zlib.h
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:42k
- /* $Id: zlib.h,v 1.2 1997/12/23 10:47:44 paulus Exp $ */
- /*
- * This file is derived from zlib.h and zconf.h from the zlib-1.0.4
- * distribution by Jean-loup Gailly and Mark Adler, with some additions
- * by Paul Mackerras to aid in implementing Deflate compression and
- * decompression for PPP packets.
- */
- /*
- * ==FILEVERSION 971127==
- *
- * This marker is used by the Linux installation script to determine
- * whether an up-to-date version of this file is already installed.
- */
- /* +++ zlib.h */
- /* zlib.h -- interface of the 'zlib' general purpose compression library
- version 1.0.4, Jul 24th, 1996.
- Copyright (C) 1995-1996 Jean-loup Gailly and Mark Adler
- This software is provided 'as-is', without any express or implied
- warranty. In no event will the authors be held liable for any damages
- arising from the use of this software.
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it
- freely, subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you must not
- claim that you wrote the original software. If you use this software
- in a product, an acknowledgment in the product documentation would be
- appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
- Jean-loup Gailly Mark Adler
- gzip@prep.ai.mit.edu madler@alumni.caltech.edu
- The data format used by the zlib library is described by RFCs (Request for
- Comments) 1950 to 1952 in the files ftp://ds.internic.net/rfc/rfc1950.txt
- (zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format).
- */
- #ifndef _ZLIB_H
- #define _ZLIB_H
- #ifdef __cplusplus
- extern "C" {
- #endif
- /* +++ zconf.h */
- /* zconf.h -- configuration of the zlib compression library
- * Copyright (C) 1995-1996 Jean-loup Gailly.
- * For conditions of distribution and use, see copyright notice in zlib.h
- */
- /* From: zconf.h,v 1.20 1996/07/02 15:09:28 me Exp $ */
- #ifndef _ZCONF_H
- #define _ZCONF_H
- /*
- * If you *really* need a unique prefix for all types and library functions,
- * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it.
- */
- #ifdef Z_PREFIX
- # define deflateInit_ z_deflateInit_
- # define deflate z_deflate
- # define deflateEnd z_deflateEnd
- # define inflateInit_ z_inflateInit_
- # define inflate z_inflate
- # define inflateEnd z_inflateEnd
- # define deflateInit2_ z_deflateInit2_
- # define deflateSetDictionary z_deflateSetDictionary
- # define deflateCopy z_deflateCopy
- # define deflateReset z_deflateReset
- # define deflateParams z_deflateParams
- # define inflateInit2_ z_inflateInit2_
- # define inflateSetDictionary z_inflateSetDictionary
- # define inflateSync z_inflateSync
- # define inflateReset z_inflateReset
- # define compress z_compress
- # define uncompress z_uncompress
- # define adler32 z_adler32
- # define crc32 z_crc32
- # define get_crc_table z_get_crc_table
- # define Byte z_Byte
- # define uInt z_uInt
- # define uLong z_uLong
- # define Bytef z_Bytef
- # define charf z_charf
- # define intf z_intf
- # define uIntf z_uIntf
- # define uLongf z_uLongf
- # define voidpf z_voidpf
- # define voidp z_voidp
- #endif
- #if (defined(_WIN32) || defined(__WIN32__)) && !defined(WIN32)
- # define WIN32
- #endif
- #if defined(__GNUC__) || defined(WIN32) || defined(__386__) || defined(i386)
- # ifndef __32BIT__
- # define __32BIT__
- # endif
- #endif
- #if defined(__MSDOS__) && !defined(MSDOS)
- # define MSDOS
- #endif
- /*
- * Compile with -DMAXSEG_64K if the alloc function cannot allocate more
- * than 64k bytes at a time (needed on systems with 16-bit int).
- */
- #if defined(MSDOS) && !defined(__32BIT__)
- # define MAXSEG_64K
- #endif
- #ifdef MSDOS
- # define UNALIGNED_OK
- #endif
- #if (defined(MSDOS) || defined(_WINDOWS) || defined(WIN32)) && !defined(STDC)
- # define STDC
- #endif
- #if (defined(__STDC__) || defined(__cplusplus)) && !defined(STDC)
- # define STDC
- #endif
- #ifndef STDC
- # ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */
- # define const
- # endif
- #endif
- /* Some Mac compilers merge all .h files incorrectly: */
- #if defined(__MWERKS__) || defined(applec) ||defined(THINK_C) ||defined(__SC__)
- # define NO_DUMMY_DECL
- #endif
- /* Maximum value for memLevel in deflateInit2 */
- #ifndef MAX_MEM_LEVEL
- # ifdef MAXSEG_64K
- # define MAX_MEM_LEVEL 8
- # else
- # define MAX_MEM_LEVEL 9
- # endif
- #endif
- /* Maximum value for windowBits in deflateInit2 and inflateInit2 */
- #ifndef MAX_WBITS
- # define MAX_WBITS 15 /* 32K LZ77 window */
- #endif
- /* The memory requirements for deflate are (in bytes):
- 1 << (windowBits+2) + 1 << (memLevel+9)
- that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values)
- plus a few kilobytes for small objects. For example, if you want to reduce
- the default memory requirements from 256K to 128K, compile with
- make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7"
- Of course this will generally degrade compression (there's no free lunch).
