gdb-stub.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:22k
- /*
- * arch/mips/kernel/gdb-stub.c
- *
- * Originally written by Glenn Engel, Lake Stevens Instrument Division
- *
- * Contributed by HP Systems
- *
- * Modified for SPARC by Stu Grossman, Cygnus Support.
- *
- * Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
- * Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
- *
- * Copyright (C) 1995 Andreas Busse
- *
- * $Id: gdb-stub.c,v 1.6 1999/05/01 22:40:35 ralf Exp $
- */
- /*
- * To enable debugger support, two things need to happen. One, a
- * call to set_debug_traps() is necessary in order to allow any breakpoints
- * or error conditions to be properly intercepted and reported to gdb.
- * Two, a breakpoint needs to be generated to begin communication. This
- * is most easily accomplished by a call to breakpoint(). Breakpoint()
- * simulates a breakpoint by executing a BREAK instruction.
- *
- *
- * The following gdb commands are supported:
- *
- * command function Return value
- *
- * g return the value of the CPU registers hex data or ENN
- * G set the value of the CPU registers OK or ENN
- *
- * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
- * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
- *
- * c Resume at current address SNN ( signal NN)
- * cAA..AA Continue at address AA..AA SNN
- *
- * s Step one instruction SNN
- * sAA..AA Step one instruction from AA..AA SNN
- *
- * k kill
- *
- * ? What was the last sigval ? SNN (signal NN)
- *
- * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
- * baud rate
- *
- * All commands and responses are sent with a packet which includes a
- * checksum. A packet consists of
- *
- * $<packet info>#<checksum>.
- *
- * where
- * <packet info> :: <characters representing the command or response>
- * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
- *
- * When a packet is received, it is first acknowledged with either '+' or '-'.
- * '+' indicates a successful transfer. '-' indicates a failed transfer.
- *
- * Example:
- *
- * Host: Reply:
- * $m0,10#2a +$00010203040506070809101112131415#42
- *
- *
- * ==============
- * MORE EXAMPLES:
- * ==============
- *
- * For reference -- the following are the steps that one
- * company took (RidgeRun Inc) to get remote gdb debugging
- * going. In this scenario the host machine was a PC and the
- * target platform was a Galileo EVB64120A MIPS evaluation
- * board.
- *
- * Step 1:
- * First download gdb-5.0.tar.gz from the internet.
- * and then build/install the package.
- *
- * Example:
- * $ tar zxf gdb-5.0.tar.gz
- * $ cd gdb-5.0
- * $ ./configure --target=mips-linux-elf
- * $ make
- * $ install
- * $ which mips-linux-elf-gdb
- * /usr/local/bin/mips-linux-elf-gdb
- *
- * Step 2:
- * Configure linux for remote debugging and build it.
- *
- * Example:
- * $ cd ~/linux
- * $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging>
- * $ make dep; make vmlinux
- *
- * Step 3:
- * Download the kernel to the remote target and start
- * the kernel running. It will promptly halt and wait
- * for the host gdb session to connect. It does this
- * since the "Kernel Hacking" option has defined
- * CONFIG_REMOTE_DEBUG which in turn enables your calls
- * to:
- * set_debug_traps();
- * breakpoint();
- *
- * Step 4:
- * Start the gdb session on the host.
- *
- * Example:
- * $ mips-linux-elf-gdb vmlinux
- * (gdb) set remotebaud 115200
- * (gdb) target remote /dev/ttyS1
- * ...at this point you are connected to
- * the remote target and can use gdb
- * in the normal fasion. Setting
- * breakpoints, single stepping,
- * printing variables, etc.
