mpprime.c
上传用户:lyxiangda
上传日期:2007-01-12
资源大小:3042k
文件大小:14k
- /*
- * mpprime.c
- *
- * Utilities for finding and working with prime and pseudo-prime
- * integers
- *
- * The contents of this file are subject to the Mozilla Public
- * License Version 1.1 (the "License"); you may not use this file
- * except in compliance with the License. You may obtain a copy of
- * the License at http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS
- * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
- * implied. See the License for the specific language governing
- * rights and limitations under the License.
- *
- * The Original Code is the MPI Arbitrary Precision Integer Arithmetic
- * library.
- *
- * The Initial Developer of the Original Code is Michael J. Fromberger.
- * Portions created by Michael J. Fromberger are
- * Copyright (C) 1997, 1998, 1999, 2000 Michael J. Fromberger.
- * All Rights Reserved.
- *
- * Contributor(s):
- * Netscape Communications Corporation
- *
- * Alternatively, the contents of this file may be used under the
- * terms of the GNU General Public License Version 2 or later (the
- * "GPL"), in which case the provisions of the GPL are applicable
- * instead of those above. If you wish to allow use of your
- * version of this file only under the terms of the GPL and not to
- * allow others to use your version of this file under the MPL,
- * indicate your decision by deleting the provisions above and
- * replace them with the notice and other provisions required by
- * the GPL. If you do not delete the provisions above, a recipient
- * may use your version of this file under either the MPL or the GPL.
- */
- #include "mpi-priv.h"
- #include "mpprime.h"
- #include "mplogic.h"
- #include <stdlib.h>
- #include <string.h>
- #define SMALL_TABLE 0 /* determines size of hard-wired prime table */
- #define RANDOM() rand()
- #include "primes.c" /* pull in the prime digit table */
- /*
- Test if any of a given vector of digits divides a. If not, MP_NO
- is returned; otherwise, MP_YES is returned and 'which' is set to
- the index of the integer in the vector which divided a.
- */
- mp_err s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which);
- /* {{{ mpp_divis(a, b) */
- /*
- mpp_divis(a, b)
- Returns MP_YES if a is divisible by b, or MP_NO if it is not.
- */
- mp_err mpp_divis(mp_int *a, mp_int *b)
- {
- mp_err res;
- mp_int rem;
- if((res = mp_init(&rem)) != MP_OKAY)
- return res;
- if((res = mp_mod(a, b, &rem)) != MP_OKAY)
- goto CLEANUP;
- if(mp_cmp_z(&rem) == 0)
- res = MP_YES;
- else
- res = MP_NO;
- CLEANUP:
- mp_clear(&rem);
- return res;
- } /* end mpp_divis() */
- /* }}} */
- /* {{{ mpp_divis_d(a, d) */
- /*
- mpp_divis_d(a, d)
- Return MP_YES if a is divisible by d, or MP_NO if it is not.
- */
- mp_err mpp_divis_d(mp_int *a, mp_digit d)
- {
- mp_err res;
- mp_digit rem;
- ARGCHK(a != NULL, MP_BADARG);
- if(d == 0)
- return MP_NO;
- if((res = mp_mod_d(a, d, &rem)) != MP_OKAY)
- return res;
- if(rem == 0)
- return MP_YES;
- else
- return MP_NO;
- } /* end mpp_divis_d() */
- /* }}} */
- /* {{{ mpp_random(a) */
- /*
- mpp_random(a)
- Assigns a random value to a. This value is generated using the
- standard C library's rand() function, so it should not be used for
- cryptographic purposes, but it should be fine for primality testing,
- since all we really care about there is good statistical properties.
- As many digits as a currently has are filled with random digits.
- */
- mp_err mpp_random(mp_int *a)
- {
- mp_digit next = 0;
- int ix, jx;
- ARGCHK(a != NULL, MP_BADARG);
- for(ix = 0; ix < USED(a); ix++) {
- for(jx = 0; jx < sizeof(mp_digit); jx++) {
- next = (next << CHAR_BIT) | (RANDOM() & UCHAR_MAX);
- }
- DIGIT(a, ix) = next;
- }
- return MP_OKAY;
- } /* end mpp_random() */
- /* }}} */
- /* {{{ mpp_random_size(a, prec) */
- mp_err mpp_random_size(mp_int *a, mp_size prec)
- {
- mp_err res;
- ARGCHK(a != NULL && prec > 0, MP_BADARG);
-
- if((res = s_mp_pad(a, prec)) != MP_OKAY)
- return res;
- return mpp_random(a);
- } /* end mpp_random_size() */
- /* }}} */
- /* {{{ mpp_divis_vector(a, vec, size, which) */
- /*
- mpp_divis_vector(a, vec, size, which)
- Determines if a is divisible by any of the 'size' digits in vec.
