pi.c
上传用户:lyxiangda
上传日期:2007-01-12
资源大小:3042k
文件大小:5k
- /*
- * pi.c
- *
- * Compute pi to an arbitrary number of digits. Uses Machin's formula,
- * like everyone else on the planet:
- *
- * pi = 16 * arctan(1/5) - 4 * arctan(1/239)
- *
- * This is pretty effective for up to a few thousand digits, but it
- * gets pretty slow after that.
- *
- * The contents of this file are subject to the Mozilla Public
- * License Version 1.1 (the "License"); you may not use this file
- * except in compliance with the License. You may obtain a copy of
- * the License at http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS
- * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
- * implied. See the License for the specific language governing
- * rights and limitations under the License.
- *
- * The Original Code is the MPI Arbitrary Precision Integer Arithmetic
- * library.
- *
- * The Initial Developer of the Original Code is Michael J. Fromberger.
- * Portions created by Michael J. Fromberger are
- * Copyright (C) 1999, 2000 Michael J. Fromberger.
- * All Rights Reserved.
- *
- * Contributor(s):
- *
- * Alternatively, the contents of this file may be used under the
- * terms of the GNU General Public License Version 2 or later (the
- * "GPL"), in which case the provisions of the GPL are applicable
- * instead of those above. If you wish to allow use of your
- * version of this file only under the terms of the GPL and not to
- * allow others to use your version of this file under the MPL,
- * indicate your decision by deleting the provisions above and
- * replace them with the notice and other provisions required by
- * the GPL. If you do not delete the provisions above, a recipient
- * may use your version of this file under either the MPL or the GPL.
- *
- * $Id: pi.c,v 1.1 2000/07/14 00:45:00 nelsonb%netscape.com Exp $
- */
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <limits.h>
- #include <time.h>
- #include "mpi.h"
- mp_err arctan(mp_digit mul, mp_digit x, mp_digit prec, mp_int *sum);
- int main(int argc, char *argv[])
- {
- mp_err res;
- mp_digit ndigits;
- mp_int sum1, sum2;
- clock_t start, stop;
- int out = 0;
- /* Make the user specify precision on the command line */
- if(argc < 2) {
- fprintf(stderr, "Usage: %s <num-digits>n", argv[0]);
- return 1;
- }
- if((ndigits = abs(atoi(argv[1]))) == 0) {
- fprintf(stderr, "%s: you must request at least 1 digitn", argv[0]);
- return 1;
- }
- start = clock();
- mp_init(&sum1); mp_init(&sum2);
- /* sum1 = 16 * arctan(1/5) */
- if((res = arctan(16, 5, ndigits, &sum1)) != MP_OKAY) {
- fprintf(stderr, "%s: arctan: %sn", argv[0], mp_strerror(res));
- out = 1; goto CLEANUP;
- }
- /* sum2 = 4 * arctan(1/239) */
- if((res = arctan(4, 239, ndigits, &sum2)) != MP_OKAY) {
- fprintf(stderr, "%s: arctan: %sn", argv[0], mp_strerror(res));
- out = 1; goto CLEANUP;
- }
- /* pi = sum1 - sum2 */
- if((res = mp_sub(&sum1, &sum2, &sum1)) != MP_OKAY) {
- fprintf(stderr, "%s: mp_sub: %sn", argv[0], mp_strerror(res));
- out = 1; goto CLEANUP;
- }
- stop = clock();
- /* Write the output in decimal */
- {
- char *buf = malloc(mp_radix_size(&sum1, 10));
- if(buf == NULL) {
- fprintf(stderr, "%s: out of memoryn", argv[0]);
- out = 1; goto CLEANUP;
- }
- mp_todecimal(&sum1, buf);
- printf("%sn", buf);
- free(buf);
- }
- fprintf(stderr, "Computation took %.2f sec.n",
- (double)(stop - start) / CLOCKS_PER_SEC);
- CLEANUP:
- mp_clear(&sum1);
- mp_clear(&sum2);
- return out;
- }
- /* Compute sum := mul * arctan(1/x), to 'prec' digits of precision */
- mp_err arctan(mp_digit mul, mp_digit x, mp_digit prec, mp_int *sum)
- {
- mp_int t, v;
- mp_digit q = 1, rd;
- mp_err res;
- int sign = 1;
- prec += 3; /* push inaccuracies off the end */
- mp_init(&t); mp_set(&t, 10);
- mp_init(&v);
- if((res = mp_expt_d(&t, prec, &t)) != MP_OKAY || /* get 10^prec */
- (res = mp_mul_d(&t, mul, &t)) != MP_OKAY || /* ... times mul */
- (res = mp_mul_d(&t, x, &t)) != MP_OKAY) /* ... times x */
- goto CLEANUP;
- /*
- The extra multiplication by x in the above takes care of what
- would otherwise have to be a special case for 1 / x^1 during the
- first loop iteration. A little sneaky, but effective.
- We compute arctan(1/x) by the formula:
- 1 1 1 1
- - - ----- + ----- - ----- + ...
- x 3 x^3 5 x^5 7 x^7
- We multiply through by 'mul' beforehand, which gives us a couple
- more iterations and more precision
- */
- x *= x; /* works as long as x < sqrt(RADIX), which it is here */
- mp_zero(sum);
- do {
- if((res = mp_div_d(&t, x, &t, &rd)) != MP_OKAY)
- goto CLEANUP;
- if(sign < 0 && rd != 0)
- mp_add_d(&t, 1, &t);
- if((res = mp_div_d(&t, q, &v, &rd)) != MP_OKAY)
- goto CLEANUP;
- if(sign < 0 && rd != 0)
- mp_add_d(&v, 1, &v);
- if(sign > 0)
- res = mp_add(sum, &v, sum);
- else
- res = mp_sub(sum, &v, sum);
- if(res != MP_OKAY)
- goto CLEANUP;
- sign *= -1;
- q += 2;
- } while(mp_cmp_z(&t) != 0);
- /* Chop off inaccurate low-order digits */
- mp_div_d(sum, 1000, sum, NULL);
- CLEANUP:
- mp_clear(&v);
- mp_clear(&t);
- return res;
- }
- /*------------------------------------------------------------------------*/
- /* HERE THERE BE DRAGONS */