- *
- */
- #include <linux/string.h>
- #include <linux/kernel.h>
- #include <linux/signal.h>
- #include <linux/sched.h>
- #include <linux/mm.h>
- #include <linux/console.h>
- #include <linux/init.h>
- #include <asm/asm.h>
- #include <asm/mipsregs.h>
- #include <asm/pgtable.h>
- #include <asm/system.h>
- #include <asm/gdb-stub.h>
- #include <asm/inst.h>
- /*
- * external low-level support routines
- */
- extern int putDebugChar(char c); /* write a single character */
- extern char getDebugChar(void); /* read and return a single char */
- extern void trap_low(void);
- /*
- * breakpoint and test functions
- */
- extern void breakpoint(void);
- extern void breakinst(void);
- extern void adel(void);
- /*
- * local prototypes
- */
- static void getpacket(char *buffer);
- static void putpacket(char *buffer);
- static int computeSignal(int tt);
- static int hex(unsigned char ch);
- static int hexToInt(char **ptr, int *intValue);
- static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault);
- void handle_exception(struct gdb_regs *regs);
- /*
- * BUFMAX defines the maximum number of characters in inbound/outbound buffers
- * at least NUMREGBYTES*2 are needed for register packets
- */
- #define BUFMAX 2048
- static char input_buffer[BUFMAX];
- static char output_buffer[BUFMAX];
- static int initialized; /* !0 means we've been initialized */
- static const char hexchars[]="0123456789abcdef";
- /* Used to prevent crashes in memory access. Note that they'll crash anyway if
- we haven't set up fault handlers yet... */
- int kgdb_read_byte(unsigned *address, unsigned *dest);
- int kgdb_write_byte(unsigned val, unsigned *dest);
- /*
- * Convert ch from a hex digit to an int
- */
- static int hex(unsigned char ch)
- {
- if (ch >= 'a' && ch <= 'f')
- return ch-'a'+10;
- if (ch >= '0' && ch <= '9')
- return ch-'0';
- if (ch >= 'A' && ch <= 'F')
- return ch-'A'+10;
- return -1;
- }
- /*
- * scan for the sequence $<data>#<checksum>
- */
- static void getpacket(char *buffer)
- {
- unsigned char checksum;
- unsigned char xmitcsum;
- int i;
- int count;
- unsigned char ch;
- do {
- /*
- * wait around for the start character,
- * ignore all other characters
- */
- while ((ch = (getDebugChar() & 0x7f)) != '$') ;
- checksum = 0;
- xmitcsum = -1;
- count = 0;
-
- /*
- * now, read until a # or end of buffer is found
- */
- while (count < BUFMAX) {
- ch = getDebugChar() & 0x7f;
- if (ch == '#')
- break;
- checksum = checksum + ch;
- buffer[count] = ch;
- count = count + 1;
- }
- if (count >= BUFMAX)
- continue;
- buffer[count] = 0;
- if (ch == '#') {
- xmitcsum = hex(getDebugChar() & 0x7f) << 4;
- xmitcsum |= hex(getDebugChar() & 0x7f);
- if (checksum != xmitcsum)
- putDebugChar('-'); /* failed checksum */
- else {
- putDebugChar('+'); /* successful transfer */
- /*
- * if a sequence char is present,
- * reply the sequence ID
- */
- if (buffer[2] == ':') {
- putDebugChar(buffer[0]);
- putDebugChar(buffer[1]);
- /*
- * remove sequence chars from buffer
- */
- count = strlen(buffer);
- for (i=3; i <= count; i++)
- buffer[i-3] = buffer[i];
- }
- }
- }
- }
- while (checksum != xmitcsum);
- }
- /*
- * send the packet in buffer.
- */
- static void putpacket(char *buffer)
- {
- unsigned char checksum;
- int count;
- unsigned char ch;
- /*
- * $<packet info>#<checksum>.
- */
- do {
- putDebugChar('$');
- checksum = 0;
- count = 0;
- while ((ch = buffer[count]) != 0) {
- if (!(putDebugChar(ch)))
- return;
- checksum += ch;
- count += 1;
- }
- putDebugChar('#');
- putDebugChar(hexchars[checksum >> 4]);
- putDebugChar(hexchars[checksum & 0xf]);
- }
- while ((getDebugChar() & 0x7f) != '+');
- }
- /*
- * Convert the memory pointed to by mem into hex, placing result in buf.
- * Return a pointer to the last char put in buf (null), in case of mem fault,
- * return 0.
- * may_fault is non-zero if we are reading from arbitrary memory, but is currently
- * not used.
- */
- static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault)
- {
- unsigned char ch;
- while (count-- > 0) {
- if (kgdb_read_byte(mem++, &ch) != 0)
- return 0;
- *buf++ = hexchars[ch >> 4];
- *buf++ = hexchars[ch & 0xf];
- }
- *buf = 0;
- return buf;
- }
- /*
- * convert the hex array pointed to by buf into binary to be placed in mem
- * return a pointer to the character AFTER the last byte written
- * may_fault is non-zero if we are reading from arbitrary memory, but is currently
- * not used.