- Returns MP_YES and sets 'which' to the index of the offending digit,
- if it is; returns MP_NO if it is not.
- */
- mp_err mpp_divis_vector(mp_int *a, const mp_digit *vec, int size, int *which)
- {
- ARGCHK(a != NULL && vec != NULL && size > 0, MP_BADARG);
-
- return s_mpp_divp(a, vec, size, which);
- } /* end mpp_divis_vector() */
- /* }}} */
- /* {{{ mpp_divis_primes(a, np) */
- /*
- mpp_divis_primes(a, np)
- Test whether a is divisible by any of the first 'np' primes. If it
- is, returns MP_YES and sets *np to the value of the digit that did
- it. If not, returns MP_NO.
- */
- mp_err mpp_divis_primes(mp_int *a, mp_digit *np)
- {
- int size, which;
- mp_err res;
- ARGCHK(a != NULL && np != NULL, MP_BADARG);
- size = (int)*np;
- if(size > prime_tab_size)
- size = prime_tab_size;
- res = mpp_divis_vector(a, prime_tab, size, &which);
- if(res == MP_YES)
- *np = prime_tab[which];
- return res;
- } /* end mpp_divis_primes() */
- /* }}} */
- /* {{{ mpp_fermat(a, w) */
- /*
- Using w as a witness, try pseudo-primality testing based on Fermat's
- little theorem. If a is prime, and (w, a) = 1, then w^a == w (mod
- a). So, we compute z = w^a (mod a) and compare z to w; if they are
- equal, the test passes and we return MP_YES. Otherwise, we return
- MP_NO.
- */
- mp_err mpp_fermat(mp_int *a, mp_digit w)
- {
- mp_int base, test;
- mp_err res;
-
- if((res = mp_init(&base)) != MP_OKAY)
- return res;
- mp_set(&base, w);
- if((res = mp_init(&test)) != MP_OKAY)
- goto TEST;
- /* Compute test = base^a (mod a) */
- if((res = mp_exptmod(&base, a, a, &test)) != MP_OKAY)
- goto CLEANUP;
-
- if(mp_cmp(&base, &test) == 0)
- res = MP_YES;
- else
- res = MP_NO;
- CLEANUP:
- mp_clear(&test);
- TEST:
- mp_clear(&base);
- return res;
- } /* end mpp_fermat() */
- /* }}} */
- /*
- Perform the fermat test on each of the primes in a list until
- a) one of them shows a is not prime, or
- b) the list is exhausted.
- Returns: MP_YES if it passes tests.
- MP_NO if fermat test reveals it is composite
- Some MP error code if some other error occurs.
- */
- mp_err mpp_fermat_list(mp_int *a, const mp_digit *primes, mp_size nPrimes)
- {
- mp_err rv = MP_YES;
- while (nPrimes-- > 0 && rv == MP_YES) {
- rv = mpp_fermat(a, *primes++);
- }
- return rv;
- }
- /* {{{ mpp_pprime(a, nt) */
- /*
- mpp_pprime(a, nt)
- Performs nt iteration of the Miller-Rabin probabilistic primality
- test on a. Returns MP_YES if the tests pass, MP_NO if one fails.
- If MP_NO is returned, the number is definitely composite. If MP_YES
- is returned, it is probably prime (but that is not guaranteed).
