time.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:10k
- /*
- * Carsten Langgaard, carstenl@mips.com
- * Copyright (C) 1999,2000 MIPS Technologies, Inc. All rights reserved.
- *
- * ########################################################################
- *
- * This program is free software; you can distribute it and/or modify it
- * under the terms of the GNU General Public License (Version 2) as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
- *
- * ########################################################################
- *
- * Setting up the clock on the MIPS boards.
- *
- */
- #include <linux/config.h>
- #include <linux/init.h>
- #include <linux/kernel_stat.h>
- #include <linux/sched.h>
- #include <linux/spinlock.h>
- #include <asm/mipsregs.h>
- #include <asm/ptrace.h>
- #include <asm/it8172/it8172_int.h>
- #include <linux/mc146818rtc.h>
- #include <linux/timex.h>
- extern void enable_cpu_timer(void);
- extern volatile unsigned long wall_jiffies;
- extern rwlock_t xtime_lock;
- unsigned long missed_heart_beats = 0;
- static long last_rtc_update = 0;
- static unsigned long r4k_offset; /* Amount to increment compare reg each time */
- static unsigned long r4k_cur; /* What counter should be at next timer irq */
- static unsigned int timer_tick_count=0;
- static inline void ack_r4ktimer(unsigned long newval)
- {
- write_32bit_cp0_register(CP0_COMPARE, newval);
- }
- /*
- * In order to set the CMOS clock precisely, set_rtc_mmss has to be
- * called 500 ms after the second nowtime has started, because when
- * nowtime is written into the registers of the CMOS clock, it will
- * jump to the next second precisely 500 ms later. Check the Motorola
- * MC146818A or Dallas DS12887 data sheet for details.
- *
- * BUG: This routine does not handle hour overflow properly; it just
- * sets the minutes. Usually you won't notice until after reboot!
- */
- static int set_rtc_mmss(unsigned long nowtime)
- {
- int retval = 0;
- int real_seconds, real_minutes, cmos_minutes;
- unsigned char save_control, save_freq_select;
- save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
- CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
- save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
- CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
- cmos_minutes = CMOS_READ(RTC_MINUTES);
- /*
- * since we're only adjusting minutes and seconds,
- * don't interfere with hour overflow. This avoids
- * messing with unknown time zones but requires your
- * RTC not to be off by more than 15 minutes
- */
- real_seconds = nowtime % 60;
- real_minutes = nowtime / 60;
- if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
- real_minutes += 30; /* correct for half hour time zone */
- real_minutes %= 60;
- if (abs(real_minutes - cmos_minutes) < 30) {
- CMOS_WRITE(real_seconds,RTC_SECONDS);
- CMOS_WRITE(real_minutes,RTC_MINUTES);
- } else {
- printk(KERN_WARNING
- "set_rtc_mmss: can't update from %d to %dn",
- cmos_minutes, real_minutes);
- retval = -1;
- }
- /* The following flags have to be released exactly in this order,
- * otherwise the DS12887 (popular MC146818A clone with integrated
- * battery and quartz) will not reset the oscillator and will not
- * update precisely 500 ms later. You won't find this mentioned in
- * the Dallas Semiconductor data sheets, but who believes data
- * sheets anyway ... -- Markus Kuhn
- */
- CMOS_WRITE(save_control, RTC_CONTROL);
- CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
- return retval;
- }
- /*
- * There are a lot of conceptually broken versions of the MIPS timer interrupt
- * handler floating around. This one is rather different, but the algorithm
- * is provably more robust.
- */
- void mips_timer_interrupt(struct pt_regs *regs)
- {
- if (r4k_offset == 0)
- goto null;
- do {
- kstat.irqs[0][MIPS_CPU_TIMER_IRQ]++;
- do_timer(regs);
- /* Historical comment/code:
- * RTC time of day s updated approx. every 11
- * minutes. Because of how the numbers work out
- * we need to make absolutely sure we do this update
- * within 500ms before the * next second starts,
- * thus the following code.