- The memory requirements for inflate are (in bytes) 1 << windowBits
- that is, 32K for windowBits=15 (default value) plus a few kilobytes
- for small objects.
- */
- /* Type declarations */
- #ifndef OF /* function prototypes */
- # ifdef STDC
- # define OF(args) args
- # else
- # define OF(args) ()
- # endif
- #endif
- /* The following definitions for FAR are needed only for MSDOS mixed
- * model programming (small or medium model with some far allocations).
- * This was tested only with MSC; for other MSDOS compilers you may have
- * to define NO_MEMCPY in zutil.h. If you don't need the mixed model,
- * just define FAR to be empty.
- */
- #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(__32BIT__)
- /* MSC small or medium model */
- # define SMALL_MEDIUM
- # ifdef _MSC_VER
- # define FAR __far
- # else
- # define FAR far
- # endif
- #endif
- #if defined(__BORLANDC__) && (defined(__SMALL__) || defined(__MEDIUM__))
- # ifndef __32BIT__
- # define SMALL_MEDIUM
- # define FAR __far
- # endif
- #endif
- #ifndef FAR
- # define FAR
- #endif
- typedef unsigned char Byte; /* 8 bits */
- typedef unsigned int uInt; /* 16 bits or more */
- typedef unsigned long uLong; /* 32 bits or more */
- #if defined(__BORLANDC__) && defined(SMALL_MEDIUM)
- /* Borland C/C++ ignores FAR inside typedef */
- # define Bytef Byte FAR
- #else
- typedef Byte FAR Bytef;
- #endif
- typedef char FAR charf;
- typedef int FAR intf;
- typedef uInt FAR uIntf;
- typedef uLong FAR uLongf;
- #ifdef STDC
- typedef void FAR *voidpf;
- typedef void *voidp;
- #else
- typedef Byte FAR *voidpf;
- typedef Byte *voidp;
- #endif
- /* Compile with -DZLIB_DLL for Windows DLL support */
- #if (defined(_WINDOWS) || defined(WINDOWS)) && defined(ZLIB_DLL)
- # include <windows.h>
- # define EXPORT WINAPI
- #else
- # define EXPORT
- #endif
- #endif /* _ZCONF_H */
- /* --- zconf.h */
- #define ZLIB_VERSION "1.0.4P"
- /*
- The 'zlib' compression library provides in-memory compression and
- decompression functions, including integrity checks of the uncompressed
- data. This version of the library supports only one compression method
- (deflation) but other algorithms may be added later and will have the same
- stream interface.
- For compression the application must provide the output buffer and
- may optionally provide the input buffer for optimization. For decompression,
- the application must provide the input buffer and may optionally provide
- the output buffer for optimization.
- Compression can be done in a single step if the buffers are large
- enough (for example if an input file is mmap'ed), or can be done by
- repeated calls of the compression function. In the latter case, the
- application must provide more input and/or consume the output
- (providing more output space) before each call.
- The library does not install any signal handler. It is recommended to
- add at least a handler for SIGSEGV when decompressing; the library checks
- the consistency of the input data whenever possible but may go nuts
- for some forms of corrupted input.
- */
- typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
- typedef void (*free_func) OF((voidpf opaque, voidpf address));
- struct internal_state;
- typedef struct z_stream_s {
- Bytef *next_in; /* next input byte */
- uInt avail_in; /* number of bytes available at next_in */
- uLong total_in; /* total nb of input bytes read so far */
- Bytef *next_out; /* next output byte should be put there */
- uInt avail_out; /* remaining free space at next_out */
- uLong total_out; /* total nb of bytes output so far */
- char *msg; /* last error message, NULL if no error */
- struct internal_state FAR *state; /* not visible by applications */
- alloc_func zalloc; /* used to allocate the internal state */
- free_func zfree; /* used to free the internal state */
- voidpf opaque; /* private data object passed to zalloc and zfree */
- int data_type; /* best guess about the data type: ascii or binary */
- uLong adler; /* adler32 value of the uncompressed data */
- uLong reserved; /* reserved for future use */
- } z_stream;
- typedef z_stream FAR *z_streamp;
- /*
- The application must update next_in and avail_in when avail_in has
- dropped to zero. It must update next_out and avail_out when avail_out
- has dropped to zero. The application must initialize zalloc, zfree and
- opaque before calling the init function. All other fields are set by the
- compression library and must not be updated by the application.
