;
- }
- /* could check for power of 2 here, but mp_div_d does that. */
- if (MP_USED(mp) == 1) {
- mp_digit n = MP_DIGIT(mp,0);
- mp_digit rem;
- q = n / d;
- rem = n % d;
- MP_DIGIT(mp,0) = q;
- if (r)
- *r = rem;
- return MP_OKAY;
- }
- MP_DIGITS(&rem) = 0;
- MP_DIGITS(") = 0;
- /* Make room for the quotient */
- MP_CHECKOK( mp_init_size(", USED(mp)) );
- #if !defined(MP_NO_MP_WORD)
- for(ix = USED(mp) - 1; ix >= 0; ix--) {
- w = (w << DIGIT_BIT) | DIGIT(mp, ix);
- if(w >= d) {
- q = w / d;
- w = w % d;
- } else {
- q = 0;
- }
- s_mp_lshd(", 1);
- DIGIT(", 0) = (mp_digit)q;
- }
- #else
- {
- mp_digit norm, p;
- MP_CHECKOK( mp_init_copy(&rem, mp) );
- #if !defined(MP_ASSEMBLY_DIV_2DX1D)
- MP_DIGIT(", 0) = d;
- MP_CHECKOK( s_mp_norm(&rem, ", &norm) );
- if (norm)
- d <<= norm;
- MP_DIGIT(", 0) = 0;
- #endif
- p = 0;
- for (ix = USED(&rem) - 1; ix >= 0; ix--) {
- w = DIGIT(&rem, ix);
- if (p) {
- MP_CHECKOK( s_mpv_div_2dx1d(p, w, d, &q, &w) );
- } else if (w >= d) {
- q = w / d;
- w = w % d;
- } else {
- q = 0;
- }
- MP_CHECKOK( s_mp_lshd(", 1) );
- DIGIT(", 0) = q;
- p = w;
- }
- #if !defined(MP_ASSEMBLY_DIV_2DX1D)
- if (norm)
- w >>= norm;
- #endif
- }
- #endif
- /* Deliver the remainder, if desired */
- if(r)
- *r = (mp_digit)w;
- s_mp_clamp(");
- mp_exch(", mp);
- CLEANUP:
- mp_clear(");
- mp_clear(&rem);
- return res;
- } /* end s_mp_div_d() */
- /* }}} */
- /* }}} */
- /* {{{ Primitive full arithmetic */
- /* {{{ s_mp_add(a, b) */
- /* Compute a = |a| + |b| */
- mp_err s_mp_add(mp_int *a, const mp_int *b) /* magnitude addition */
- {
- #if !defined(MP_NO_MP_WORD)
- mp_word w = 0;
- #else
- mp_digit d, sum, carry = 0;
- #endif
- mp_digit *pa, *pb;
- mp_size ix;
- mp_size used;
- mp_err res;
- /* Make sure a has enough precision for the output value */
- if((USED(b) > USED(a)) && (res = s_mp_pad(a, USED(b))) != MP_OKAY)
- return res;
- /*
- Add up all digits up to the precision of b. If b had initially
- the same precision as a, or greater, we took care of it by the
- padding step above, so there is no problem. If b had initially
- less precision, we'll have to make sure the carry out is duly
- propagated upward among the higher-order digits of the sum.
- */
- pa = MP_DIGITS(a);
- pb = MP_DIGITS(b);
- used = MP_USED(b);
- for(ix = 0; ix < used; ix++) {
- #if !defined(MP_NO_MP_WORD)
- w = w + *pa + *pb++;
- *pa++ = ACCUM(w);
- w = CARRYOUT(w);
- #else
- d = *pa;
- sum = d + *pb++;
- d = (sum < d); /* detect overflow */
- *pa++ = sum += carry;
- carry = d + (sum < carry); /* detect overflow */
- #endif
- }
- /* If we run out of 'b' digits before we're actually done, make
- sure the carries get propagated upward...
- */
- used = MP_USED(a);
- #if !defined(MP_NO_MP_WORD)
- while (w && ix < used) {
- w = w + *pa;
- *pa++ = ACCUM(w);
- w = CARRYOUT(w);
- ++ix;
- }
- #else
- while (carry && ix < used) {
- sum = carry + *pa;
- *pa++ = sum;
- carry = !sum;
- ++ix;
- }
- #endif
- /* If there's an overall carry out, increase precision and include
- it. We could have done this initially, but why touch the memory
- allocator unless we're sure we have to?
- */
- #if !defined(MP_NO_MP_WORD)
- if (w) {
- if((res = s_mp_pad(a, used + 1)) != MP_OKAY)
- return res;
- DIGIT(a, ix) = (mp_digit)w;
- }
- #else
- if (carry) {
- if((res = s_mp_pad(a, used + 1)) != MP_OKAY)
- return res;
- DIGIT(a, used) = carry;
- }
- #endif
- return MP_OKAY;
- } /* end s_mp_add() */
- /* }}} */
- /* Compute c = |a| + |b| */ /* magnitude addition */
- mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c)
- {
- mp_digit *pa, *pb, *pc;
- #if !defined(MP_NO_MP_WORD)
- mp_word w = 0;
- #else
- mp_digit sum, carry = 0, d;
- #endif
- mp_size ix;
- mp_size used;
- mp_err res;
- MP_SIGN(c) = MP_SIGN(a);
- if (MP_USED(a) < MP_USED(b)) {
- const mp_int *xch = a;
- a = b;
- b = xch;
- }
- /* Make sure a has enough precision for the output value */
- if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a))))
- return res;
- /*
- Add up all digits up to the precision of b. If b had initially
- the same precision as a, or greater, we took care of it by the
- exchange step above, so there is no problem. If b had initially
- less precision, we'll have to make sure the carry out is duly
- propagated upward among the higher-order digits of the sum.
