jffs_fm.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:22k
- /*
- * JFFS -- Journaling Flash File System, Linux implementation.
- *
- * Copyright (C) 1999, 2000 Axis Communications AB.
- *
- * Created by Finn Hakansson <finn@axis.com>.
- *
- * This is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * $Id: jffs_fm.c,v 1.29 2002/01/22 09:48:16 cdavies Exp $
- *
- * Ported to Linux 2.3.x and MTD:
- * Copyright (C) 2000 Alexander Larsson (alex@cendio.se), Cendio Systems AB
- *
- */
- #define __NO_VERSION__
- #include <linux/slab.h>
- #include <linux/blkdev.h>
- #include <linux/jffs.h>
- #include <linux/compatmac.h>
- #include "jffs_fm.h"
- #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,2)
- #define minor(x) MINOR(x)
- #define major(x) MAJOR(x)
- #endif
- #if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
- static int jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset);
- #endif
- extern kmem_cache_t *fm_cache;
- extern kmem_cache_t *node_cache;
- /* This function creates a new shiny flash memory control structure. */
- struct jffs_fmcontrol *
- jffs_build_begin(struct jffs_control *c, kdev_t dev)
- {
- struct jffs_fmcontrol *fmc;
- struct mtd_info *mtd;
-
- D3(printk("jffs_build_begin()n"));
- fmc = (struct jffs_fmcontrol *)kmalloc(sizeof(struct jffs_fmcontrol),
- GFP_KERNEL);
- if (!fmc) {
- D(printk("jffs_build_begin(): Allocation of "
- "struct jffs_fmcontrol failed!n"));
- return (struct jffs_fmcontrol *)0;
- }
- DJM(no_jffs_fmcontrol++);
- mtd = get_mtd_device(NULL, minor(dev));
- if (!mtd) {
- kfree(fmc);
- DJM(no_jffs_fmcontrol--);
- return NULL;
- }
-
- /* Retrieve the size of the flash memory. */
- fmc->flash_size = mtd->size;
- D3(printk(" fmc->flash_size = %d bytesn", fmc->flash_size));
- fmc->used_size = 0;
- fmc->dirty_size = 0;
- fmc->free_size = mtd->size;
- fmc->sector_size = mtd->erasesize;
- fmc->max_chunk_size = fmc->sector_size >> 1;
- /* min_free_size:
- 1 sector, obviously.
- + 1 x max_chunk_size, for when a nodes overlaps the end of a sector
- + 1 x max_chunk_size again, which ought to be enough to handle
- the case where a rename causes a name to grow, and GC has
- to write out larger nodes than the ones it's obsoleting.
- We should fix it so it doesn't have to write the name
- _every_ time. Later.
- + another 2 sectors because people keep getting GC stuck and
- we don't know why. This scares me - I want formal proof
- of correctness of whatever number we put here. dwmw2.
- */
- fmc->min_free_size = fmc->sector_size << 2;
- fmc->mtd = mtd;
- fmc->c = c;
- fmc->head = 0;
- fmc->tail = 0;
- fmc->head_extra = 0;
- fmc->tail_extra = 0;
- init_MUTEX(&fmc->biglock);
- return fmc;
- }
- /* When the flash memory scan has completed, this function should be called
- before use of the control structure. */
- int
- jffs_build_end(struct jffs_fmcontrol *fmc, __u32 head_offset)
- {
- D3(printk("jffs_build_end()n"));
- if (!fmc->head) {
- fmc->head = fmc->head_extra;
- fmc->tail = fmc->tail_extra;
- }
- else if (fmc->head_extra) {
- struct jffs_fm *fm, *cur;
- if (head_offset == fmc->head->offset){
- fmc->tail->next = fmc->head_extra;
- fmc->head_extra->prev = fmc->tail;
- fmc->tail = fmc->tail_extra;
- }
- else {
- fmc->tail_extra->next = fmc->head;
- fmc->head->prev = fmc->tail_extra;
- fmc->head = fmc->head_extra;
- while (fmc->head->offset != head_offset){
- fmc->tail->next = fmc->head;
- fmc->head = fmc->head->next;
- fmc->head->prev = 0;
- fmc->tail->next->prev = fmc->tail;
- fmc->tail = fmc->tail->next;
- fmc->tail->next = 0;
- }
- }
- /* Make sure the only free space we have is between tail and head.