- */
- static char *hex2mem(char *buf, char *mem, int count, int may_fault)
- {
- int i;
- unsigned char ch;
- for (i=0; i<count; i++)
- {
- ch = hex(*buf++) << 4;
- ch |= hex(*buf++);
- if (kgdb_write_byte(ch, mem++) != 0)
- return 0;
- }
- return mem;
- }
- /*
- * This table contains the mapping between SPARC hardware trap types, and
- * signals, which are primarily what GDB understands. It also indicates
- * which hardware traps we need to commandeer when initializing the stub.
- */
- static struct hard_trap_info {
- unsigned char tt; /* Trap type code for MIPS R3xxx and R4xxx */
- unsigned char signo; /* Signal that we map this trap into */
- } hard_trap_info[] = {
- { 6, SIGBUS }, /* instruction bus error */
- { 7, SIGBUS }, /* data bus error */
- { 9, SIGTRAP }, /* break */
- { 10, SIGILL }, /* reserved instruction */
- /* { 11, SIGILL }, */ /* CPU unusable */
- { 12, SIGFPE }, /* overflow */
- { 13, SIGTRAP }, /* trap */
- { 14, SIGSEGV }, /* virtual instruction cache coherency */
- { 15, SIGFPE }, /* floating point exception */
- { 23, SIGSEGV }, /* watch */
- { 31, SIGSEGV }, /* virtual data cache coherency */
- { 0, 0} /* Must be last */
- };
- /* Save the normal trap handlers for user-mode traps. */
- void *saved_vectors[32];
- /*
- * Set up exception handlers for tracing and breakpoints
- */
- void set_debug_traps(void)
- {
- struct hard_trap_info *ht;
- unsigned long flags;
- unsigned char c;
- save_and_cli(flags);
- for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
- saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low);
-
- putDebugChar('+'); /* 'hello world' */
- /*
- * In case GDB is started before us, ack any packets
- * (presumably "$?#xx") sitting there.
- */
- while((c = getDebugChar()) != '$');
- while((c = getDebugChar()) != '#');
- c = getDebugChar(); /* eat first csum byte */
- c = getDebugChar(); /* eat second csum byte */
- putDebugChar('+'); /* ack it */
- initialized = 1;
- restore_flags(flags);
- }
- /*
- * Convert the MIPS hardware trap type code to a Unix signal number.
- */
- static int computeSignal(int tt)
- {
- struct hard_trap_info *ht;
- for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
- if (ht->tt == tt)
- return ht->signo;
- return SIGHUP; /* default for things we don't know about */
- }
- /*
- * While we find nice hex chars, build an int.
- * Return number of chars processed.
- */
- static int hexToInt(char **ptr, int *intValue)
- {
- int numChars = 0;
- int hexValue;
- *intValue = 0;
- while (**ptr) {
- hexValue = hex(**ptr);
- if (hexValue < 0)
- break;
- *intValue = (*intValue << 4) | hexValue;
- numChars ++;
- (*ptr)++;
- }
- return (numChars);
- }
- #if 0
- /*
- * Print registers (on target console)
- * Used only to debug the stub...
- */
- void show_gdbregs(struct gdb_regs * regs)
- {
- /*
- * Saved main processor registers
- */
- printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lxn",
- regs->reg0, regs->reg1, regs->reg2, regs->reg3,
- regs->reg4, regs->reg5, regs->reg6, regs->reg7);
- printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lxn",
- regs->reg8, regs->reg9, regs->reg10, regs->reg11,
- regs->reg12, regs->reg13, regs->reg14, regs->reg15);
- printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lxn",
- regs->reg16, regs->reg17, regs->reg18, regs->reg19,
- regs->reg20, regs->reg21, regs->reg22, regs->reg23);
- printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lxn",
- regs->reg24, regs->reg25, regs->reg26, regs->reg27,
- regs->reg28, regs->reg29, regs->reg30, regs->reg31);
- /*
- * Saved cp0 registers
- */
- printk("epc : %08lxnStatus: %08lxnCause : %08lxn",
- regs->cp0_epc, regs->cp0_status, regs->cp0_cause);
- }
- #endif /* dead code */
- /*
- * We single-step by setting breakpoints. When an exception
- * is handled, we need to restore the instructions hoisted
- * when the breakpoints were set.