- */
- pa = MP_DIGITS(a);
- pb = MP_DIGITS(b);
- pc = MP_DIGITS(c);
- used = MP_USED(b);
- for (ix = 0; ix < used; ix++) {
- #if !defined(MP_NO_MP_WORD)
- w = w + *pa++ + *pb++;
- *pc++ = ACCUM(w);
- w = CARRYOUT(w);
- #else
- d = *pa++;
- sum = d + *pb++;
- d = (sum < d); /* detect overflow */
- *pc++ = sum += carry;
- carry = d + (sum < carry); /* detect overflow */
- #endif
- }
- /* If we run out of 'b' digits before we're actually done, make
- sure the carries get propagated upward...
- */
- for (used = MP_USED(a); ix < used; ++ix) {
- #if !defined(MP_NO_MP_WORD)
- w = w + *pa++;
- *pc++ = ACCUM(w);
- w = CARRYOUT(w);
- #else
- *pc++ = sum = carry + *pa++;
- carry = (sum < carry);
- #endif
- }
- /* If there's an overall carry out, increase precision and include
- it. We could have done this initially, but why touch the memory
- allocator unless we're sure we have to?
- */
- #if !defined(MP_NO_MP_WORD)
- if (w) {
- if((res = s_mp_pad(c, used + 1)) != MP_OKAY)
- return res;
- DIGIT(c, used) = (mp_digit)w;
- ++used;
- }
- #else
- if (carry) {
- if((res = s_mp_pad(c, used + 1)) != MP_OKAY)
- return res;
- DIGIT(c, used) = carry;
- ++used;
- }
- #endif
- MP_USED(c) = used;
- return MP_OKAY;
- }
- /* {{{ s_mp_add_offset(a, b, offset) */
- /* Compute a = |a| + ( |b| * (RADIX ** offset) ) */
- mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset)
- {
- #if !defined(MP_NO_MP_WORD)
- mp_word w, k = 0;
- #else
- mp_digit d, sum, carry = 0;
- #endif
- mp_size ib;
- mp_size ia;
- mp_size lim;
- mp_err res;
- /* Make sure a has enough precision for the output value */
- lim = MP_USED(b) + offset;
- if((lim > USED(a)) && (res = s_mp_pad(a, lim)) != MP_OKAY)
- return res;
- /*
- Add up all digits up to the precision of b. If b had initially
- the same precision as a, or greater, we took care of it by the
- padding step above, so there is no problem. If b had initially
- less precision, we'll have to make sure the carry out is duly
- propagated upward among the higher-order digits of the sum.
- */
- lim = USED(b);
- for(ib = 0, ia = offset; ib < lim; ib++, ia++) {
- #if !defined(MP_NO_MP_WORD)
- w = (mp_word)DIGIT(a, ia) + DIGIT(b, ib) + k;
- DIGIT(a, ia) = ACCUM(w);
- k = CARRYOUT(w);
- #else
- d = MP_DIGIT(a, ia);
- sum = d + MP_DIGIT(b, ib);
- d = (sum < d);
- MP_DIGIT(a,ia) = sum += carry;
- carry = d + (sum < carry);
- #endif
- }
- /* If we run out of 'b' digits before we're actually done, make
- sure the carries get propagated upward...
- */
- #if !defined(MP_NO_MP_WORD)
- for (lim = MP_USED(a); k && (ia < lim); ++ia) {
- w = (mp_word)DIGIT(a, ia) + k;
- DIGIT(a, ia) = ACCUM(w);
- k = CARRYOUT(w);
- }
- #else
- for (lim = MP_USED(a); carry && (ia < lim); ++ia) {
- d = MP_DIGIT(a, ia);
- MP_DIGIT(a,ia) = sum = d + carry;
- carry = (sum < d);
- }
- #endif
- /* If there's an overall carry out, increase precision and include
- it. We could have done this initially, but why touch the memory
- allocator unless we're sure we have to?
- */
- #if !defined(MP_NO_MP_WORD)
- if(k) {
- if((res = s_mp_pad(a, USED(a) + 1)) != MP_OKAY)
- return res;
- DIGIT(a, ia) = (mp_digit)k;
- }
- #else
- if (carry) {
- if((res = s_mp_pad(a, lim + 1)) != MP_OKAY)
- return res;
- DIGIT(a, lim) = carry;
- }
- #endif
- s_mp_clamp(a);
- return MP_OKAY;
- } /* end s_mp_add_offset() */
- /* }}} */
- /* {{{ s_mp_sub(a, b) */
- /* Compute a = |a| - |b|, assumes |a| >= |b| */
- mp_err s_mp_sub(mp_int *a, const mp_int *b) /* magnitude subtract */
- {
- mp_digit *pa, *pb, *limit;
- #if !defined(MP_NO_MP_WORD)
- mp_sword w = 0;
- #else
- mp_digit d, diff, borrow = 0;
- #endif
- /*
- Subtract and propagate borrow. Up to the precision of b, this
- accounts for the digits of b; after that, we just make sure the
- carries get to the right place. This saves having to pad b out to
- the precision of a just to make the loops work right...