- */
- mp_err mpp_pprime(mp_int *a, int nt)
- {
- mp_err res;
- mp_int x, amo, m, z; /* "amo" = "a minus one" */
- int iter, jx;
- mp_size b;
- ARGCHK(a != NULL, MP_BADARG);
- MP_DIGITS(&x) = 0;
- MP_DIGITS(&amo) = 0;
- MP_DIGITS(&m) = 0;
- MP_DIGITS(&z) = 0;
- /* Initialize temporaries... */
- MP_CHECKOK( mp_init(&amo));
- /* Compute amo = a - 1 for what follows... */
- MP_CHECKOK( mp_sub_d(a, 1, &amo) );
- b = mp_trailing_zeros(&amo);
- if (!b) { /* a was even ? */
- res = MP_NO;
- goto CLEANUP;
- }
- MP_CHECKOK( mp_init_size(&x, MP_USED(a)) );
- MP_CHECKOK( mp_init(&z) );
- MP_CHECKOK( mp_init(&m) );
- MP_CHECKOK( mp_div_2d(&amo, b, &m, 0) );
- /* Do the test nt times... */
- for(iter = 0; iter < nt; iter++) {
- /* Choose a random value for x < a */
- s_mp_pad(&x, USED(a));
- mpp_random(&x);
- MP_CHECKOK( mp_mod(&x, a, &x) );
- /* Compute z = (x ** m) mod a */
- MP_CHECKOK( mp_exptmod(&x, &m, a, &z) );
-
- if(mp_cmp_d(&z, 1) == 0 || mp_cmp(&z, &amo) == 0) {
- res = MP_YES;
- continue;
- }
-
- res = MP_NO; /* just in case the following for loop never executes. */
- for (jx = 1; jx < b; jx++) {
- /* z = z^2 (mod a) */
- MP_CHECKOK( mp_sqrmod(&z, a, &z) );
- if(mp_cmp_d(&z, 1) == 0) {
- res = MP_NO;
- break;
- }
- if(mp_cmp(&z, &amo) == 0) {
- res = MP_YES;
- break;
- }
- res = MP_NO;
- } /* end testing loop */
- /* If the test passes, we will continue iterating, but a failed
- test means the candidate is definitely NOT prime, so we will
- immediately break out of this loop
- */
- if(res == MP_NO)
- break;
- } /* end iterations loop */
-
- CLEANUP:
- mp_clear(&m);
- mp_clear(&z);
- mp_clear(&x);
- mp_clear(&amo);
- return res;
- } /* end mpp_pprime() */
- /* }}} */
- /* Produce table of composites from list of primes and trial value.
- ** trial must be odd. List of primes must not include 2.
- ** sieve should have dimension >= MAXPRIME/2, where MAXPRIME is largest
- ** prime in list of primes. After this function is finished,
- ** if sieve[i] is non-zero, then (trial + 2*i) is composite.
- ** Each prime used in the sieve costs one division of trial, and eliminates
- ** one or more values from the search space. (3 eliminates 1/3 of the values
- ** alone!) Each value left in the search space costs 1 or more modular
- ** exponentations. So, these divisions are a bargain!
- */
- mp_err mpp_sieve(mp_int *trial, const mp_digit *primes, mp_size nPrimes,
- unsigned char *sieve, mp_size nSieve)
- {
- mp_err res;
- mp_digit rem;
- mp_size ix;
- unsigned long offset;
- memset(sieve, 0, nSieve);
- for(ix = 0; ix < nPrimes; ix++) {
- mp_digit prime = primes[ix];
- mp_size i;
- if((res = mp_mod_d(trial, prime, &rem)) != MP_OKAY)
- return res;
- if (rem == 0) {
- offset = 0;
- } else {
- offset = prime - (rem / 2);
- }
- for (i = offset; i < nSieve ; i += prime) {
- sieve[i] = 1;
- }
- }
- return MP_OKAY;
- }
- #define SIEVE_SIZE 32*1024
- mp_err mpp_make_prime(mp_int *start, mp_size nBits, mp_size strong,
- unsigned long * nTries)
- {
- mp_digit np;
- mp_err res;
- int i = 0;
- mp_int trial;
- mp_int q;
- mp_size num_tests;
- /*
- * Always make sieve the last variabale allocated so that
- * Mac builds don't break by adding an extra variable
- * on the stack. -javi
- */
- #ifdef macintosh
- unsigned char *sieve;
-
- sieve = malloc(SIEVE_SIZE);
- ARGCHK(sieve != NULL, MP_MEM);
- #else
- unsigned char sieve[SIEVE_SIZE];
- #endif
- ARGCHK(start != 0, MP_BADARG);
- ARGCHK(nBits > 16, MP_RANGE);
- MP_DIGITS(&trial) = 0;
- MP_DIGITS(&q) = 0;
- MP_CHECKOK( mp_init(&trial) );
- MP_CHECKOK( mp_init(&q) );
- if (nBits >= 1024) {
