process.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:22k
源码类别:

嵌入式Linux

开发平台:

Unix_Linux

  1. /*
  2.  *  linux/arch/i386/kernel/process.c
  3.  *
  4.  *  Copyright (C) 1995  Linus Torvalds
  5.  *
  6.  *  Pentium III FXSR, SSE support
  7.  * Gareth Hughes <gareth@valinux.com>, May 2000
  8.  */
  9. /*
  10.  * This file handles the architecture-dependent parts of process handling..
  11.  */
  12. #define __KERNEL_SYSCALLS__
  13. #include <stdarg.h>
  14. #include <linux/errno.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/smp.h>
  19. #include <linux/smp_lock.h>
  20. #include <linux/stddef.h>
  21. #include <linux/unistd.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/slab.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/user.h>
  26. #include <linux/a.out.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/config.h>
  29. #include <linux/delay.h>
  30. #include <linux/reboot.h>
  31. #include <linux/init.h>
  32. #include <linux/mc146818rtc.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/system.h>
  36. #include <asm/io.h>
  37. #include <asm/ldt.h>
  38. #include <asm/processor.h>
  39. #include <asm/i387.h>
  40. #include <asm/irq.h>
  41. #include <asm/desc.h>
  42. #include <asm/mmu_context.h>
  43. #ifdef CONFIG_MATH_EMULATION
  44. #include <asm/math_emu.h>
  45. #endif
  46. #include <linux/irq.h>
  47. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  48. int hlt_counter;
  49. /*
  50.  * Powermanagement idle function, if any..
  51.  */
  52. void (*pm_idle)(void);
  53. /*
  54.  * Power off function, if any
  55.  */
  56. void (*pm_power_off)(void);
  57. void disable_hlt(void)
  58. {
  59. hlt_counter++;
  60. }
  61. void enable_hlt(void)
  62. {
  63. hlt_counter--;
  64. }
  65. /*
  66.  * We use this if we don't have any better
  67.  * idle routine..
  68.  */
  69. void default_idle(void)
  70. {
  71. if (current_cpu_data.hlt_works_ok && !hlt_counter) {
  72. __cli();
  73. if (!current->need_resched)
  74. safe_halt();
  75. else
  76. __sti();
  77. }
  78. }
  79. /*
  80.  * On SMP it's slightly faster (but much more power-consuming!)
  81.  * to poll the ->need_resched flag instead of waiting for the
  82.  * cross-CPU IPI to arrive. Use this option with caution.
  83.  */
  84. static void poll_idle (void)
  85. {
  86. int oldval;
  87. __sti();
  88. /*
  89.  * Deal with another CPU just having chosen a thread to
  90.  * run here:
  91.  */
  92. oldval = xchg(&current->need_resched, -1);
  93. if (!oldval)
  94. asm volatile(
  95. "2:"
  96. "cmpl $-1, %0;"
  97. "rep; nop;"
  98. "je 2b;"
  99. : :"m" (current->need_resched));
  100. }
  101. /*
  102.  * The idle thread. There's no useful work to be
  103.  * done, so just try to conserve power and have a
  104.  * low exit latency (ie sit in a loop waiting for
  105.  * somebody to say that they'd like to reschedule)
  106.  */
  107. void cpu_idle (void)
  108. {
  109. /* endless idle loop with no priority at all */
  110. init_idle();
  111. current->nice = 20;
  112. current->counter = -100;
  113. while (1) {
  114. void (*idle)(void) = pm_idle;
  115. if (!idle)
  116. idle = default_idle;
  117. while (!current->need_resched)
  118. idle();
  119. schedule();
  120. check_pgt_cache();
  121. }
  122. }
  123. static int __init idle_setup (char *str)
  124. {
  125. if (!strncmp(str, "poll", 4)) {
  126. printk("using polling idle threads.n");
  127. pm_idle = poll_idle;
  128. }