- *
- * This is where we save the original instructions.
- */
- static struct gdb_bp_save {
- unsigned int addr;
- unsigned int val;
- } step_bp[2];
- #define BP 0x0000000d /* break opcode */
- /*
- * Set breakpoint instructions for single stepping.
- */
- static void single_step(struct gdb_regs *regs)
- {
- union mips_instruction insn;
- unsigned int targ;
- int is_branch, is_cond, i;
- targ = regs->cp0_epc;
- insn.word = *(unsigned int *)targ;
- is_branch = is_cond = 0;
- switch (insn.i_format.opcode) {
- /*
- * jr and jalr are in r_format format.
- */
- case spec_op:
- switch (insn.r_format.func) {
- case jalr_op:
- case jr_op:
- targ = *(®s->reg0 + insn.r_format.rs);
- is_branch = 1;
- break;
- }
- break;
- /*
- * This group contains:
- * bltz_op, bgez_op, bltzl_op, bgezl_op,
- * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
- */
- case bcond_op:
- is_branch = is_cond = 1;
- targ += 4 + (insn.i_format.simmediate << 2);
- break;
- /*
- * These are unconditional and in j_format.
- */
- case jal_op:
- case j_op:
- is_branch = 1;
- targ += 4;
- targ >>= 28;
- targ <<= 28;
- targ |= (insn.j_format.target << 2);
- break;
- /*
- * These are conditional.
- */
- case beq_op:
- case beql_op:
- case bne_op:
- case bnel_op:
- case blez_op:
- case blezl_op:
- case bgtz_op:
- case bgtzl_op:
- case cop0_op:
- case cop1_op:
- case cop2_op:
- case cop1x_op:
- is_branch = is_cond = 1;
- targ += 4 + (insn.i_format.simmediate << 2);
- break;
- }
-
- if (is_branch) {
- i = 0;
- if (is_cond && targ != (regs->cp0_epc + 8)) {
- step_bp[i].addr = regs->cp0_epc + 8;
- step_bp[i++].val = *(unsigned *)(regs->cp0_epc + 8);
- *(unsigned *)(regs->cp0_epc + 8) = BP;
- }
- step_bp[i].addr = targ;
- step_bp[i].val = *(unsigned *)targ;
- *(unsigned *)targ = BP;
- } else {
- step_bp[0].addr = regs->cp0_epc + 4;
- step_bp[0].val = *(unsigned *)(regs->cp0_epc + 4);
- *(unsigned *)(regs->cp0_epc + 4) = BP;
- }
- }
- /*
- * If asynchronously interrupted by gdb, then we need to set a breakpoint
- * at the interrupted instruction so that we wind up stopped with a
- * reasonable stack frame.
- */
- static struct gdb_bp_save async_bp;
- void set_async_breakpoint(unsigned int epc)
- {
- async_bp.addr = epc;
- async_bp.val = *(unsigned *)epc;
- *(unsigned *)epc = BP;
- flush_cache_all();
- }
- /*
- * This function does all command processing for interfacing to gdb. It
- * returns 1 if you should skip the instruction at the trap address, 0
- * otherwise.
- */
- void handle_exception (struct gdb_regs *regs)
- {
- int trap; /* Trap type */
- int sigval;
- int addr;
- int length;
- char *ptr;
- unsigned long *stack;
- #if 0
- printk("in handle_exception()n");
- show_gdbregs(regs);
- #endif
-
- /*
- * First check trap type. If this is CPU_UNUSABLE and CPU_ID is 1,
- * the simply switch the FPU on and return since this is no error
- * condition. kernel/traps.c does the same.
- * FIXME: This doesn't work yet, so we don't catch CPU_UNUSABLE
- * traps for now.
- */
- trap = (regs->cp0_cause & 0x7c) >> 2;
- /* printk("trap=%dn",trap); */
- if (trap == 11) {
- if (((regs->cp0_cause >> CAUSEB_CE) & 3) == 1) {
- regs->cp0_status |= ST0_CU1;
- return;
- }
- }
- /*
- * If we're in breakpoint() increment the PC
- */
- if (trap == 9 && regs->cp0_epc == (unsigned long)breakinst)
- regs->cp0_epc += 4;
- /*
- * If we were single_stepping, restore the opcodes hoisted
- * for the breakpoint[s].