- */
- pa = MP_DIGITS(a);
- pb = MP_DIGITS(b);
- limit = pb + MP_USED(b);
- while (pb < limit) {
- #if !defined(MP_NO_MP_WORD)
- w = w + *pa - *pb++;
- *pa++ = ACCUM(w);
- w >>= MP_DIGIT_BIT;
- #else
- d = *pa;
- diff = d - *pb++;
- d = (diff > d); /* detect borrow */
- if (borrow && --diff == MP_DIGIT_MAX)
- ++d;
- *pa++ = diff;
- borrow = d;
- #endif
- }
- limit = MP_DIGITS(a) + MP_USED(a);
- #if !defined(MP_NO_MP_WORD)
- while (w && pa < limit) {
- w = w + *pa;
- *pa++ = ACCUM(w);
- w >>= MP_DIGIT_BIT;
- }
- #else
- while (borrow && pa < limit) {
- d = *pa;
- *pa++ = diff = d - borrow;
- borrow = (diff > d);
- }
- #endif
- /* Clobber any leading zeroes we created */
- s_mp_clamp(a);
- /*
- If there was a borrow out, then |b| > |a| in violation
- of our input invariant. We've already done the work,
- but we'll at least complain about it...
- */
- #if !defined(MP_NO_MP_WORD)
- return w ? MP_RANGE : MP_OKAY;
- #else
- return borrow ? MP_RANGE : MP_OKAY;
- #endif
- } /* end s_mp_sub() */
- /* }}} */
- /* Compute c = |a| - |b|, assumes |a| >= |b| */ /* magnitude subtract */
- mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c)
- {
- mp_digit *pa, *pb, *pc;
- #if !defined(MP_NO_MP_WORD)
- mp_sword w = 0;
- #else
- mp_digit d, diff, borrow = 0;
- #endif
- int ix, limit;
- mp_err res;
- MP_SIGN(c) = MP_SIGN(a);
- /* Make sure a has enough precision for the output value */
- if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a))))
- return res;
- /*
- Subtract and propagate borrow. Up to the precision of b, this
- accounts for the digits of b; after that, we just make sure the
- carries get to the right place. This saves having to pad b out to
- the precision of a just to make the loops work right...
- */
- pa = MP_DIGITS(a);
- pb = MP_DIGITS(b);
- pc = MP_DIGITS(c);
- limit = MP_USED(b);
- for (ix = 0; ix < limit; ++ix) {
- #if !defined(MP_NO_MP_WORD)
- w = w + *pa++ - *pb++;
- *pc++ = ACCUM(w);
- w >>= MP_DIGIT_BIT;
- #else
- d = *pa++;
- diff = d - *pb++;
- d = (diff > d);
- if (borrow && --diff == MP_DIGIT_MAX)
- ++d;
- *pc++ = diff;
- borrow = d;
- #endif
- }
- for (limit = MP_USED(a); ix < limit; ++ix) {
- #if !defined(MP_NO_MP_WORD)
- w = w + *pa++;
- *pc++ = ACCUM(w);
- w >>= MP_DIGIT_BIT;
- #else
- d = *pa++;
- *pc++ = diff = d - borrow;
- borrow = (diff > d);
- #endif
- }
- /* Clobber any leading zeroes we created */
- MP_USED(c) = ix;
- s_mp_clamp(c);
- /*
- If there was a borrow out, then |b| > |a| in violation
- of our input invariant. We've already done the work,
- but we'll at least complain about it...