- The opaque value provided by the application will be passed as the first
- parameter for calls of zalloc and zfree. This can be useful for custom
- memory management. The compression library attaches no meaning to the
- opaque value.
- zalloc must return Z_NULL if there is not enough memory for the object.
- On 16-bit systems, the functions zalloc and zfree must be able to allocate
- exactly 65536 bytes, but will not be required to allocate more than this
- if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS,
- pointers returned by zalloc for objects of exactly 65536 bytes *must*
- have their offset normalized to zero. The default allocation function
- provided by this library ensures this (see zutil.c). To reduce memory
- requirements and avoid any allocation of 64K objects, at the expense of
- compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h).
- The fields total_in and total_out can be used for statistics or
- progress reports. After compression, total_in holds the total size of
- the uncompressed data and may be saved for use in the decompressor
- (particularly if the decompressor wants to decompress everything in
- a single step).
- */
- /* constants */
- #define Z_NO_FLUSH 0
- #define Z_PARTIAL_FLUSH 1
- #define Z_PACKET_FLUSH 2
- #define Z_SYNC_FLUSH 3
- #define Z_FULL_FLUSH 4
- #define Z_FINISH 5
- /* Allowed flush values; see deflate() below for details */
- #define Z_OK 0
- #define Z_STREAM_END 1
- #define Z_NEED_DICT 2
- #define Z_ERRNO (-1)
- #define Z_STREAM_ERROR (-2)
- #define Z_DATA_ERROR (-3)
- #define Z_MEM_ERROR (-4)
- #define Z_BUF_ERROR (-5)
- #define Z_VERSION_ERROR (-6)
- /* Return codes for the compression/decompression functions. Negative
- * values are errors, positive values are used for special but normal events.
- */
- #define Z_NO_COMPRESSION 0
- #define Z_BEST_SPEED 1
- #define Z_BEST_COMPRESSION 9
- #define Z_DEFAULT_COMPRESSION (-1)
- /* compression levels */
- #define Z_FILTERED 1
- #define Z_HUFFMAN_ONLY 2
- #define Z_DEFAULT_STRATEGY 0
- /* compression strategy; see deflateInit2() below for details */
- #define Z_BINARY 0
- #define Z_ASCII 1
- #define Z_UNKNOWN 2
- /* Possible values of the data_type field */
- #define Z_DEFLATED 8
- /* The deflate compression method (the only one supported in this version) */
- #define Z_NULL 0 /* for initializing zalloc, zfree, opaque */
- #define zlib_version zlibVersion()
- /* for compatibility with versions < 1.0.2 */
- /* basic functions */
- extern const char * EXPORT zlibVersion OF((void));
- /* The application can compare zlibVersion and ZLIB_VERSION for consistency.
- If the first character differs, the library code actually used is
- not compatible with the zlib.h header file used by the application.
- This check is automatically made by deflateInit and inflateInit.
- */
- /*
- extern int EXPORT deflateInit OF((z_streamp strm, int level));
- Initializes the internal stream state for compression. The fields
- zalloc, zfree and opaque must be initialized before by the caller.
- If zalloc and zfree are set to Z_NULL, deflateInit updates them to
- use default allocation functions.
- The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
- 1 gives best speed, 9 gives best compression, 0 gives no compression at
- all (the input data is simply copied a block at a time).
- Z_DEFAULT_COMPRESSION requests a default compromise between speed and
- compression (currently equivalent to level 6).
- deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_STREAM_ERROR if level is not a valid compression level,
- Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
- with the version assumed by the caller (ZLIB_VERSION).
- msg is set to null if there is no error message. deflateInit does not
- perform any compression: this will be done by deflate().
- */
- extern int EXPORT deflate OF((z_streamp strm, int flush));
- /*
- Performs one or both of the following actions:
- - Compress more input starting at next_in and update next_in and avail_in
- accordingly. If not all input can be processed (because there is not
- enough room in the output buffer), next_in and avail_in are updated and
- processing will resume at this point for the next call of deflate().
- - Provide more output starting at next_out and update next_out and avail_out
- accordingly. This action is forced if the parameter flush is non zero.
- Forcing flush frequently degrades the compression ratio, so this parameter
- should be set only when necessary (in interactive applications).
- Some output may be provided even if flush is not set.
