op-1.h
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:9k
- /* Software floating-point emulation.
- Basic one-word fraction declaration and manipulation.
- Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Contributed by Richard Henderson (rth@cygnus.com),
- Jakub Jelinek (jj@ultra.linux.cz),
- David S. Miller (davem@redhat.com) and
- Peter Maydell (pmaydell@chiark.greenend.org.uk).
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Library General Public License as
- published by the Free Software Foundation; either version 2 of the
- License, or (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Library General Public License for more details.
- You should have received a copy of the GNU Library General Public
- License along with the GNU C Library; see the file COPYING.LIB. If
- not, write to the Free Software Foundation, Inc.,
- 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
- #ifndef __MATH_EMU_OP_1_H__
- #define __MATH_EMU_OP_1_H__
- #define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f
- #define _FP_FRAC_COPY_1(D,S) (D##_f = S##_f)
- #define _FP_FRAC_SET_1(X,I) (X##_f = I)
- #define _FP_FRAC_HIGH_1(X) (X##_f)
- #define _FP_FRAC_LOW_1(X) (X##_f)
- #define _FP_FRAC_WORD_1(X,w) (X##_f)
- #define _FP_FRAC_ADDI_1(X,I) (X##_f += I)
- #define _FP_FRAC_SLL_1(X,N)
- do {
- if (__builtin_constant_p(N) && (N) == 1)
- X##_f += X##_f;
- else
- X##_f <<= (N);
- } while (0)
- #define _FP_FRAC_SRL_1(X,N) (X##_f >>= N)
- /* Right shift with sticky-lsb. */
- #define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz)
- #define __FP_FRAC_SRS_1(X,N,sz)
- (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1
- ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
- #define _FP_FRAC_ADD_1(R,X,Y) (R##_f = X##_f + Y##_f)
- #define _FP_FRAC_SUB_1(R,X,Y) (R##_f = X##_f - Y##_f)
- #define _FP_FRAC_DEC_1(X,Y) (X##_f -= Y##_f)
- #define _FP_FRAC_CLZ_1(z, X) __FP_CLZ(z, X##_f)
- /* Predicates */
- #define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE)X##_f < 0)
- #define _FP_FRAC_ZEROP_1(X) (X##_f == 0)
- #define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs)
- #define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f)
- #define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f)
- #define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f)
- #define _FP_ZEROFRAC_1 0
- #define _FP_MINFRAC_1 1
- #define _FP_MAXFRAC_1 (~(_FP_WS_TYPE)0)
- /*
- * Unpack the raw bits of a native fp value. Do not classify or
- * normalize the data.
- */
- #define _FP_UNPACK_RAW_1(fs, X, val)
- do {
- union _FP_UNION_##fs _flo; _flo.flt = (val);
-
- X##_f = _flo.bits.frac;
- X##_e = _flo.bits.exp;
- X##_s = _flo.bits.sign;
- } while (0)
- #define _FP_UNPACK_RAW_1_P(fs, X, val)
- do {
- union _FP_UNION_##fs *_flo =
- (union _FP_UNION_##fs *)(val);
-
- X##_f = _flo->bits.frac;
- X##_e = _flo->bits.exp;
- X##_s = _flo->bits.sign;
- } while (0)
- /*
- * Repack the raw bits of a native fp value.