- */
- #if !defined(MP_NO_MP_WORD)
- return w ? MP_RANGE : MP_OKAY;
- #else
- return borrow ? MP_RANGE : MP_OKAY;
- #endif
- }
- /* {{{ s_mp_mul(a, b) */
- /* Compute a = |a| * |b| */
- mp_err s_mp_mul(mp_int *a, const mp_int *b)
- {
- return mp_mul(a, b, a);
- } /* end s_mp_mul() */
- /* }}} */
- #if defined(SOLARIS) && (ULONG_MAX == UINT_MAX)
- /* This trick works on Sparc V8 CPUs with the Workshop compilers. */
- #define MP_MUL_DxD(a, b, Phi, Plo)
- { unsigned long long product = (unsigned long long)a * b;
- Plo = (mp_digit)product;
- Phi = (mp_digit)(product >> MP_DIGIT_BIT); }
- #else
- #define MP_MUL_DxD(a, b, Phi, Plo)
- { mp_digit a0b1, a1b0;
- Plo = (a & MP_HALF_DIGIT_MAX) * (b & MP_HALF_DIGIT_MAX);
- Phi = (a >> MP_HALF_DIGIT_BIT) * (b >> MP_HALF_DIGIT_BIT);
- a0b1 = (a & MP_HALF_DIGIT_MAX) * (b >> MP_HALF_DIGIT_BIT);
- a1b0 = (a >> MP_HALF_DIGIT_BIT) * (b & MP_HALF_DIGIT_MAX);
- a1b0 += a0b1;
- Phi += a1b0 >> MP_HALF_DIGIT_BIT;
- if (a1b0 < a0b1)
- Phi += MP_HALF_RADIX;
- a1b0 <<= MP_HALF_DIGIT_BIT;
- Plo += a1b0;
- if (Plo < a1b0)
- ++Phi;
- }
- #endif
- #if !defined(MP_ASSEMBLY_MULTIPLY)
- /* c = a * b */
- void s_mpv_mul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c)
- {
- #if !defined(MP_NO_MP_WORD)
- mp_digit d = 0;
- /* Inner product: Digits of a */
- while (a_len--) {
- mp_word w = ((mp_word)b * *a++) + d;
- *c++ = ACCUM(w);
- d = CARRYOUT(w);
- }
- *c = d;
- #else
- mp_digit carry = 0;
- while (a_len--) {
- mp_digit a_i = *a++;
- mp_digit a0b0, a1b1;
- MP_MUL_DxD(a_i, b, a1b1, a0b0);
- a0b0 += carry;
- if (a0b0 < carry)
- ++a1b1;
- *c++ = a0b0;
- carry = a1b1;
- }
- *c = carry;
- #endif
- }
- /* c += a * b */
- void s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, mp_digit b,
- mp_digit *c)
- {
- #if !defined(MP_NO_MP_WORD)
- mp_digit d = 0;
- /* Inner product: Digits of a */
- while (a_len--) {
- mp_word w = ((mp_word)b * *a++) + *c + d;
- *c++ = ACCUM(w);
- d = CARRYOUT(w);
- }
- *c = d;
- #else
- mp_digit carry = 0;
- while (a_len--) {
- mp_digit a_i = *a++;
- mp_digit a0b0, a1b1;
- MP_MUL_DxD(a_i, b, a1b1, a0b0);
- a0b0 += carry;
- if (a0b0 < carry)
- ++a1b1;
- a0b0 += a_i = *c;
- if (a0b0 < a_i)
- ++a1b1;
- *c++ = a0b0;
- carry = a1b1;
- }
- *c = carry;
- #endif
- }
- /* Presently, this is only used by the Montgomery arithmetic code. */
- /* c += a * b */
- void s_mpv_mul_d_add_prop(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c)
- {
- #if !defined(MP_NO_MP_WORD)
- mp_digit d = 0;
- /* Inner product: Digits of a */
- while (a_len--) {
- mp_word w = ((mp_word)b * *a++) + *c + d;
- *c++ = ACCUM(w);
- d = CARRYOUT(w);
- }
- while (d) {
- mp_word w = (mp_word)*c + d;
- *c++ = ACCUM(w);
- d = CARRYOUT(w);
- }
- #else
- mp_digit carry = 0;
- while (a_len--) {
- mp_digit a_i = *a++;
- mp_digit a0b0, a1b1;
- MP_MUL_DxD(a_i, b, a1b1, a0b0);
- a0b0 += carry;
- if (a0b0 < carry)
- ++a1b1;
- a0b0 += a_i = *c;
- if (a0b0 < a_i)
- ++a1b1;
- *c++ = a0b0;
- carry = a1b1;
- }
- while (carry) {
- mp_digit c_i = *c;
- carry += c_i;
- *c++ = carry;
- carry = carry < c_i;
- }
- #endif
- }
- #endif
- #if !defined(MP_ASSEMBLY_SQUARE)
- /* Add the squares of the digits of a to the digits of b. */
- void s_mpv_sqr_add_prop(const mp_digit *pa, mp_size a_len, mp_digit *ps)
- {
- #if !defined(MP_NO_MP_WORD)
- mp_word w;
- mp_digit d;
- mp_size ix;
- w = 0;
- #define ADD_SQUARE(n)
- d = pa[n];
- w += (d * (mp_word)d) + ps[2*n];
- ps[2*n] = ACCUM(w);
- w = (w >> DIGIT_BIT) + ps[2*n+1];
- ps[2*n+1] = ACCUM(w);
- w = (w >> DIGIT_BIT)
- for (ix = a_len; ix >= 4; ix -= 4) {
- ADD_SQUARE(0);
- ADD_SQUARE(1);
- ADD_SQUARE(2);
- ADD_SQUARE(3);
- pa += 4;
- ps += 8;
- }
- if (ix) {
- ps += 2*ix;
- pa += ix;
- switch (ix) {
- case 3: ADD_SQUARE(-3); /* FALLTHRU */
- case 2: ADD_SQUARE(-2); /* FALLTHRU */
- case 1: ADD_SQUARE(-1); /* FALLTHRU */
- case 0: break;
- }
- }
- while (w) {
- w += *ps;
- *ps++ = ACCUM(w);
- w = (w >> DIGIT_BIT);
- }
- #else
- mp_digit carry = 0;
- while (a_len--) {
- mp_digit a_i = *pa++;
- mp_digit a0 = a_i & MP_HALF_DIGIT_MAX;
- mp_digit a1 = a_i >> MP_HALF_DIGIT_BIT;
- mp_digit a0a0, a0a1, a1a1;
- a0a0 = a0 * a0;
- a1a1 = a1 * a1;
- a0a1 = a0 * a1;
- a1a1 += a0a1 >> (MP_HALF_DIGIT_BIT - 1);
- a0a1 <<= (MP_HALF_DIGIT_BIT + 1);
- a0a0 += a0a1;
- if (a0a0 < a0a1)
- ++a1a1;
- a0a0 += carry;
- if (a0a0 < carry)
- ++a1a1;
- /* here a1a1 and a0a0 constitute a_i ** 2 */
- /* now add to ps */
- a0a0 += a0a1 = *ps;
- if (a0a0 < a0a1)
- ++a1a1;
- *ps++ = a0a0;
- a1a1 += a0a1 = *ps;
- carry = (a1a1 < a0a1);
- *ps++ = a1a1;
- }
- while (carry) {
- mp_digit s_i = *ps;
- carry += s_i;
- *ps++ = carry;
- carry = carry < s_i;
- }
- #endif
- }
- #endif
- #if defined(MP_NO_MP_WORD) && !defined(MP_ASSEMBLY_DIV_2DX1D)
- /*
- ** Divide 64-bit (Nhi,Nlo) by 32-bit divisor, which must be normalized
- ** so its high bit is 1. This code is from NSPR.