- Before the call of deflate(), the application should ensure that at least
- one of the actions is possible, by providing more input and/or consuming
- more output, and updating avail_in or avail_out accordingly; avail_out
- should never be zero before the call. The application can consume the
- compressed output when it wants, for example when the output buffer is full
- (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK
- and with zero avail_out, it must be called again after making room in the
- output buffer because there might be more output pending.
- If the parameter flush is set to Z_PARTIAL_FLUSH, the current compression
- block is terminated and flushed to the output buffer so that the
- decompressor can get all input data available so far. For method 9, a future
- variant on method 8, the current block will be flushed but not terminated.
- Z_SYNC_FLUSH has the same effect as partial flush except that the compressed
- output is byte aligned (the compressor can clear its internal bit buffer)
- and the current block is always terminated; this can be useful if the
- compressor has to be restarted from scratch after an interruption (in which
- case the internal state of the compressor may be lost).
- If flush is set to Z_FULL_FLUSH, the compression block is terminated, a
- special marker is output and the compression dictionary is discarded; this
- is useful to allow the decompressor to synchronize if one compressed block
- has been damaged (see inflateSync below). Flushing degrades compression and
- so should be used only when necessary. Using Z_FULL_FLUSH too often can
- seriously degrade the compression. If deflate returns with avail_out == 0,
- this function must be called again with the same value of the flush
- parameter and more output space (updated avail_out), until the flush is
- complete (deflate returns with non-zero avail_out).
- If the parameter flush is set to Z_PACKET_FLUSH, the compression
- block is terminated, and a zero-length stored block is output,
- omitting the length bytes (the effect of this is that the 3-bit type
- code 000 for a stored block is output, and the output is then
- byte-aligned). This is designed for use at the end of a PPP packet.
- If the parameter flush is set to Z_FINISH, pending input is processed,
- pending output is flushed and deflate returns with Z_STREAM_END if there
- was enough output space; if deflate returns with Z_OK, this function must be
- called again with Z_FINISH and more output space (updated avail_out) but no
- more input data, until it returns with Z_STREAM_END or an error. After
- deflate has returned Z_STREAM_END, the only possible operations on the
- stream are deflateReset or deflateEnd.
-
- Z_FINISH can be used immediately after deflateInit if all the compression
- is to be done in a single step. In this case, avail_out must be at least
- 0.1% larger than avail_in plus 12 bytes. If deflate does not return
- Z_STREAM_END, then it must be called again as described above.
- deflate() may update data_type if it can make a good guess about
- the input data type (Z_ASCII or Z_BINARY). In doubt, the data is considered
- binary. This field is only for information purposes and does not affect
- the compression algorithm in any manner.
- deflate() returns Z_OK if some progress has been made (more input
- processed or more output produced), Z_STREAM_END if all input has been
- consumed and all output has been produced (only when flush is set to
- Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
- if next_in or next_out was NULL), Z_BUF_ERROR if no progress is possible.
- */
- extern int EXPORT deflateEnd OF((z_streamp strm));
- /*
- All dynamically allocated data structures for this stream are freed.
- This function discards any unprocessed input and does not flush any
- pending output.
- deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
- stream state was inconsistent, Z_DATA_ERROR if the stream was freed
- prematurely (some input or output was discarded). In the error case,
- msg may be set but then points to a static string (which must not be
- deallocated).
- */
- /*
- extern int EXPORT inflateInit OF((z_streamp strm));
- Initializes the internal stream state for decompression. The fields
- zalloc, zfree and opaque must be initialized before by the caller. If
- zalloc and zfree are set to Z_NULL, inflateInit updates them to use default
- allocation functions.
- inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_VERSION_ERROR if the zlib library version is incompatible
- with the version assumed by the caller. msg is set to null if there is no
- error message. inflateInit does not perform any decompression: this will be
- done by inflate().
- */
- extern int EXPORT inflate OF((z_streamp strm, int flush));
- /*
- Performs one or both of the following actions:
- - Decompress more input starting at next_in and update next_in and avail_in
- accordingly. If not all input can be processed (because there is not
- enough room in the output buffer), next_in is updated and processing
- will resume at this point for the next call of inflate().
- - Provide more output starting at next_out and update next_out and avail_out
- accordingly. inflate() provides as much output as possible, until there
- is no more input data or no more space in the output buffer (see below
- about the flush parameter).
- Before the call of inflate(), the application should ensure that at least
- one of the actions is possible, by providing more input and/or consuming
- more output, and updating the next_* and avail_* values accordingly.
- The application can consume the uncompressed output when it wants, for
- example when the output buffer is full (avail_out == 0), or after each
- call of inflate(). If inflate returns Z_OK and with zero avail_out, it
- must be called again after making room in the output buffer because there
- might be more output pending.