- */
- for (cur = fmc->head; cur && cur != fmc->tail;) {
- if (cur->offset + cur->size < cur->next->offset) {
- if (!(fm = kmalloc(sizeof(struct jffs_fm), GFP_KERNEL))) {
- D(printk("jffs_buid_end(): kmalloc failed!n"));
- return -ENOMEM;
- }
- DJM(no_jffs_fm++);
- fm->size = cur->next->offset - cur->offset - cur->size;
- fm->offset = cur->offset + cur->size;
- fm->nodes = 0;
- fm->next = cur->next;
- fm->prev = cur;
- cur->next->prev = fm;
- cur->next = fm;
- cur = fm->next;
- fmc->free_size -= fm->size;
- fmc->dirty_size += fm->size;
- }
- else if (cur->offset > cur->next->offset) {
- if (cur->offset + cur->size < fmc->flash_size){
- if (!(fm = kmalloc(sizeof(struct jffs_fm), GFP_KERNEL))){
-
- D(printk("jffs_buid_end(): kmalloc failed!n"));
- return -ENOMEM;
- }
- DJM(no_jffs_fm++);
- fm->size = fmc->flash_size -
- cur->offset - cur->size;
- fm->nodes = 0;
- fm->offset = cur->offset + cur->size;
- fm->next = cur->next;
- fm->prev = cur;
- cur->next->prev = fm;
- cur->next = fm;
- cur = fm->next;
- fmc->free_size -= fm->size;
- fmc->dirty_size += fm->size;
- }
- else {
- cur = cur->next;
- }
- if (cur->offset > 0) {
-
- if (!(fm = kmalloc(sizeof(struct jffs_fm), GFP_KERNEL))) {
- D(printk("jffs_buid_end(): kmalloc failed!n"));
- return -ENOMEM;
- }
- DJM(no_jffs_fm++);
- fm->size = cur->offset;
- fm->nodes = 0;
- fm->offset = 0;
- fm->next = cur;
- fm->prev = cur->prev;
- cur->prev->next = fm;
- cur->prev = fm;
- fmc->free_size -= fm->size;
- fmc->dirty_size += fm->size;
- }
- }
- else if (cur->offset + cur->size != cur->next->offset) {
- printk("jffs_build_end(): Internal error.n");
- return -EINVAL;
- }
- else {
- cur = cur->next;
- }
- }
- }
- fmc->head_extra = 0; /* These two instructions should be omitted. */
- fmc->tail_extra = 0;
- D3(jffs_print_fmcontrol(fmc));
- return 0;
- }
- /* Call this function when the file system is unmounted. This function
- frees all memory used by this module. */
- void
- jffs_cleanup_fmcontrol(struct jffs_fmcontrol *fmc)
- {
- if (fmc) {
- struct jffs_fm *cur;
- struct jffs_fm *next = fmc->head;
- while ((cur = next)) {
- next = next->next;
- jffs_free_fm(cur);
- }
- put_mtd_device(fmc->mtd);
- kfree(fmc);
- DJM(no_jffs_fmcontrol--);
- }
- }
- /* This function returns the size of the first chunk of free space on the
- flash memory. This function will return something nonzero if the flash
- memory contains any free space. */
- __u32
- jffs_free_size1(struct jffs_fmcontrol *fmc)
- {
- __u32 head;
- __u32 tail;
- __u32 end = fmc->flash_size;
- if (!fmc->head) {
- /* There is nothing on the flash. */
- return fmc->flash_size;
- }
- /* Compute the beginning and ending of the contents of the flash. */
- head = fmc->head->offset;
- tail = fmc->tail->offset + fmc->tail->size;
- if (tail == end) {
- tail = 0;
- }
- ASSERT(else if (tail > end) {
- printk(KERN_WARNING "jffs_free_size1(): tail > endn");
- tail = 0;
- });
- if (head <= tail) {
- return end - tail;
- }
- else {
- return head - tail;