- */
- mp_err s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, mp_digit divisor,
- mp_digit *qp, mp_digit *rp)
- {
- mp_digit d1, d0, q1, q0;
- mp_digit r1, r0, m;
- d1 = divisor >> MP_HALF_DIGIT_BIT;
- d0 = divisor & MP_HALF_DIGIT_MAX;
- r1 = Nhi % d1;
- q1 = Nhi / d1;
- m = q1 * d0;
- r1 = (r1 << MP_HALF_DIGIT_BIT) | (Nlo >> MP_HALF_DIGIT_BIT);
- if (r1 < m) {
- q1--, r1 += divisor;
- if (r1 >= divisor && r1 < m) {
- q1--, r1 += divisor;
- }
- }
- r1 -= m;
- r0 = r1 % d1;
- q0 = r1 / d1;
- m = q0 * d0;
- r0 = (r0 << MP_HALF_DIGIT_BIT) | (Nlo & MP_HALF_DIGIT_MAX);
- if (r0 < m) {
- q0--, r0 += divisor;
- if (r0 >= divisor && r0 < m) {
- q0--, r0 += divisor;
- }
- }
- if (qp)
- *qp = (q1 << MP_HALF_DIGIT_BIT) | q0;
- if (rp)
- *rp = r0 - m;
- return MP_OKAY;
- }
- #endif
- #if MP_SQUARE
- /* {{{ s_mp_sqr(a) */
- mp_err s_mp_sqr(mp_int *a)
- {
- mp_err res;
- mp_int tmp;
- if((res = mp_init_size(&tmp, 2 * USED(a))) != MP_OKAY)
- return res;
- res = mp_sqr(a, &tmp);
- if (res == MP_OKAY) {
- s_mp_exch(&tmp, a);
- }
- mp_clear(&tmp);
- return res;
- }
- /* }}} */
- #endif
- /* {{{ s_mp_div(a, b) */
- /*
- s_mp_div(a, b)
- Compute a = a / b and b = a mod b. Assumes b > a.
- */
- mp_err s_mp_div(mp_int *a, mp_int *b)
- {
- mp_int quot, rem, t;
- #if !defined(MP_NO_MP_WORD)
- mp_word q;
- #else
- mp_digit q;
- #endif
- mp_err res;
- mp_digit d;
- mp_digit b_msd;
- int ix;
- if(mp_cmp_z(b) == 0)
- return MP_RANGE;
- /* Shortcut if b is power of two */
- if((ix = s_mp_ispow2(b)) >= 0) {
- mp_copy(a, b); /* need this for remainder */
- s_mp_div_2d(a, (mp_digit)ix);
- s_mp_mod_2d(b, (mp_digit)ix);
- return MP_OKAY;
- }
- /* Allocate space to store the quotient */
- if((res = mp_init_size(", MP_ALLOC(a))) != MP_OKAY)
- return res;
- /* A working temporary for division */
- if((res = mp_init_size(&t, MP_ALLOC(a))) != MP_OKAY)
- goto T;
- /* Allocate space for the remainder */
- if((res = mp_init_size(&rem, MP_ALLOC(a))) != MP_OKAY)
- goto REM;
- /* Normalize to optimize guessing */
- MP_CHECKOK( s_mp_norm(a, b, &d) );
- /* Perform the division itself...woo! */
- ix = USED(a) - 1;
- while(ix >= 0) {
- int i;
- /* Find a partial substring of a which is at least b */
- while(s_mp_cmp(&rem, b) < 0 && ix >= 0) {
- MP_CHECKOK( s_mp_lshd(&rem, 1) );
- MP_CHECKOK( s_mp_lshd(", 1) );
- DIGIT(&rem, 0) = DIGIT(a, ix);
- --ix;
- }
- /* If we didn't find one, we're finished dividing */
- if(s_mp_cmp(&rem, b) < 0)
- break;
- /* Compute a guess for the next quotient digit */
- q = DIGIT(&rem, USED(&rem) - 1);
- b_msd = DIGIT(b, USED(b) - 1);
- if (q >= b_msd) {
- q = 1;
- } else if (USED(&rem) > 1) {
- #if !defined(MP_NO_MP_WORD)
- q = (q << DIGIT_BIT) | DIGIT(&rem, USED(&rem) - 2);
- q /= b_msd;
- if (q == RADIX)
- --q;
- #else
- mp_digit r;
- MP_CHECKOK( s_mpv_div_2dx1d(q, DIGIT(&rem, MP_USED(&rem) - 2),
- b_msd, &q, &r) );
- #endif
- } else {
- q = 0;
- }
- /* See what that multiplies out to */
- mp_copy(b, &t);
- MP_CHECKOK( s_mp_mul_d(&t, (mp_digit)q) );
- /*
- If it's too big, back it off. We should not have to do this
- more than once, or, in rare cases, twice. Knuth describes a
- method by which this could be reduced to a maximum of once, but
- I didn't implement that here.