  129. return 1;
  130. }
  131. __setup("idle=", idle_setup);
  132. static long no_idt[2];
  133. static int reboot_mode;
  134. int reboot_thru_bios;
  135. #ifdef CONFIG_SMP
  136. int reboot_smp = 0;
  137. static int reboot_cpu = -1;
  138. /* shamelessly grabbed from lib/vsprintf.c for readability */
  139. #define is_digit(c) ((c) >= '0' && (c) <= '9')
  140. #endif
  141. static int __init reboot_setup(char *str)
  142. {
  143. while(1) {
  144. switch (*str) {
  145. case 'w': /* "warm" reboot (no memory testing etc) */
  146. reboot_mode = 0x1234;
  147. break;
  148. case 'c': /* "cold" reboot (with memory testing etc) */
  149. reboot_mode = 0x0;
  150. break;
  151. case 'b': /* "bios" reboot by jumping through the BIOS */
  152. reboot_thru_bios = 1;
  153. break;
  154. case 'h': /* "hard" reboot by toggling RESET and/or crashing the CPU */
  155. reboot_thru_bios = 0;
  156. break;
  157. #ifdef CONFIG_SMP
  158. case 's': /* "smp" reboot by executing reset on BSP or other CPU*/
  159. reboot_smp = 1;
  160. if (is_digit(*(str+1))) {
  161. reboot_cpu = (int) (*(str+1) - '0');
  162. if (is_digit(*(str+2))) 
  163. reboot_cpu = reboot_cpu*10 + (int)(*(str+2) - '0');
  164. }
  165. /* we will leave sorting out the final value 
  166. when we are ready to reboot, since we might not
  167.   have set up boot_cpu_id or smp_num_cpu */
  168. break;
  169. #endif
  170. }
  171. if((str = strchr(str,',')) != NULL)
  172. str++;
  173. else
  174. break;
  175. }
  176. return 1;
  177. }
  178. __setup("reboot=", reboot_setup);
  179. /* The following code and data reboots the machine by switching to real
  180.    mode and jumping to the BIOS reset entry point, as if the CPU has
  181.    really been reset.  The previous version asked the keyboard
  182.    controller to pulse the CPU reset line, which is more thorough, but
  183.    doesn't work with at least one type of 486 motherboard.  It is easy
  184.    to stop this code working; hence the copious comments. */
  185. static unsigned long long
  186. real_mode_gdt_entries [3] =
  187. {
  188. 0x0000000000000000ULL, /* Null descriptor */
  189. 0x00009a000000ffffULL, /* 16-bit real-mode 64k code at 0x00000000 */
  190. 0x000092000100ffffULL /* 16-bit real-mode 64k data at 0x00000100 */
  191. };
  192. static struct
  193. {
  194. unsigned short       size __attribute__ ((packed));
  195. unsigned long long * base __attribute__ ((packed));
  196. }
  197. real_mode_gdt = { sizeof (real_mode_gdt_entries) - 1, real_mode_gdt_entries },
  198. real_mode_idt = { 0x3ff, 0 };
  199. /* This is 16-bit protected mode code to disable paging and the cache,
  200.    switch to real mode and jump to the BIOS reset code.
  201.    The instruction that switches to real mode by writing to CR0 must be
  202.    followed immediately by a far jump instruction, which set CS to a
  203.    valid value for real mode, and flushes the prefetch queue to avoid
  204.    running instructions that have already been decoded in protected
  205.    mode.
  206.    Clears all the flags except ET, especially PG (paging), PE
  207.    (protected-mode enable) and TS (task switch for coprocessor state
  208.    save).  Flushes the TLB after paging has been disabled.  Sets CD and
  209.    NW, to disable the cache on a 486, and invalidates the cache.  This
  210.    is more like the state of a 486 after reset.  I don't know if
  211.    something else should be done for other chips.