- If the parameter flush is set to Z_PARTIAL_FLUSH or Z_PACKET_FLUSH,
- inflate flushes as much output as possible to the output buffer. The
- flushing behavior of inflate is not specified for values of the flush
- parameter other than Z_PARTIAL_FLUSH, Z_PACKET_FLUSH or Z_FINISH, but the
- current implementation actually flushes as much output as possible
- anyway. For Z_PACKET_FLUSH, inflate checks that once all the input data
- has been consumed, it is expecting to see the length field of a stored
- block; if not, it returns Z_DATA_ERROR.
- inflate() should normally be called until it returns Z_STREAM_END or an
- error. However if all decompression is to be performed in a single step
- (a single call of inflate), the parameter flush should be set to
- Z_FINISH. In this case all pending input is processed and all pending
- output is flushed; avail_out must be large enough to hold all the
- uncompressed data. (The size of the uncompressed data may have been saved
- by the compressor for this purpose.) The next operation on this stream must
- be inflateEnd to deallocate the decompression state. The use of Z_FINISH
- is never required, but can be used to inform inflate that a faster routine
- may be used for the single inflate() call.
- inflate() returns Z_OK if some progress has been made (more input
- processed or more output produced), Z_STREAM_END if the end of the
- compressed data has been reached and all uncompressed output has been
- produced, Z_NEED_DICT if a preset dictionary is needed at this point (see
- inflateSetDictionary below), Z_DATA_ERROR if the input data was corrupted,
- Z_STREAM_ERROR if the stream structure was inconsistent (for example if
- next_in or next_out was NULL), Z_MEM_ERROR if there was not enough memory,
- Z_BUF_ERROR if no progress is possible or if there was not enough room in
- the output buffer when Z_FINISH is used. In the Z_DATA_ERROR case, the
- application may then call inflateSync to look for a good compression block.
- In the Z_NEED_DICT case, strm->adler is set to the Adler32 value of the
- dictionary chosen by the compressor.
- */
- extern int EXPORT inflateEnd OF((z_streamp strm));
- /*
- All dynamically allocated data structures for this stream are freed.
- This function discards any unprocessed input and does not flush any
- pending output.
- inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
- was inconsistent. In the error case, msg may be set but then points to a
- static string (which must not be deallocated).
- */
- /* Advanced functions */
- /*
- The following functions are needed only in some special applications.
- */
- /*
- extern int EXPORT deflateInit2 OF((z_streamp strm,
- int level,
- int method,
- int windowBits,
- int memLevel,
- int strategy));
- This is another version of deflateInit with more compression options. The
- fields next_in, zalloc, zfree and opaque must be initialized before by
- the caller.
- The method parameter is the compression method. It must be Z_DEFLATED in
- this version of the library. (Method 9 will allow a 64K history buffer and
- partial block flushes.)
- The windowBits parameter is the base two logarithm of the window size
- (the size of the history buffer). It should be in the range 8..15 for this
- version of the library (the value 16 will be allowed for method 9). Larger
- values of this parameter result in better compression at the expense of
- memory usage. The default value is 15 if deflateInit is used instead.
- The memLevel parameter specifies how much memory should be allocated
- for the internal compression state. memLevel=1 uses minimum memory but
- is slow and reduces compression ratio; memLevel=9 uses maximum memory
- for optimal speed. The default value is 8. See zconf.h for total memory
- usage as a function of windowBits and memLevel.
- The strategy parameter is used to tune the compression algorithm. Use the
- value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
- filter (or predictor), or Z_HUFFMAN_ONLY to force Huffman encoding only (no
- string match). Filtered data consists mostly of small values with a
- somewhat random distribution. In this case, the compression algorithm is
- tuned to compress them better. The effect of Z_FILTERED is to force more
- Huffman coding and less string matching; it is somewhat intermediate
- between Z_DEFAULT and Z_HUFFMAN_ONLY. The strategy parameter only affects
- the compression ratio but not the correctness of the compressed output even
- if it is not set appropriately.
- If next_in is not null, the library will use this buffer to hold also
- some history information; the buffer must either hold the entire input
- data, or have at least 1<<(windowBits+1) bytes and be writable. If next_in
- is null, the library will allocate its own history buffer (and leave next_in
- null). next_out need not be provided here but must be provided by the
- application for the next call of deflate().
- If the history buffer is provided by the application, next_in must
- must never be changed by the application since the compressor maintains
- information inside this buffer from call to call; the application
- must provide more input only by increasing avail_in. next_in is always
- reset by the library in this case.
- deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was
- not enough memory, Z_STREAM_ERROR if a parameter is invalid (such as
- an invalid method). msg is set to null if there is no error message.