- */
- read_lock(&xtime_lock);
- if ((time_status & STA_UNSYNC) == 0
- && xtime.tv_sec > last_rtc_update + 660
- && xtime.tv_usec >= 500000 - (tick >> 1)
- && xtime.tv_usec <= 500000 + (tick >> 1))
- if (set_rtc_mmss(xtime.tv_sec) == 0)
- last_rtc_update = xtime.tv_sec;
- else {
- /* do it again in 60 s */
- last_rtc_update = xtime.tv_sec - 600;
- }
- read_unlock(&xtime_lock);
- r4k_cur += r4k_offset;
- ack_r4ktimer(r4k_cur);
- } while (((unsigned long)read_32bit_cp0_register(CP0_COUNT)
- - r4k_cur) < 0x7fffffff);
- return;
- null:
- ack_r4ktimer(0);
- }
- /*
- * Figure out the r4k offset, the amount to increment the compare
- * register for each time tick.
- * Use the RTC to calculate offset.
- */
- static unsigned long __init cal_r4koff(void)
- {
- unsigned long count;
- unsigned int flags;
- __save_and_cli(flags);
- /* Start counter exactly on falling edge of update flag */
- while (CMOS_READ(RTC_REG_A) & RTC_UIP);
- while (!(CMOS_READ(RTC_REG_A) & RTC_UIP));
- /* Start r4k counter. */
- write_32bit_cp0_register(CP0_COUNT, 0);
- /* Read counter exactly on falling edge of update flag */
- while (CMOS_READ(RTC_REG_A) & RTC_UIP);
- while (!(CMOS_READ(RTC_REG_A) & RTC_UIP));
- count = read_32bit_cp0_register(CP0_COUNT);
- /* restore interrupts */
- __restore_flags(flags);
-
- return (count / HZ);
- }
- static unsigned long __init get_mips_time(void)
- {
- unsigned int year, mon, day, hour, min, sec;
- unsigned char save_control;
- save_control = CMOS_READ(RTC_CONTROL);
- /* Freeze it. */
- CMOS_WRITE(save_control | RTC_SET, RTC_CONTROL);
- /* Read regs. */
- sec = CMOS_READ(RTC_SECONDS);
- min = CMOS_READ(RTC_MINUTES);
- hour = CMOS_READ(RTC_HOURS);
- if (!(save_control & RTC_24H))
- {
- if ((hour & 0xf) == 0xc)
- hour &= 0x80;
- if (hour & 0x80)
- hour = (hour & 0xf) + 12;
- }
- day = CMOS_READ(RTC_DAY_OF_MONTH);
- mon = CMOS_READ(RTC_MONTH);
- year = CMOS_READ(RTC_YEAR);
- /* Unfreeze clock. */
- CMOS_WRITE(save_control, RTC_CONTROL);
- if ((year += 1900) < 1970)
- year += 100;
- return mktime(year, mon, day, hour, min, sec);
- }
- void __init time_init(void)
- {
- unsigned int est_freq, flags;
- /* Set Data mode - binary. */
- CMOS_WRITE(CMOS_READ(RTC_CONTROL) | RTC_DM_BINARY, RTC_CONTROL);
- printk("calculating r4koff... ");
- r4k_offset = cal_r4koff();
- printk("%08lx(%d)n", r4k_offset, (int) r4k_offset);
- est_freq = 2*r4k_offset*HZ;
- est_freq += 5000; /* round */
- est_freq -= est_freq%10000;
- printk("CPU frequency %d.%02d MHzn", est_freq/1000000,
- (est_freq%1000000)*100/1000000);
- r4k_cur = (read_32bit_cp0_register(CP0_COUNT) + r4k_offset);
- write_32bit_cp0_register(CP0_COMPARE, r4k_cur);
- enable_cpu_timer();
- /* Read time from the RTC chipset. */
- write_lock_irqsave (&xtime_lock, flags);
- xtime.tv_sec = get_mips_time();
- xtime.tv_usec = 0;
- write_unlock_irqrestore(&xtime_lock, flags);
- }
- /* This is for machines which generate the exact clock. */
- #define USECS_PER_JIFFY (1000000/HZ)
- /* Cycle counter value at the previous timer interrupt.. */
- static unsigned int timerhi = 0, timerlo = 0;
- /*
- * FIXME: Does playing with the RP bit in c0_status interfere with this code?