  212.    More could be done here to set up the registers as if a CPU reset had
  213.    occurred; hopefully real BIOSs don't assume much. */
  214. static unsigned char real_mode_switch [] =
  215. {
  216. 0x66, 0x0f, 0x20, 0xc0, /*    movl  %cr0,%eax        */
  217. 0x66, 0x83, 0xe0, 0x11, /*    andl  $0x00000011,%eax */
  218. 0x66, 0x0d, 0x00, 0x00, 0x00, 0x60, /*    orl   $0x60000000,%eax */
  219. 0x66, 0x0f, 0x22, 0xc0, /*    movl  %eax,%cr0        */
  220. 0x66, 0x0f, 0x22, 0xd8, /*    movl  %eax,%cr3        */
  221. 0x66, 0x0f, 0x20, 0xc3, /*    movl  %cr0,%ebx        */
  222. 0x66, 0x81, 0xe3, 0x00, 0x00, 0x00, 0x60, /*    andl  $0x60000000,%ebx */
  223. 0x74, 0x02, /*    jz    f                */
  224. 0x0f, 0x08, /*    invd                   */
  225. 0x24, 0x10, /* f: andb  $0x10,al         */
  226. 0x66, 0x0f, 0x22, 0xc0 /*    movl  %eax,%cr0        */
  227. };
  228. static unsigned char jump_to_bios [] =
  229. {
  230. 0xea, 0x00, 0x00, 0xff, 0xff /*    ljmp  $0xffff,$0x0000  */
  231. };
  232. static inline void kb_wait(void)
  233. {
  234. int i;
  235. for (i=0; i<0x10000; i++)
  236. if ((inb_p(0x64) & 0x02) == 0)
  237. break;
  238. }
  239. /*
  240.  * Switch to real mode and then execute the code
  241.  * specified by the code and length parameters.
  242.  * We assume that length will aways be less that 100!
  243.  */
  244. void machine_real_restart(unsigned char *code, int length)
  245. {
  246. unsigned long flags;
  247. cli();
  248. /* Write zero to CMOS register number 0x0f, which the BIOS POST
  249.    routine will recognize as telling it to do a proper reboot.  (Well
  250.    that's what this book in front of me says -- it may only apply to
  251.    the Phoenix BIOS though, it's not clear).  At the same time,
  252.    disable NMIs by setting the top bit in the CMOS address register,
  253.    as we're about to do peculiar things to the CPU.  I'm not sure if
  254.    `outb_p' is needed instead of just `outb'.  Use it to be on the
  255.    safe side.  (Yes, CMOS_WRITE does outb_p's. -  Paul G.)
  256.  */
  257. spin_lock_irqsave(&rtc_lock, flags);
  258. CMOS_WRITE(0x00, 0x8f);
  259. spin_unlock_irqrestore(&rtc_lock, flags);
  260. /* Remap the kernel at virtual address zero, as well as offset zero
  261.    from the kernel segment.  This assumes the kernel segment starts at
  262.    virtual address PAGE_OFFSET. */
  263. memcpy (swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
  264. sizeof (swapper_pg_dir [0]) * KERNEL_PGD_PTRS);
  265. /* Make sure the first page is mapped to the start of physical memory.
  266.    It is normally not mapped, to trap kernel NULL pointer dereferences. */
  267. pg0[0] = _PAGE_RW | _PAGE_PRESENT;
  268. /*
  269.  * Use `swapper_pg_dir' as our page directory.
  270.  */
  271. asm volatile("movl %0,%%cr3": :"r" (__pa(swapper_pg_dir)));
  272. /* Write 0x1234 to absolute memory location 0x472.  The BIOS reads
  273.    this on booting to tell it to "Bypass memory test (also warm
  274.    boot)".  This seems like a fairly standard thing that gets set by
  275.    REBOOT.COM programs, and the previous reset routine did this
  276.    too. */
  277. *((unsigned short *)0x472) = reboot_mode;
  278. /* For the switch to real mode, copy some code to low memory.  It has
  279.    to be in the first 64k because it is running in 16-bit mode, and it
  280.    has to have the same physical and virtual address, because it turns
  281.    off paging.  Copy it near the end of the first page, out of the way
  282.    of BIOS variables. */
  283. memcpy ((void *) (0x1000 - sizeof (real_mode_switch) - 100),
  284. real_mode_switch, sizeof (real_mode_switch));
  285. memcpy ((void *) (0x1000 - 100), code, length);
  286. /* Set up the IDT for real mode. */
  287. __asm__ __volatile__ ("lidt %0" : : "m" (real_mode_idt));
  288. /* Set up a GDT from which we can load segment descriptors for real