- deflateInit2 does not perform any compression: this will be done by
- deflate().
- */
-
- extern int EXPORT deflateSetDictionary OF((z_streamp strm,
- const Bytef *dictionary,
- uInt dictLength));
- /*
- Initializes the compression dictionary (history buffer) from the given
- byte sequence without producing any compressed output. This function must
- be called immediately after deflateInit or deflateInit2, before any call
- of deflate. The compressor and decompressor must use exactly the same
- dictionary (see inflateSetDictionary).
- The dictionary should consist of strings (byte sequences) that are likely
- to be encountered later in the data to be compressed, with the most commonly
- used strings preferably put towards the end of the dictionary. Using a
- dictionary is most useful when the data to be compressed is short and
- can be predicted with good accuracy; the data can then be compressed better
- than with the default empty dictionary. In this version of the library,
- only the last 32K bytes of the dictionary are used.
- Upon return of this function, strm->adler is set to the Adler32 value
- of the dictionary; the decompressor may later use this value to determine
- which dictionary has been used by the compressor. (The Adler32 value
- applies to the whole dictionary even if only a subset of the dictionary is
- actually used by the compressor.)
- deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
- parameter is invalid (such as NULL dictionary) or the stream state
- is inconsistent (for example if deflate has already been called for this
- stream). deflateSetDictionary does not perform any compression: this will
- be done by deflate().
- */
- extern int EXPORT deflateCopy OF((z_streamp dest,
- z_streamp source));
- /*
- Sets the destination stream as a complete copy of the source stream. If
- the source stream is using an application-supplied history buffer, a new
- buffer is allocated for the destination stream. The compressed output
- buffer is always application-supplied. It's the responsibility of the
- application to provide the correct values of next_out and avail_out for the
- next call of deflate.
- This function can be useful when several compression strategies will be
- tried, for example when there are several ways of pre-processing the input
- data with a filter. The streams that will be discarded should then be freed
- by calling deflateEnd. Note that deflateCopy duplicates the internal
- compression state which can be quite large, so this strategy is slow and
- can consume lots of memory.
- deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
- (such as zalloc being NULL). msg is left unchanged in both source and
- destination.
- */
- extern int EXPORT deflateReset OF((z_streamp strm));
- /*
- This function is equivalent to deflateEnd followed by deflateInit,
- but does not free and reallocate all the internal compression state.
- The stream will keep the same compression level and any other attributes
- that may have been set by deflateInit2.
- deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent (such as zalloc or state being NULL).
- */
- extern int EXPORT deflateParams OF((z_streamp strm, int level, int strategy));
- /*
- Dynamically update the compression level and compression strategy.
- This can be used to switch between compression and straight copy of
- the input data, or to switch to a different kind of input data requiring
- a different strategy. If the compression level is changed, the input
- available so far is compressed with the old level (and may be flushed);
- the new level will take effect only at the next call of deflate().
- Before the call of deflateParams, the stream state must be set as for
- a call of deflate(), since the currently available input may have to
- be compressed and flushed. In particular, strm->avail_out must be non-zero.
- deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source
- stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR
- if strm->avail_out was zero.
- */
- extern int EXPORT deflateOutputPending OF((z_streamp strm));
- /*
- Returns the number of bytes of output which are immediately
- available from the compressor (i.e. without any further input
- or flush).
- */
- /*
- extern int EXPORT inflateInit2 OF((z_streamp strm,
- int windowBits));
- This is another version of inflateInit with more compression options. The
- fields next_out, zalloc, zfree and opaque must be initialized before by
- the caller.
- The windowBits parameter is the base two logarithm of the maximum window
- size (the size of the history buffer). It should be in the range 8..15 for
- this version of the library (the value 16 will be allowed soon). The
- default value is 15 if inflateInit is used instead. If a compressed stream
- with a larger window size is given as input, inflate() will return with
- the error code Z_DATA_ERROR instead of trying to allocate a larger window.
- If next_out is not null, the library will use this buffer for the history
- buffer; the buffer must either be large enough to hold the entire output
- data, or have at least 1<<windowBits bytes. If next_out is null, the
- library will allocate its own buffer (and leave next_out null). next_in
- need not be provided here but must be provided by the application for the
- next call of inflate().
- If the history buffer is provided by the application, next_out must
- never be changed by the application since the decompressor maintains
- history information inside this buffer from call to call; the application
- can only reset next_out to the beginning of the history buffer when
- avail_out is zero and all output has been consumed.
- inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was
- not enough memory, Z_STREAM_ERROR if a parameter is invalid (such as
- windowBits < 8). msg is set to null if there is no error message.