- */
- #define _FP_PACK_RAW_1(fs, val, X)
- do {
- union _FP_UNION_##fs _flo;
-
- _flo.bits.frac = X##_f;
- _flo.bits.exp = X##_e;
- _flo.bits.sign = X##_s;
-
- (val) = _flo.flt;
- } while (0)
- #define _FP_PACK_RAW_1_P(fs, val, X)
- do {
- union _FP_UNION_##fs *_flo =
- (union _FP_UNION_##fs *)(val);
-
- _flo->bits.frac = X##_f;
- _flo->bits.exp = X##_e;
- _flo->bits.sign = X##_s;
- } while (0)
- /*
- * Multiplication algorithms:
- */
- /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
- multiplication immediately. */
- #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)
- do {
- R##_f = X##_f * Y##_f;
- /* Normalize since we know where the msb of the multiplicands
- were (bit B), we know that the msb of the of the product is
- at either 2B or 2B-1. */
- _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits);
- } while (0)
- /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
- #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)
- do {
- _FP_W_TYPE _Z_f0, _Z_f1;
- doit(_Z_f1, _Z_f0, X##_f, Y##_f);
- /* Normalize since we know where the msb of the multiplicands
- were (bit B), we know that the msb of the of the product is
- at either 2B or 2B-1. */
- _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits);
- R##_f = _Z_f0;
- } while (0)
- /* Finally, a simple widening multiply algorithm. What fun! */
- #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)
- do {
- _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;
-
- /* split the words in half */
- _xh = X##_f >> (_FP_W_TYPE_SIZE/2);
- _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);
- _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);
- _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);
-
- /* multiply the pieces */
- _z_f0 = _xl * _yl;
- _a_f0 = _xh * _yl;
- _a_f1 = _xl * _yh;
- _z_f1 = _xh * _yh;
-
- /* reassemble into two full words */
- if ((_a_f0 += _a_f1) < _a_f1)
- _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);
- _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);
- _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);
- _FP_FRAC_ADD_2(_z, _z, _a);
-
- /* normalize */
- _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits);
- R##_f = _z_f0;
- } while (0)
- /*
- * Division algorithms:
- */
- /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
- division immediately. Give this macro either _FP_DIV_HELP_imm for
- C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you
- choose will depend on what the compiler does with divrem4. */
- #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)
- do {
- _FP_W_TYPE _q, _r;
- X##_f <<= (X##_f < Y##_f
- ? R##_e--, _FP_WFRACBITS_##fs
- : _FP_WFRACBITS_##fs - 1);
- doit(_q, _r, X##_f, Y##_f);
- R##_f = _q | (_r != 0);
- } while (0)
- /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
- that may be useful in this situation. This first is for a primitive
- that requires normalization, the second for one that does not. Look
- for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */
- #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)
- do {
- _FP_W_TYPE _nh, _nl, _q, _r, _y;
-
- /* Normalize Y -- i.e. make the most significant bit set. */
- _y = Y##_f << _FP_WFRACXBITS_##fs;
-
- /* Shift X op correspondingly high, that is, up one full word. */
- if (X##_f < Y##_f)
- {
- R##_e--;
- _nl = 0;
- _nh = X##_f;
- }
- else
- {
- _nl = X##_f << (_FP_W_TYPE_SIZE - 1);
- _nh = X##_f >> 1;
- }
-
- udiv_qrnnd(_q, _r, _nh, _nl, _y);
- R##_f = _q | (_r != 0);
- } while (0)
- #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)
- do {
- _FP_W_TYPE _nh, _nl, _q, _r;
- if (X##_f < Y##_f)
- {
- R##_e--;
- _nl = X##_f << _FP_WFRACBITS_##fs;
- _nh = X##_f >> _FP_WFRACXBITS_##fs;
- }
- else
- {
- _nl = X##_f << (_FP_WFRACBITS_##fs - 1);
- _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);
- }
- udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);
- R##_f = _q | (_r != 0);
- } while (0)
-
-
- /*
- * Square root algorithms:
- * We have just one right now, maybe Newton approximation
- * should be added for those machines where division is fast.
- */
-
- #define _FP_SQRT_MEAT_1(R, S, T, X, q)
- do {
- while (q != _FP_WORK_ROUND)
- {
- T##_f = S##_f + q;
- if (T##_f <= X##_f)
- {
- S##_f = T##_f + q;
- X##_f -= T##_f;
- R##_f += q;
- }
- _FP_FRAC_SLL_1(X, 1);
- q >>= 1;
- }
- if (X##_f)
- {
- if (S##_f < X##_f)
- R##_f |= _FP_WORK_ROUND;
- R##_f |= _FP_WORK_STICKY;
- }
- } while (0)
- /*
- * Assembly/disassembly for converting to/from integral types.
- * No shifting or overflow handled here.
- */
- #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f)
- #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r)
- /*
- * Convert FP values between word sizes
- */
- #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)
- do {
- D##_f = S##_f;
- if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)
- {
- if (S##_c != FP_CLS_NAN)
- _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),
- _FP_WFRACBITS_##sfs);
- else
- _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs));
- }
- else
- D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;
- } while (0)
- #endif /* __MATH_EMU_OP_1_H__ */