- */
- if (step_bp[0].addr) {
- *(unsigned *)step_bp[0].addr = step_bp[0].val;
- step_bp[0].addr = 0;
-
- if (step_bp[1].addr) {
- *(unsigned *)step_bp[1].addr = step_bp[1].val;
- step_bp[1].addr = 0;
- }
- }
- /*
- * If we were interrupted asynchronously by gdb, then a
- * breakpoint was set at the EPC of the interrupt so
- * that we'd wind up here with an interesting stack frame.
- */
- if (async_bp.addr) {
- *(unsigned *)async_bp.addr = async_bp.val;
- async_bp.addr = 0;
- }
- stack = (long *)regs->reg29; /* stack ptr */
- sigval = computeSignal(trap);
- /*
- * reply to host that an exception has occurred
- */
- ptr = output_buffer;
- /*
- * Send trap type (converted to signal)
- */
- *ptr++ = 'T';
- *ptr++ = hexchars[sigval >> 4];
- *ptr++ = hexchars[sigval & 0xf];
- /*
- * Send Error PC
- */
- *ptr++ = hexchars[REG_EPC >> 4];
- *ptr++ = hexchars[REG_EPC & 0xf];
- *ptr++ = ':';
- ptr = mem2hex((char *)®s->cp0_epc, ptr, 4, 0);
- *ptr++ = ';';
- /*
- * Send frame pointer
- */
- *ptr++ = hexchars[REG_FP >> 4];
- *ptr++ = hexchars[REG_FP & 0xf];
- *ptr++ = ':';
- ptr = mem2hex((char *)®s->reg30, ptr, 4, 0);
- *ptr++ = ';';
- /*
- * Send stack pointer
- */
- *ptr++ = hexchars[REG_SP >> 4];
- *ptr++ = hexchars[REG_SP & 0xf];
- *ptr++ = ':';
- ptr = mem2hex((char *)®s->reg29, ptr, 4, 0);
- *ptr++ = ';';
- *ptr++ = 0;
- putpacket(output_buffer); /* send it off... */
- /*
- * Wait for input from remote GDB
- */
- while (1) {
- output_buffer[0] = 0;
- getpacket(input_buffer);
- switch (input_buffer[0])
- {
- case '?':
- output_buffer[0] = 'S';
- output_buffer[1] = hexchars[sigval >> 4];
- output_buffer[2] = hexchars[sigval & 0xf];
- output_buffer[3] = 0;
- break;
- case 'd':
- /* toggle debug flag */
- break;
- /*
- * Return the value of the CPU registers
- */
- case 'g':
- ptr = output_buffer;
- ptr = mem2hex((char *)®s->reg0, ptr, 32*4, 0); /* r0...r31 */
- ptr = mem2hex((char *)®s->cp0_status, ptr, 6*4, 0); /* cp0 */
- ptr = mem2hex((char *)®s->fpr0, ptr, 32*4, 0); /* f0...31 */
- ptr = mem2hex((char *)®s->cp1_fsr, ptr, 2*4, 0); /* cp1 */
- ptr = mem2hex((char *)®s->frame_ptr, ptr, 2*4, 0); /* frp */
- ptr = mem2hex((char *)®s->cp0_index, ptr, 16*4, 0); /* cp0 */
- break;
-
- /*
- * set the value of the CPU registers - return OK
- * FIXME: Needs to be written
- */
- case 'G':
- {
- #if 0
- unsigned long *newsp, psr;
- ptr = &input_buffer[1];
- hex2mem(ptr, (char *)registers, 16 * 4, 0); /* G & O regs */
- /*
- * See if the stack pointer has moved. If so, then copy the
- * saved locals and ins to the new location.