- }
- }
- /* This function will return something nonzero in case there are two free
- areas on the flash. Like this:
- +----------------+------------------+----------------+
- | FREE 1 | USED / DIRTY | FREE 2 |
- +----------------+------------------+----------------+
- fmc->head -----^
- fmc->tail ------------------------^
- The value returned, will be the size of the first empty area on the
- flash, in this case marked "FREE 1". */
- __u32
- jffs_free_size2(struct jffs_fmcontrol *fmc)
- {
- if (fmc->head) {
- __u32 head = fmc->head->offset;
- __u32 tail = fmc->tail->offset + fmc->tail->size;
- if (tail == fmc->flash_size) {
- tail = 0;
- }
- if (tail >= head) {
- return head;
- }
- }
- return 0;
- }
- /* Allocate a chunk of flash memory. If there is enough space on the
- device, a reference to the associated node is stored in the jffs_fm
- struct. */
- int
- jffs_fmalloc(struct jffs_fmcontrol *fmc, __u32 size, struct jffs_node *node,
- struct jffs_fm **result)
- {
- struct jffs_fm *fm;
- __u32 free_chunk_size1;
- __u32 free_chunk_size2;
- D2(printk("jffs_fmalloc(): fmc = 0x%p, size = %d, "
- "node = 0x%pn", fmc, size, node));
- *result = 0;
- if (!(fm = jffs_alloc_fm())) {
- D(printk("jffs_fmalloc(): kmalloc() failed! (fm)n"));
- return -ENOMEM;
- }
- free_chunk_size1 = jffs_free_size1(fmc);
- free_chunk_size2 = jffs_free_size2(fmc);
- if (free_chunk_size1 + free_chunk_size2 != fmc->free_size) {
- printk(KERN_WARNING "Free size accounting screwedn");
- printk(KERN_WARNING "free_chunk_size1 == 0x%x, free_chunk_size2 == 0x%x, fmc->free_size == 0x%xn", free_chunk_size1, free_chunk_size2, fmc->free_size);
- }
- D3(printk("jffs_fmalloc(): free_chunk_size1 = %u, "
- "free_chunk_size2 = %un",
- free_chunk_size1, free_chunk_size2));
- if (size <= free_chunk_size1) {
- if (!(fm->nodes = (struct jffs_node_ref *)
- kmalloc(sizeof(struct jffs_node_ref),
- GFP_KERNEL))) {
- D(printk("jffs_fmalloc(): kmalloc() failed! "
- "(node_ref)n"));
- jffs_free_fm(fm);
- return -ENOMEM;
- }
- DJM(no_jffs_node_ref++);
- fm->nodes->node = node;
- fm->nodes->next = 0;
- if (fmc->tail) {
- fm->offset = fmc->tail->offset + fmc->tail->size;
- if (fm->offset == fmc->flash_size) {
- fm->offset = 0;
- }
- ASSERT(else if (fm->offset > fmc->flash_size) {
- printk(KERN_WARNING "jffs_fmalloc(): "
- "offset > flash_endn");
- fm->offset = 0;
- });
- }
- else {
- /* There don't have to be files in the file
- system yet. */
- fm->offset = 0;
- }
- fm->size = size;
- fmc->free_size -= size;
- fmc->used_size += size;
- }
- else if (size > free_chunk_size2) {
- printk(KERN_WARNING "JFFS: Tried to allocate a too "
- "large flash memory chunk. (size = %u)n", size);
- jffs_free_fm(fm);
- return -ENOSPC;
- }
- else {
- fm->offset = fmc->tail->offset + fmc->tail->size;
- fm->size = free_chunk_size1;
- fm->nodes = 0;
- fmc->free_size -= fm->size;
- fmc->dirty_size += fm->size; /* Changed by simonk. This seemingly fixes a
- bug that caused infinite garbage collection.