- * When using s_mpv_div_2dx1d, we may have to do this 3 times.
- */
- for (i = 4; s_mp_cmp(&t, &rem) > 0 && i > 0; --i) {
- --q;
- s_mp_sub(&t, b);
- }
- if (i < 0) {
- res = MP_RANGE;
- goto CLEANUP;
- }
- /* At this point, q should be the right next digit */
- MP_CHECKOK( s_mp_sub(&rem, &t) );
- /*
- Include the digit in the quotient. We allocated enough memory
- for any quotient we could ever possibly get, so we should not
- have to check for failures here
- */
- DIGIT(", 0) = (mp_digit)q;
- }
- /* Denormalize remainder */
- if (d) {
- s_mp_div_2d(&rem, d);
- }
- s_mp_clamp(");
- s_mp_clamp(&rem);
- /* Copy quotient back to output */
- s_mp_exch(", a);
-
- /* Copy remainder back to output */
- s_mp_exch(&rem, b);
- CLEANUP:
- mp_clear(&rem);
- REM:
- mp_clear(&t);
- T:
- mp_clear(");
- return res;
- } /* end s_mp_div() */
- /* }}} */
- /* {{{ s_mp_2expt(a, k) */
- mp_err s_mp_2expt(mp_int *a, mp_digit k)
- {
- mp_err res;
- mp_size dig, bit;
- dig = k / DIGIT_BIT;
- bit = k % DIGIT_BIT;
- mp_zero(a);
- if((res = s_mp_pad(a, dig + 1)) != MP_OKAY)
- return res;
-
- DIGIT(a, dig) |= ((mp_digit)1 << bit);
- return MP_OKAY;
- } /* end s_mp_2expt() */
- /* }}} */
- /* {{{ s_mp_reduce(x, m, mu) */
- /*
- Compute Barrett reduction, x (mod m), given a precomputed value for
- mu = b^2k / m, where b = RADIX and k = #digits(m). This should be
- faster than straight division, when many reductions by the same
- value of m are required (such as in modular exponentiation). This
- can nearly halve the time required to do modular exponentiation,
- as compared to using the full integer divide to reduce.
- This algorithm was derived from the _Handbook of Applied
- Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14,
- pp. 603-604.
- */
- mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu)
- {
- mp_int q;
- mp_err res;
- if((res = mp_init_copy(&q, x)) != MP_OKAY)
- return res;
- s_mp_rshd(&q, USED(m) - 1); /* q1 = x / b^(k-1) */
- s_mp_mul(&q, mu); /* q2 = q1 * mu */
- s_mp_rshd(&q, USED(m) + 1); /* q3 = q2 / b^(k+1) */
- /* x = x mod b^(k+1), quick (no division) */
- s_mp_mod_2d(x, DIGIT_BIT * (USED(m) + 1));
- /* q = q * m mod b^(k+1), quick (no division) */
- s_mp_mul(&q, m);
- s_mp_mod_2d(&q, DIGIT_BIT * (USED(m) + 1));
- /* x = x - q */
- if((res = mp_sub(x, &q, x)) != MP_OKAY)
- goto CLEANUP;
- /* If x < 0, add b^(k+1) to it */
- if(mp_cmp_z(x) < 0) {
- mp_set(&q, 1);
- if((res = s_mp_lshd(&q, USED(m) + 1)) != MP_OKAY)
- goto CLEANUP;
- if((res = mp_add(x, &q, x)) != MP_OKAY)
- goto CLEANUP;
- }
- /* Back off if it's too big */
- while(mp_cmp(x, m) >= 0) {
- if((res = s_mp_sub(x, m)) != MP_OKAY)
- break;
- }
- CLEANUP:
- mp_clear(&q);
- return res;
- } /* end s_mp_reduce() */
- /* }}} */
- /* }}} */
- /* {{{ Primitive comparisons */
- /* {{{ s_mp_cmp(a, b) */
- /* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b */
- int s_mp_cmp(const mp_int *a, const mp_int *b)
- {
- mp_size used_a = MP_USED(a);
- {
- mp_size used_b = MP_USED(b);
- if (used_a > used_b)
- goto IS_GT;
- if (used_a < used_b)
- goto IS_LT;
- }
- {
- mp_digit *pa, *pb;
- mp_digit da = 0, db = 0;
- #define CMP_AB(n) if ((da = pa[n]) != (db = pb[n])) goto done
- pa = MP_DIGITS(a) + used_a;
- pb = MP_DIGITS(b) + used_a;
- while (used_a >= 4) {
- pa -= 4;
- pb -= 4;
- used_a -= 4;
- CMP_AB(3);
- CMP_AB(2);
- CMP_AB(1);
- CMP_AB(0);
- }
- while (used_a-- > 0 && ((da = *--pa) == (db = *--pb)))
- /* do nothing */;
- done:
- if (da > db)
- goto IS_GT;
- if (da < db)
- goto IS_LT;
- }
- return MP_EQ;
- IS_LT:
- return MP_LT;
- IS_GT:
- return MP_GT;
- } /* end s_mp_cmp() */
- /* }}} */
- /* {{{ s_mp_cmp_d(a, d) */
- /* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d */
- int s_mp_cmp_d(const mp_int *a, mp_digit d)
- {
- if(USED(a) > 1)
- return MP_GT;
- if(DIGIT(a, 0) < d)
- return MP_LT;
- else if(DIGIT(a, 0) > d)
- return MP_GT;
- else
- return MP_EQ;
- } /* end s_mp_cmp_d() */
- /* }}} */
- /* {{{ s_mp_ispow2(v) */
- /*
- Returns -1 if the value is not a power of two; otherwise, it returns
- k such that v = 2^k, i.e. lg(v).