- */
- newsp = (unsigned long *)registers[SP];
- if (sp != newsp)
- sp = memcpy(newsp, sp, 16 * 4);
- #endif
- strcpy(output_buffer,"OK");
- }
- break;
- /*
- * mAA..AA,LLLL Read LLLL bytes at address AA..AA
- */
- case 'm':
- ptr = &input_buffer[1];
- if (hexToInt(&ptr, &addr)
- && *ptr++ == ','
- && hexToInt(&ptr, &length)) {
- if (mem2hex((char *)addr, output_buffer, length, 1))
- break;
- strcpy (output_buffer, "E03");
- } else
- strcpy(output_buffer,"E01");
- break;
- /*
- * MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK
- */
- case 'M':
- ptr = &input_buffer[1];
- if (hexToInt(&ptr, &addr)
- && *ptr++ == ','
- && hexToInt(&ptr, &length)
- && *ptr++ == ':') {
- if (hex2mem(ptr, (char *)addr, length, 1))
- strcpy(output_buffer, "OK");
- else
- strcpy(output_buffer, "E03");
- }
- else
- strcpy(output_buffer, "E02");
- break;
- /*
- * cAA..AA Continue at address AA..AA(optional)
- */
- case 'c':
- /* try to read optional parameter, pc unchanged if no parm */
- ptr = &input_buffer[1];
- if (hexToInt(&ptr, &addr))
- regs->cp0_epc = addr;
-
- /*
- * Need to flush the instruction cache here, as we may
- * have deposited a breakpoint, and the icache probably
- * has no way of knowing that a data ref to some location
- * may have changed something that is in the instruction
- * cache.
- * NB: We flush both caches, just to be sure...
- */
- flush_cache_all();
- return;
- /* NOTREACHED */
- break;
- /*
- * kill the program
- */
- case 'k' :
- break; /* do nothing */
- /*
- * Reset the whole machine (FIXME: system dependent)
- */
- case 'r':
- break;
- /*
- * Step to next instruction
- */
- case 's':
- /*
- * There is no single step insn in the MIPS ISA, so we
- * use breakpoints and continue, instead.
- */
- single_step(regs);
- flush_cache_all();
- return;
- /* NOTREACHED */
- /*
- * Set baud rate (bBB)
- * FIXME: Needs to be written
- */
- case 'b':
- {
- #if 0
- int baudrate;
- extern void set_timer_3();
- ptr = &input_buffer[1];
- if (!hexToInt(&ptr, &baudrate))
- {
- strcpy(output_buffer,"B01");
- break;
- }
- /* Convert baud rate to uart clock divider */
- switch (baudrate)
- {
- case 38400:
- baudrate = 16;
- break;
- case 19200:
- baudrate = 33;
- break;
- case 9600:
- baudrate = 65;
- break;
- default:
- baudrate = 0;
- strcpy(output_buffer,"B02");
- goto x1;
- }
- if (baudrate) {
- putpacket("OK"); /* Ack before changing speed */
- set_timer_3(baudrate); /* Set it */
- }
- #endif
- }
- break;
- } /* switch */
- /*
- * reply to the request
- */
- putpacket(output_buffer);
- } /* while */
- }
- /*
- * This function will generate a breakpoint exception. It is used at the
- * beginning of a program to sync up with a debugger and can be used
- * otherwise as a quick means to stop program execution and "break" into
- * the debugger.
- */
- void breakpoint(void)
- {
- if (!initialized)
- return;
- __asm__ __volatile__("
- .globl breakinst
- .set noreorder
- nop
- breakinst: break
- nop
- .set reorder
- ");
- }
- void adel(void)
- {
- __asm__ __volatile__("
- .globl adel
- la $8,0x80000001
- lw $9,0($8)
- ");
- }
- #ifdef CONFIG_GDB_CONSOLE
- void gdb_puts(const char *str)
- {
- int l = strlen(str);
- char outbuf[18];
- outbuf[0]='O';
- while(l) {
- int i = (l>8)?8:l;
- mem2hex((char *)str, &outbuf[1], i, 0);
- outbuf[(i*2)+1]=0;
- putpacket(outbuf);
- str += i;
- l -= i;
- }
- }
- static kdev_t gdb_console_dev(struct console *con)
- {
- return MKDEV(1, 3); /* /dev/null */
- }
- static void gdb_console_write(struct console *con, const char *s, unsigned n)
- {
- gdb_puts(s);
- }
- static struct console gdb_console = {
- name: "gdb",
- write: gdb_console_write,
- device: gdb_console_dev,
- flags: CON_PRINTBUFFER,
- index: -1
- };
- __init void register_gdb_console(void)
- {
- register_console(&gdb_console);
- }
-
- #endif