- It previously set fmc->dirty_size to size (which is the
- size of the requested chunk).
- */
- }
- fm->next = 0;
- if (!fmc->head) {
- fm->prev = 0;
- fmc->head = fm;
- fmc->tail = fm;
- }
- else {
- fm->prev = fmc->tail;
- fmc->tail->next = fm;
- fmc->tail = fm;
- }
- D3(jffs_print_fmcontrol(fmc));
- D3(jffs_print_fm(fm));
- *result = fm;
- return 0;
- }
- /* The on-flash space is not needed anymore by the passed node. Remove
- the reference to the node from the node list. If the data chunk in
- the flash memory isn't used by any more nodes anymore (fm->nodes == 0),
- then mark that chunk as dirty. */
- int
- jffs_fmfree(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, struct jffs_node *node)
- {
- struct jffs_node_ref *ref;
- struct jffs_node_ref *prev;
- ASSERT(int del = 0);
- D2(printk("jffs_fmfree(): node->ino = %u, node->version = %un",
- node->ino, node->version));
- ASSERT(if (!fmc || !fm || !fm->nodes) {
- printk(KERN_ERR "jffs_fmfree(): fmc: 0x%p, fm: 0x%p, "
- "fm->nodes: 0x%pn",
- fmc, fm, (fm ? fm->nodes : 0));
- return -1;
- });
- /* Find the reference to the node that is going to be removed
- and remove it. */
- for (ref = fm->nodes, prev = 0; ref; ref = ref->next) {
- if (ref->node == node) {
- if (prev) {
- prev->next = ref->next;
- }
- else {
- fm->nodes = ref->next;
- }
- kfree(ref);
- DJM(no_jffs_node_ref--);
- ASSERT(del = 1);
- break;
- }
- prev = ref;
- }
- /* If the data chunk in the flash memory isn't used anymore
- just mark it as obsolete. */
- if (!fm->nodes) {
- /* No node uses this chunk so let's remove it. */
- fmc->used_size -= fm->size;
- fmc->dirty_size += fm->size;
- #if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
- if (jffs_mark_obsolete(fmc, fm->offset) < 0) {
- D1(printk("jffs_fmfree(): Failed to mark an on-flash "
- "node obsolete!n"));
- return -1;
- }
- #endif
- }
- ASSERT(if (!del) {
- printk(KERN_WARNING "***jffs_fmfree(): "
- "Didn't delete any node reference!n");
- });
- return 0;
- }
- /* This allocation function is used during the initialization of
- the file system. */
- struct jffs_fm *
- jffs_fmalloced(struct jffs_fmcontrol *fmc, __u32 offset, __u32 size,
- struct jffs_node *node)
- {
- struct jffs_fm *fm;
- D3(printk("jffs_fmalloced()n"));
- if (!(fm = jffs_alloc_fm())) {
- D(printk("jffs_fmalloced(0x%p, %u, %u, 0x%p): failed!n",
- fmc, offset, size, node));
- return 0;
- }
- fm->offset = offset;
- fm->size = size;
- fm->prev = 0;
- fm->next = 0;
- fm->nodes = 0;
- if (node) {
- /* `node' exists and it should be associated with the
- jffs_fm structure `fm'. */
- if (!(fm->nodes = (struct jffs_node_ref *)
- kmalloc(sizeof(struct jffs_node_ref),
- GFP_KERNEL))) {
- D(printk("jffs_fmalloced(): !fm->nodesn"));
- jffs_free_fm(fm);
- return 0;
- }
- DJM(no_jffs_node_ref++);
- fm->nodes->node = node;
- fm->nodes->next = 0;
- fmc->used_size += size;
- fmc->free_size -= size;
- }
- else {
- /* If there is no node, then this is just a chunk of dirt. */
- fmc->dirty_size += size;
- fmc->free_size -= size;
- }
- if (fmc->head_extra) {
- fm->prev = fmc->tail_extra;
- fmc->tail_extra->next = fm;
- fmc->tail_extra = fm;
- }
- else if (!fmc->head) {
- fmc->head = fm;
- fmc->tail = fm;
- }
- else if (fmc->tail->offset + fmc->tail->size < offset) {
- fmc->head_extra = fm;
- fmc->tail_extra = fm;
- }
- else {