- */
- int s_mp_ispow2(const mp_int *v)
- {
- mp_digit d;
- int extra = 0, ix;
- ix = MP_USED(v) - 1;
- d = MP_DIGIT(v, ix); /* most significant digit of v */
- extra = s_mp_ispow2d(d);
- if (extra < 0 || ix == 0)
- return extra;
- while (--ix >= 0) {
- if (DIGIT(v, ix) != 0)
- return -1; /* not a power of two */
- extra += MP_DIGIT_BIT;
- }
- return extra;
- } /* end s_mp_ispow2() */
- /* }}} */
- /* {{{ s_mp_ispow2d(d) */
- int s_mp_ispow2d(mp_digit d)
- {
- if ((d != 0) && ((d & (d-1)) == 0)) { /* d is a power of 2 */
- int pow = 0;
- #if MP_DIGIT_MAX == MP_32BIT_MAX
- if (d & 0xffff0000)
- pow += 16;
- if (d & 0xff00ff00)
- pow += 8;
- if (d & 0xf0f0f0f0)
- pow += 4;
- if (d & 0xcccccccc)
- pow += 2;
- if (d & 0xaaaaaaaa)
- pow += 1;
- #else
- if (d & 0xffffffff00000000UL)
- pow += 32;
- if (d & 0xffff0000ffff0000UL)
- pow += 16;
- if (d & 0xff00ff00ff00ff00UL)
- pow += 8;
- if (d & 0xf0f0f0f0f0f0f0f0UL)
- pow += 4;
- if (d & 0xccccccccccccccccUL)
- pow += 2;
- if (d & 0xaaaaaaaaaaaaaaaaUL)
- pow += 1;
- #endif
- return pow;
- }
- return -1;
- } /* end s_mp_ispow2d() */
- /* }}} */
- /* }}} */
- /* {{{ Primitive I/O helpers */
- /* {{{ s_mp_tovalue(ch, r) */
- /*
- Convert the given character to its digit value, in the given radix.
- If the given character is not understood in the given radix, -1 is
- returned. Otherwise the digit's numeric value is returned.
- The results will be odd if you use a radix < 2 or > 62, you are
- expected to know what you're up to.
- */
- int s_mp_tovalue(char ch, int r)
- {
- int val, xch;
-
- if(r > 36)
- xch = ch;
- else
- xch = toupper(ch);
- if(isdigit(xch))
- val = xch - '0';
- else if(isupper(xch))
- val = xch - 'A' + 10;
- else if(islower(xch))
- val = xch - 'a' + 36;
- else if(xch == '+')
- val = 62;
- else if(xch == '/')
- val = 63;
- else
- return -1;
- if(val < 0 || val >= r)
- return -1;
- return val;
- } /* end s_mp_tovalue() */
- /* }}} */
- /* {{{ s_mp_todigit(val, r, low) */
- /*
- Convert val to a radix-r digit, if possible. If val is out of range
- for r, returns zero. Otherwise, returns an ASCII character denoting
- the value in the given radix.
- The results may be odd if you use a radix < 2 or > 64, you are
- expected to know what you're doing.
- */
-
- char s_mp_todigit(mp_digit val, int r, int low)
- {
- char ch;
- if(val >= r)
- return 0;
- ch = s_dmap_1[val];
- if(r <= 36 && low)
- ch = tolower(ch);
- return ch;
- } /* end s_mp_todigit() */
- /* }}} */
- /* {{{ s_mp_outlen(bits, radix) */
- /*
- Return an estimate for how long a string is needed to hold a radix
- r representation of a number with 'bits' significant bits, plus an
- extra for a zero terminator (assuming C style strings here)
- */
- int s_mp_outlen(int bits, int r)
- {
- return (int)((double)bits * LOG_V_2(r) + 1.5) + 1;
- } /* end s_mp_outlen() */
- /* }}} */
- /* }}} */
- /* {{{ mp_read_unsigned_octets(mp, str, len) */
- /* mp_read_unsigned_octets(mp, str, len)
- Read in a raw value (base 256) into the given mp_int
- No sign bit, number is positive. Leading zeros ignored.