- num_tests = 5;
- } else if (nBits >= 512) {
- num_tests = 7;
- } else if (nBits >= 384) {
- num_tests = 9;
- } else if (nBits >= 256) {
- num_tests = 13;
- } else
- num_tests = 50;
- if (strong)
- --nBits;
- MP_CHECKOK( mpl_set_bit(start, nBits - 1, 1) );
- MP_CHECKOK( mpl_set_bit(start, 0, 1) );
- for (i = mpl_significant_bits(start) - 1; i >= nBits; --i) {
- MP_CHECKOK( mpl_set_bit(start, i, 0) );
- }
- /* start sieveing with prime value of 3. */
- MP_CHECKOK(mpp_sieve(start, prime_tab + 1, prime_tab_size - 1,
- sieve, sizeof sieve) );
- #ifdef DEBUG_SIEVE
- res = 0;
- for (i = 0; i < sizeof sieve; ++i) {
- if (!sieve[i])
- ++res;
- }
- fprintf(stderr,"sieve found %d potential primes.n", res);
- #define FPUTC(x,y) fputc(x,y)
- #else
- #define FPUTC(x,y)
- #endif
- res = MP_NO;
- for(i = 0; i < sizeof sieve; ++i) {
- if (sieve[i]) /* this number is composite */
- continue;
- MP_CHECKOK( mp_add_d(start, 2 * i, &trial) );
- FPUTC('.', stderr);
- /* run a Fermat test */
- res = mpp_fermat(&trial, 2);
- if (res != MP_OKAY) {
- if (res == MP_NO)
- continue; /* was composite */
- goto CLEANUP;
- }
-
- FPUTC('+', stderr);
- /* If that passed, run some Miller-Rabin tests */
- res = mpp_pprime(&trial, num_tests);
- if (res != MP_OKAY) {
- if (res == MP_NO)
- continue; /* was composite */
- goto CLEANUP;
- }
- FPUTC('!', stderr);
- if (!strong)
- break; /* success !! */
- /* At this point, we have strong evidence that our candidate
- is itself prime. If we want a strong prime, we need now
- to test q = 2p + 1 for primality...
- */
- MP_CHECKOK( mp_mul_2(&trial, &q) );
- MP_CHECKOK( mp_add_d(&q, 1, &q) );
- /* Test q for small prime divisors ... */
- np = prime_tab_size;
- res = mpp_divis_primes(&q, &np);
- if (res == MP_YES) { /* is composite */
- mp_clear(&q);
- continue;
- }
- if (res != MP_NO)
- goto CLEANUP;
- /* And test with Fermat, as with its parent ... */
- res = mpp_fermat(&q, 2);
- if (res != MP_YES) {
- mp_clear(&q);
- if (res == MP_NO)
- continue; /* was composite */
- goto CLEANUP;
- }
- /* And test with Miller-Rabin, as with its parent ... */
- res = mpp_pprime(&q, num_tests);
- if (res != MP_YES) {
- mp_clear(&q);
- if (res == MP_NO)
- continue; /* was composite */
- goto CLEANUP;
- }
- /* If it passed, we've got a winner */
- mp_exch(&q, &trial);
- mp_clear(&q);
- break;
- } /* end of loop through sieved values */
- if (res == MP_YES)
- mp_exch(&trial, start);
- CLEANUP:
- mp_clear(&trial);
- if (nTries)
- *nTries += i;
- #ifdef macintosh
- if (sieve != NULL) {
- memset(sieve, 0, SIEVE_SIZE);
- free (sieve);
- }
- #endif
- return res;
- }
- /*========================================================================*/
- /*------------------------------------------------------------------------*/
- /* Static functions visible only to the library internally */
- /* {{{ s_mpp_divp(a, vec, size, which) */
- /*
- Test for divisibility by members of a vector of digits. Returns
- MP_NO if a is not divisible by any of them; returns MP_YES and sets
- 'which' to the index of the offender, if it is. Will stop on the
- first digit against which a is divisible.
- */
- mp_err s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which)
- {
- mp_err res;
- mp_digit rem;
- int ix;
- for(ix = 0; ix < size; ix++) {
- if((res = mp_mod_d(a, vec[ix], &rem)) != MP_OKAY)
- return res;
- if(rem == 0) {
- if(which)
- *which = ix;
- return MP_YES;
- }
- }
- return MP_NO;
- } /* end s_mpp_divp() */
- /* }}} */
- /*------------------------------------------------------------------------*/
- /* HERE THERE BE DRAGONS */