- fm->prev = fmc->tail;
- fmc->tail->next = fm;
- fmc->tail = fm;
- }
- D3(jffs_print_fmcontrol(fmc));
- D3(jffs_print_fm(fm));
- return fm;
- }
- /* Add a new node to an already existing jffs_fm struct. */
- int
- jffs_add_node(struct jffs_node *node)
- {
- struct jffs_node_ref *ref;
- D3(printk("jffs_add_node(): ino = %un", node->ino));
- ref = (struct jffs_node_ref *)kmalloc(sizeof(struct jffs_node_ref),
- GFP_KERNEL);
- if (!ref)
- return -ENOMEM;
- DJM(no_jffs_node_ref++);
- ref->node = node;
- ref->next = node->fm->nodes;
- node->fm->nodes = ref;
- return 0;
- }
- /* Free a part of some allocated space. */
- void
- jffs_fmfree_partly(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, __u32 size)
- {
- D1(printk("***jffs_fmfree_partly(): fm = 0x%p, fm->nodes = 0x%p, "
- "fm->nodes->node->ino = %u, size = %un",
- fm, (fm ? fm->nodes : 0),
- (!fm ? 0 : (!fm->nodes ? 0 : fm->nodes->node->ino)), size));
- if (fm->nodes) {
- kfree(fm->nodes);
- DJM(no_jffs_node_ref--);
- fm->nodes = 0;
- }
- fmc->used_size -= fm->size;
- if (fm == fmc->tail) {
- fm->size -= size;
- fmc->free_size += size;
- }
- fmc->dirty_size += fm->size;
- }
- /* Find the jffs_fm struct that contains the end of the data chunk that
- begins at the logical beginning of the flash memory and spans `size'
- bytes. If we want to erase a sector of the flash memory, we use this
- function to find where the sector limit cuts a chunk of data. */
- struct jffs_fm *
- jffs_cut_node(struct jffs_fmcontrol *fmc, __u32 size)
- {
- struct jffs_fm *fm;
- __u32 pos = 0;
- if (size == 0) {
- return 0;
- }
- ASSERT(if (!fmc) {
- printk(KERN_ERR "jffs_cut_node(): fmc == NULLn");
- return 0;
- });
- fm = fmc->head;
- while (fm) {
- pos += fm->size;
- if (pos < size) {
- fm = fm->next;
- }
- else if (pos > size) {
- break;
- }
- else {
- fm = 0;
- break;
- }
- }
- return fm;
- }
- /* Move the head of the fmc structures and delete the obsolete parts. */
- void
- jffs_sync_erase(struct jffs_fmcontrol *fmc, int erased_size)
- {
- struct jffs_fm *fm;
- struct jffs_fm *del;
- ASSERT(if (!fmc) {
- printk(KERN_ERR "jffs_sync_erase(): fmc == NULLn");
- return;
- });
- fmc->dirty_size -= erased_size;
- fmc->free_size += erased_size;
- for (fm = fmc->head; fm && (erased_size > 0);) {
- if (erased_size >= fm->size) {
- erased_size -= fm->size;
- del = fm;
- fm = fm->next;
- fm->prev = 0;
- fmc->head = fm;
- jffs_free_fm(del);
- }
- else {
- fm->size -= erased_size;
- fm->offset += erased_size;
- break;
- }
- }
- }
- /* Return the oldest used node in the flash memory. */
- struct jffs_node *
- jffs_get_oldest_node(struct jffs_fmcontrol *fmc)
- {
- struct jffs_fm *fm;
- struct jffs_node_ref *nref;
- struct jffs_node *node = 0;
- ASSERT(if (!fmc) {
- printk(KERN_ERR "jffs_get_oldest_node(): fmc == NULLn");
- return 0;
- });
- for (fm = fmc->head; fm && !fm->nodes; fm = fm->next);
- if (!fm) {
- return 0;
- }
- /* The oldest node is the last one in the reference list. This list
- shouldn't be too long; just one or perhaps two elements. */
- for (nref = fm->nodes; nref; nref = nref->next) {
- node = nref->node;
- }
- D2(printk("jffs_get_oldest_node(): ino = %u, version = %un",
- (node ? node->ino : 0), (node ? node->version : 0)));
- return node;
- }
- #if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
- /* Mark an on-flash node as obsolete.