- */
- static unsigned long do_fast_gettimeoffset(void)
- {
- u32 count;
- unsigned long res, tmp;
- /* Last jiffy when do_fast_gettimeoffset() was called. */
- static unsigned long last_jiffies=0;
- unsigned long quotient;
- /*
- * Cached "1/(clocks per usec)*2^32" value.
- * It has to be recalculated once each jiffy.
- */
- static unsigned long cached_quotient=0;
- tmp = jiffies;
- quotient = cached_quotient;
- if (tmp && last_jiffies != tmp) {
- last_jiffies = tmp;
- __asm__(".settnoreordernt"
- ".settnoatnt"
- ".settmips3nt"
- "lwut%0,%2nt"
- "dsll32t$1,%1,0nt"
- "ort$1,$1,%0nt"
- "ddivut$0,$1,%3nt"
- "mflot$1nt"
- "dsll32t%0,%4,0nt"
- "nopnt"
- "ddivut$0,%0,$1nt"
- "mflot%0nt"
- ".settmips0nt"
- ".settatnt"
- ".settreorder"
- :"=&r" (quotient)
- :"r" (timerhi),
- "m" (timerlo),
- "r" (tmp),
- "r" (USECS_PER_JIFFY)
- :"$1");
- cached_quotient = quotient;
- }
- /* Get last timer tick in absolute kernel time */
- count = read_32bit_cp0_register(CP0_COUNT);
- /* .. relative to previous jiffy (32 bits is enough) */
- count -= timerlo;
- __asm__("multut%1,%2nt"
- "mfhit%0"
- :"=r" (res)
- :"r" (count),
- "r" (quotient));
- /*
- * Due to possible jiffies inconsistencies, we need to check
- * the result so that we'll get a timer that is monotonic.
- */
- if (res >= USECS_PER_JIFFY)
- res = USECS_PER_JIFFY-1;
- return res;
- }
- void do_gettimeofday(struct timeval *tv)
- {
- unsigned int flags;
- read_lock_irqsave (&xtime_lock, flags);
- *tv = xtime;
- tv->tv_usec += do_fast_gettimeoffset();
- /*
- * xtime is atomically updated in timer_bh. jiffies - wall_jiffies
- * is nonzero if the timer bottom half hasnt executed yet.
- */
- if (jiffies - wall_jiffies)
- tv->tv_usec += USECS_PER_JIFFY;
- read_unlock_irqrestore (&xtime_lock, flags);
- if (tv->tv_usec >= 1000000) {
- tv->tv_usec -= 1000000;
- tv->tv_sec++;
- }
- }
- void do_settimeofday(struct timeval *tv)
- {
- write_lock_irq (&xtime_lock);
- /* This is revolting. We need to set the xtime.tv_usec correctly.
- * However, the value in this location is is value at the last tick.
- * Discover what correction gettimeofday would have done, and then
- * undo it!
- */
- tv->tv_usec -= do_fast_gettimeoffset();
- if (tv->tv_usec < 0) {
- tv->tv_usec += 1000000;
- tv->tv_sec--;
- }
- xtime = *tv;
- time_adjust = 0; /* stop active adjtime() */
- time_status |= STA_UNSYNC;
- time_maxerror = NTP_PHASE_LIMIT;
- time_esterror = NTP_PHASE_LIMIT;
- write_unlock_irq (&xtime_lock);
- }