- inflateInit2 does not perform any decompression: this will be done by
- inflate().
- */
- extern int EXPORT inflateSetDictionary OF((z_streamp strm,
- const Bytef *dictionary,
- uInt dictLength));
- /*
- Initializes the decompression dictionary (history buffer) from the given
- uncompressed byte sequence. This function must be called immediately after
- a call of inflate if this call returned Z_NEED_DICT. The dictionary chosen
- by the compressor can be determined from the Adler32 value returned by this
- call of inflate. The compressor and decompressor must use exactly the same
- dictionary (see deflateSetDictionary).
- inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
- parameter is invalid (such as NULL dictionary) or the stream state is
- inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
- expected one (incorrect Adler32 value). inflateSetDictionary does not
- perform any decompression: this will be done by subsequent calls of
- inflate().
- */
- extern int EXPORT inflateSync OF((z_streamp strm));
- /*
- Skips invalid compressed data until the special marker (see deflate()
- above) can be found, or until all available input is skipped. No output
- is provided.
- inflateSync returns Z_OK if the special marker has been found, Z_BUF_ERROR
- if no more input was provided, Z_DATA_ERROR if no marker has been found,
- or Z_STREAM_ERROR if the stream structure was inconsistent. In the success
- case, the application may save the current current value of total_in which
- indicates where valid compressed data was found. In the error case, the
- application may repeatedly call inflateSync, providing more input each time,
- until success or end of the input data.
- */
- extern int EXPORT inflateReset OF((z_streamp strm));
- /*
- This function is equivalent to inflateEnd followed by inflateInit,
- but does not free and reallocate all the internal decompression state.
- The stream will keep attributes that may have been set by inflateInit2.
- inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
- stream state was inconsistent (such as zalloc or state being NULL).
- */
- extern int inflateIncomp OF((z_stream *strm));
- /*
- This function adds the data at next_in (avail_in bytes) to the output
- history without performing any output. There must be no pending output,
- and the decompressor must be expecting to see the start of a block.
- Calling this function is equivalent to decompressing a stored block
- containing the data at next_in (except that the data is not output).
- */
- /* utility functions */
- /*
- The following utility functions are implemented on top of the
- basic stream-oriented functions. To simplify the interface, some
- default options are assumed (compression level, window size,
- standard memory allocation functions). The source code of these
- utility functions can easily be modified if you need special options.
- */
- extern int EXPORT compress OF((Bytef *dest, uLongf *destLen,
- const Bytef *source, uLong sourceLen));
- /*
- Compresses the source buffer into the destination buffer. sourceLen is
- the byte length of the source buffer. Upon entry, destLen is the total
- size of the destination buffer, which must be at least 0.1% larger than
- sourceLen plus 12 bytes. Upon exit, destLen is the actual size of the
- compressed buffer.
- This function can be used to compress a whole file at once if the
- input file is mmap'ed.
- compress returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_BUF_ERROR if there was not enough room in the output
- buffer.
- */
- extern int EXPORT uncompress OF((Bytef *dest, uLongf *destLen,
- const Bytef *source, uLong sourceLen));
- /*
- Decompresses the source buffer into the destination buffer. sourceLen is
- the byte length of the source buffer. Upon entry, destLen is the total
- size of the destination buffer, which must be large enough to hold the
- entire uncompressed data. (The size of the uncompressed data must have
- been saved previously by the compressor and transmitted to the decompressor
- by some mechanism outside the scope of this compression library.)
- Upon exit, destLen is the actual size of the compressed buffer.
- This function can be used to decompress a whole file at once if the
- input file is mmap'ed.
- uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
- enough memory, Z_BUF_ERROR if there was not enough room in the output
- buffer, or Z_DATA_ERROR if the input data was corrupted.
- */
- typedef voidp gzFile;
- extern gzFile EXPORT gzopen OF((const char *path, const char *mode));
- /*
- Opens a gzip (.gz) file for reading or writing. The mode parameter
- is as in fopen ("rb" or "wb") but can also include a compression level
- ("wb9"). gzopen can be used to read a file which is not in gzip format;
- in this case gzread will directly read from the file without decompression.
- gzopen returns NULL if the file could not be opened or if there was
- insufficient memory to allocate the (de)compression state; errno
- can be checked to distinguish the two cases (if errno is zero, the
- zlib error is Z_MEM_ERROR).
- */
- extern gzFile EXPORT gzdopen OF((int fd, const char *mode));
- /*
- gzdopen() associates a gzFile with the file descriptor fd. File
- descriptors are obtained from calls like open, dup, creat, pipe or
- fileno (in the file has been previously opened with fopen).
- The mode parameter is as in gzopen.