- Note that this is just an optimization that isn't necessary for the
- filesystem to work. */
- static int
- jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset)
- {
- /* The `accurate_pos' holds the position of the accurate byte
- in the jffs_raw_inode structure that we are going to mark
- as obsolete. */
- __u32 accurate_pos = fm_offset + JFFS_RAW_INODE_ACCURATE_OFFSET;
- unsigned char zero = 0x00;
- size_t len;
- D3(printk("jffs_mark_obsolete(): accurate_pos = %un", accurate_pos));
- ASSERT(if (!fmc) {
- printk(KERN_ERR "jffs_mark_obsolete(): fmc == NULLn");
- return -1;
- });
- /* Write 0x00 to the raw inode's accurate member. Don't care
- about the return value. */
- MTD_WRITE(fmc->mtd, accurate_pos, 1, &len, &zero);
- return 0;
- }
- #endif /* JFFS_MARK_OBSOLETE */
- /* check if it's possible to erase the wanted range, and if not, return
- * the range that IS erasable, or a negative error code.
- */
- long
- jffs_flash_erasable_size(struct mtd_info *mtd, __u32 offset, __u32 size)
- {
- u_long ssize;
- /* assume that sector size for a partition is constant even
- * if it spans more than one chip (you usually put the same
- * type of chips in a system)
- */
- ssize = mtd->erasesize;
- if (offset % ssize) {
- printk(KERN_WARNING "jffs_flash_erasable_size() given non-aligned offset %x (erasesize %lx)n", offset, ssize);
- /* The offset is not sector size aligned. */
- return -1;
- }
- else if (offset > mtd->size) {
- printk(KERN_WARNING "jffs_flash_erasable_size given offset off the end of device (%x > %x)n", offset, mtd->size);
- return -2;
- }
- else if (offset + size > mtd->size) {
- printk(KERN_WARNING "jffs_flash_erasable_size() given length which runs off the end of device (ofs %x + len %x = %x, > %x)n", offset,size, offset+size, mtd->size);
- return -3;
- }
- return (size / ssize) * ssize;
- }
- /* How much dirty flash memory is possible to erase at the moment? */
- long
- jffs_erasable_size(struct jffs_fmcontrol *fmc)
- {
- struct jffs_fm *fm;
- __u32 size = 0;
- long ret;
- ASSERT(if (!fmc) {
- printk(KERN_ERR "jffs_erasable_size(): fmc = NULLn");
- return -1;
- });
- if (!fmc->head) {
- /* The flash memory is totally empty. No nodes. No dirt.