- */
- mp_err
- mp_read_unsigned_octets(mp_int *mp, const unsigned char *str, mp_size len)
- {
- int count;
- mp_err res;
- mp_digit d;
- ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
- mp_zero(mp);
- count = len % sizeof(mp_digit);
- if (count) {
- for (d = 0; count-- > 0; --len) {
- d = (d << 8) | *str++;
- }
- MP_DIGIT(mp, 0) = d;
- }
- /* Read the rest of the digits */
- for(; len > 0; len -= sizeof(mp_digit)) {
- for (d = 0, count = sizeof(mp_digit); count > 0; --count) {
- d = (d << 8) | *str++;
- }
- if (MP_EQ == mp_cmp_z(mp)) {
- if (!d)
- continue;
- } else {
- if((res = s_mp_lshd(mp, 1)) != MP_OKAY)
- return res;
- }
- MP_DIGIT(mp, 0) = d;
- }
- return MP_OKAY;
- } /* end mp_read_unsigned_octets() */
- /* }}} */
- /* {{{ mp_unsigned_octet_size(mp) */
- int
- mp_unsigned_octet_size(const mp_int *mp)
- {
- int bytes;
- int ix;
- mp_digit d = 0;
- ARGCHK(mp != NULL, MP_BADARG);
- ARGCHK(MP_ZPOS == SIGN(mp), MP_BADARG);
- bytes = (USED(mp) * sizeof(mp_digit));
- /* subtract leading zeros. */
- /* Iterate over each digit... */
- for(ix = USED(mp) - 1; ix >= 0; ix--) {
- d = DIGIT(mp, ix);
- if (d)
- break;
- bytes -= sizeof(d);
- }
- if (!bytes)
- return 1;
- /* Have MSD, check digit bytes, high order first */
- for(ix = sizeof(mp_digit) - 1; ix >= 0; ix--) {
- unsigned char x = (unsigned char)(d >> (ix * CHAR_BIT));
- if (x)
- break;
- --bytes;
- }
- return bytes;
- } /* end mp_unsigned_octet_size() */
- /* }}} */
- /* {{{ mp_to_unsigned_octets(mp, str) */
- /* output a buffer of big endian octets no longer than specified. */
- mp_err
- mp_to_unsigned_octets(const mp_int *mp, unsigned char *str, mp_size maxlen)
- {
- int ix, pos = 0;
- int bytes;
- ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG);
- bytes = mp_unsigned_octet_size(mp);
- ARGCHK(bytes <= maxlen, MP_BADARG);
- /* Iterate over each digit... */
- for(ix = USED(mp) - 1; ix >= 0; ix--) {
- mp_digit d = DIGIT(mp, ix);
- int jx;
- /* Unpack digit bytes, high order first */
- for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) {
- unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT));
- if (!pos && !x) /* suppress leading zeros */
- continue;
- str[pos++] = x;
- }
- }
- return pos;
- } /* end mp_to_unsigned_octets() */
- /* }}} */
- /* {{{ mp_to_signed_octets(mp, str) */
- /* output a buffer of big endian octets no longer than specified. */
- mp_err
- mp_to_signed_octets(const mp_int *mp, unsigned char *str, mp_size maxlen)
- {
- int ix, pos = 0;
- int bytes;
- ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG);
- bytes = mp_unsigned_octet_size(mp);
- ARGCHK(bytes <= maxlen, MP_BADARG);
- /* Iterate over each digit... */
- for(ix = USED(mp) - 1; ix >= 0; ix--) {
- mp_digit d = DIGIT(mp, ix);
- int jx;
- /* Unpack digit bytes, high order first */
- for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) {
- unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT));
- if (!pos) {
- if (!x) /* suppress leading zeros */
- continue;
- if (x & 0x80) { /* add one leading zero to make output positive. */
- ARGCHK(bytes + 1 <= maxlen, MP_BADARG);
- if (bytes + 1 > maxlen)
- return MP_BADARG;
- str[pos++] = 0;
- }
- }
- str[pos++] = x;
- }
- }
- return pos;
- } /* end mp_to_signed_octets() */
- /* }}} */
- /* {{{ mp_to_fixlen_octets(mp, str) */
- /* output a buffer of big endian octets exactly as long as requested. */
- mp_err
- mp_to_fixlen_octets(const mp_int *mp, unsigned char *str, mp_size length)
- {
- int ix, pos = 0;
- int bytes;
- ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG);
- bytes = mp_unsigned_octet_size(mp);
- ARGCHK(bytes <= length, MP_BADARG);
- /* place any needed leading zeros */
- for (;length > bytes; --length) {
- *str++ = 0;
- }
- /* Iterate over each digit... */
- for(ix = USED(mp) - 1; ix >= 0; ix--) {
- mp_digit d = DIGIT(mp, ix);
- int jx;
- /* Unpack digit bytes, high order first */
- for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) {
- unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT));
- if (!pos && !x) /* suppress leading zeros */
- continue;
- str[pos++] = x;
- }
- }
- return MP_OKAY;
- } /* end mp_to_fixlen_octets() */
- /* }}} */
- /*------------------------------------------------------------------------*/
- /* HERE THERE BE DRAGONS */