- The next call of gzclose on the returned gzFile will also close the
- file descriptor fd, just like fclose(fdopen(fd), mode) closes the file
- descriptor fd. If you want to keep fd open, use gzdopen(dup(fd), mode).
- gzdopen returns NULL if there was insufficient memory to allocate
- the (de)compression state.
- */
- extern int EXPORT gzread OF((gzFile file, voidp buf, unsigned len));
- /*
- Reads the given number of uncompressed bytes from the compressed file.
- If the input file was not in gzip format, gzread copies the given number
- of bytes into the buffer.
- gzread returns the number of uncompressed bytes actually read (0 for
- end of file, -1 for error). */
- extern int EXPORT gzwrite OF((gzFile file, const voidp buf, unsigned len));
- /*
- Writes the given number of uncompressed bytes into the compressed file.
- gzwrite returns the number of uncompressed bytes actually written
- (0 in case of error).
- */
- extern int EXPORT gzflush OF((gzFile file, int flush));
- /*
- Flushes all pending output into the compressed file. The parameter
- flush is as in the deflate() function. The return value is the zlib
- error number (see function gzerror below). gzflush returns Z_OK if
- the flush parameter is Z_FINISH and all output could be flushed.
- gzflush should be called only when strictly necessary because it can
- degrade compression.
- */
- extern int EXPORT gzclose OF((gzFile file));
- /*
- Flushes all pending output if necessary, closes the compressed file
- and deallocates all the (de)compression state. The return value is the zlib
- error number (see function gzerror below).
- */
- extern const char * EXPORT gzerror OF((gzFile file, int *errnum));
- /*
- Returns the error message for the last error which occurred on the
- given compressed file. errnum is set to zlib error number. If an
- error occurred in the file system and not in the compression library,
- errnum is set to Z_ERRNO and the application may consult errno
- to get the exact error code.
- */
- /* checksum functions */
- /*
- These functions are not related to compression but are exported
- anyway because they might be useful in applications using the
- compression library.
- */
- extern uLong EXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len));
- /*
- Update a running Adler-32 checksum with the bytes buf[0..len-1] and
- return the updated checksum. If buf is NULL, this function returns
- the required initial value for the checksum.
- An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
- much faster. Usage example:
- uLong adler = adler32(0L, Z_NULL, 0);
- while (read_buffer(buffer, length) != EOF) {
- adler = adler32(adler, buffer, length);
- }
- if (adler != original_adler) error();
- */
- extern uLong EXPORT crc32 OF((uLong crc, const Bytef *buf, uInt len));
- /*
- Update a running crc with the bytes buf[0..len-1] and return the updated
- crc. If buf is NULL, this function returns the required initial value
- for the crc. Pre- and post-conditioning (one's complement) is performed
- within this function so it shouldn't be done by the application.
- Usage example:
- uLong crc = crc32(0L, Z_NULL, 0);
- while (read_buffer(buffer, length) != EOF) {
- crc = crc32(crc, buffer, length);
- }
- if (crc != original_crc) error();
- */
- /* various hacks, don't look :) */
- /* deflateInit and inflateInit are macros to allow checking the zlib version
- * and the compiler's view of z_stream:
- */
- extern int EXPORT deflateInit_ OF((z_streamp strm, int level,
- const char *version, int stream_size));
- extern int EXPORT inflateInit_ OF((z_streamp strm,
- const char *version, int stream_size));
- extern int EXPORT deflateInit2_ OF((z_streamp strm, int level, int method,
- int windowBits, int memLevel, int strategy,
- const char *version, int stream_size));
- extern int EXPORT inflateInit2_ OF((z_streamp strm, int windowBits,
- const char *version, int stream_size));
- #define deflateInit(strm, level)
- deflateInit_((strm), (level), ZLIB_VERSION, sizeof(z_stream))
- #define inflateInit(strm)
- inflateInit_((strm), ZLIB_VERSION, sizeof(z_stream))
- #define deflateInit2(strm, level, method, windowBits, memLevel, strategy)
- deflateInit2_((strm),(level),(method),(windowBits),(memLevel),
- (strategy), ZLIB_VERSION, sizeof(z_stream))
- #define inflateInit2(strm, windowBits)
- inflateInit2_((strm), (windowBits), ZLIB_VERSION, sizeof(z_stream))
- #if !defined(_Z_UTIL_H) && !defined(NO_DUMMY_DECL)
- struct internal_state {int dummy;}; /* hack for buggy compilers */
- #endif
- uLongf *get_crc_table OF((void)); /* can be used by asm versions of crc32() */
- #ifdef __cplusplus
- }
- #endif
- #endif /* _ZLIB_H */
- /* --- zlib.h */