- Just return. */
- return 0;
- }
- /* Calculate how much space that is dirty. */
- for (fm = fmc->head; fm && !fm->nodes; fm = fm->next) {
- if (size && fm->offset == 0) {
- /* We have reached the beginning of the flash. */
- break;
- }
- size += fm->size;
- }
- /* Someone's signature contained this:
- There's a fine line between fishing and just standing on
- the shore like an idiot... */
- ret = jffs_flash_erasable_size(fmc->mtd, fmc->head->offset, size);
- ASSERT(if (ret < 0) {
- printk("jffs_erasable_size: flash_erasable_size() "
- "returned something less than zero (%ld).n", ret);
- printk("jffs_erasable_size: offset = 0x%08xn",
- fmc->head->offset);
- });
- /* If there is dirt on the flash (which is the reason to why
- this function was called in the first place) but no space is
- possible to erase right now, the initial part of the list of
- jffs_fm structs, that hold place for dirty space, could perhaps
- be shortened. The list's initial "dirty" elements are merged
- into just one large dirty jffs_fm struct. This operation must
- only be performed if nothing is possible to erase. Otherwise,
- jffs_clear_end_of_node() won't work as expected. */
- if (ret == 0) {
- struct jffs_fm *head = fmc->head;
- struct jffs_fm *del;
- /* While there are two dirty nodes beside each other.*/
- while (head->nodes == 0
- && head->next
- && head->next->nodes == 0) {
- del = head->next;
- head->size += del->size;
- head->next = del->next;
- if (del->next) {
- del->next->prev = head;
- }
- jffs_free_fm(del);
- }
- }
- return (ret >= 0 ? ret : 0);
- }
- struct jffs_fm *jffs_alloc_fm(void)
- {
- struct jffs_fm *fm;
- fm = kmem_cache_alloc(fm_cache,GFP_KERNEL);
- DJM(if (fm) no_jffs_fm++;);
-
- return fm;
- }
- void jffs_free_fm(struct jffs_fm *n)
- {
- kmem_cache_free(fm_cache,n);
- DJM(no_jffs_fm--);
- }
- struct jffs_node *jffs_alloc_node(void)
- {
- struct jffs_node *n;
- n = (struct jffs_node *)kmem_cache_alloc(node_cache,GFP_KERNEL);
- if(n != NULL)
- no_jffs_node++;
- return n;
- }
- void jffs_free_node(struct jffs_node *n)
- {
- kmem_cache_free(node_cache,n);
- no_jffs_node--;
- }
- int jffs_get_node_inuse(void)
- {
- return no_jffs_node;
- }
- void
- jffs_print_fmcontrol(struct jffs_fmcontrol *fmc)
- {
- D(printk("struct jffs_fmcontrol: 0x%pn", fmc));
- D(printk("{n"));
- D(printk(" %u, /* flash_size */n", fmc->flash_size));
- D(printk(" %u, /* used_size */n", fmc->used_size));
- D(printk(" %u, /* dirty_size */n", fmc->dirty_size));
- D(printk(" %u, /* free_size */n", fmc->free_size));
- D(printk(" %u, /* sector_size */n", fmc->sector_size));
- D(printk(" %u, /* min_free_size */n", fmc->min_free_size));
- D(printk(" %u, /* max_chunk_size */n", fmc->max_chunk_size));
- D(printk(" 0x%p, /* mtd */n", fmc->mtd));
- D(printk(" 0x%p, /* head */ "
- "(head->offset = 0x%08x)n",
- fmc->head, (fmc->head ? fmc->head->offset : 0)));
- D(printk(" 0x%p, /* tail */ "
- "(tail->offset + tail->size = 0x%08x)n",
- fmc->tail,
- (fmc->tail ? fmc->tail->offset + fmc->tail->size : 0)));
- D(printk(" 0x%p, /* head_extra */n", fmc->head_extra));
- D(printk(" 0x%p, /* tail_extra */n", fmc->tail_extra));
- D(printk("}n"));
- }
- void
- jffs_print_fm(struct jffs_fm *fm)
- {
- D(printk("struct jffs_fm: 0x%pn", fm));
- D(printk("{n"));
- D(printk(" 0x%08x, /* offset */n", fm->offset));
- D(printk(" %u, /* size */n", fm->size));
- D(printk(" 0x%p, /* prev */n", fm->prev));
- D(printk(" 0x%p, /* next */n", fm->next));
- D(printk(" 0x%p, /* nodes */n", fm->nodes));
- D(printk("}n"));
- }
- void
- jffs_print_node_ref(struct jffs_node_ref *ref)
- {
- D(printk("struct jffs_node_ref: 0x%pn", ref));
- D(printk("{n"));
- D(printk(" 0x%p, /* node */n", ref->node));
- D(printk(" 0x%p, /* next */n", ref->next));
- D(printk("}n"));
- }