  289.    mode.  The GDT is not used in real mode; it is just needed here to
  290.    prepare the descriptors. */
  291. __asm__ __volatile__ ("lgdt %0" : : "m" (real_mode_gdt));
  292. /* Load the data segment registers, and thus the descriptors ready for
  293.    real mode.  The base address of each segment is 0x100, 16 times the
  294.    selector value being loaded here.  This is so that the segment
  295.    registers don't have to be reloaded after switching to real mode:
  296.    the values are consistent for real mode operation already. */
  297. __asm__ __volatile__ ("movl $0x0010,%%eaxn"
  298. "tmovl %%eax,%%dsn"
  299. "tmovl %%eax,%%esn"
  300. "tmovl %%eax,%%fsn"
  301. "tmovl %%eax,%%gsn"
  302. "tmovl %%eax,%%ss" : : : "eax");
  303. /* Jump to the 16-bit code that we copied earlier.  It disables paging
  304.    and the cache, switches to real mode, and jumps to the BIOS reset
  305.    entry point. */
  306. __asm__ __volatile__ ("ljmp $0x0008,%0"
  307. :
  308. : "i" ((void *) (0x1000 - sizeof (real_mode_switch) - 100)));
  309. }
  310. void machine_restart(char * __unused)
  311. {
  312. #if CONFIG_SMP
  313. int cpuid;
  314. cpuid = GET_APIC_ID(apic_read(APIC_ID));
  315. if (reboot_smp) {
  316. /* check to see if reboot_cpu is valid 
  317.    if its not, default to the BSP */
  318. if ((reboot_cpu == -1) ||  
  319.       (reboot_cpu > (NR_CPUS -1))  || 
  320.       !(phys_cpu_present_map & (1<<cpuid))) 
  321. reboot_cpu = boot_cpu_physical_apicid;
  322. reboot_smp = 0;  /* use this as a flag to only go through this once*/
  323. /* re-run this function on the other CPUs
  324.    it will fall though this section since we have 
  325.    cleared reboot_smp, and do the reboot if it is the
  326.    correct CPU, otherwise it halts. */
  327. if (reboot_cpu != cpuid)
  328. smp_call_function((void *)machine_restart , NULL, 1, 0);
  329. }
  330. /* if reboot_cpu is still -1, then we want a tradional reboot, 
  331.    and if we are not running on the reboot_cpu,, halt */
  332. if ((reboot_cpu != -1) && (cpuid != reboot_cpu)) {
  333. for (;;)
  334. __asm__ __volatile__ ("hlt");
  335. }
  336. /*
  337.  * Stop all CPUs and turn off local APICs and the IO-APIC, so
  338.  * other OSs see a clean IRQ state.
  339.  */
  340. smp_send_stop();
  341. disable_IO_APIC();
  342. #endif
  343. if(!reboot_thru_bios) {
  344. /* rebooting needs to touch the page at absolute addr 0 */
  345. *((unsigned short *)__va(0x472)) = reboot_mode;
  346. for (;;) {
  347. int i;
  348. for (i=0; i<100; i++) {
  349. kb_wait();
  350. udelay(50);
  351. outb(0xfe,0x64);         /* pulse reset low */
  352. udelay(50);
  353. }
  354. /* That didn't work - force a triple fault.. */
  355. __asm__ __volatile__("lidt %0": :"m" (no_idt));
  356. __asm__ __volatile__("int3");
  357. }
  358. }
  359. machine_real_restart(jump_to_bios, sizeof(jump_to_bios));
  360. }
  361. void machine_halt(void)
  362. {
  363. }
  364. void machine_power_off(void)
  365. {
  366. if (pm_power_off)
  367. pm_power_off();
  368. }
  369. extern void show_trace(unsigned long* esp);
  370. void show_regs(struct pt_regs * regs)
  371. {
  372. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  373. printk("n");
  374. printk("Pid: %d, comm: %20sn", current->pid, current->comm);
  375. printk("EIP: %04x:[<%08lx>] CPU: %d",0xffff & regs->xcs,regs->eip, smp_processor_id());
  376. if (regs->xcs & 3)
  377. printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
  378. printk(" EFLAGS: %08lx    %sn",regs->eflags, print_tainted());
  379. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lxn",
  380. regs->eax,regs->ebx,regs->ecx,regs->edx);
  381. printk("ESI: %08lx EDI: %08lx EBP: %08lx",
  382. regs->esi, regs->edi, regs->ebp);
  383. printk(" DS: %04x ES: %04xn",
  384. 0xffff & regs->xds,0xffff & regs->xes);
  385. __asm__("movl %%cr0, %0": "=r" (cr0));
  386. __asm__("movl %%cr2, %0": "=r" (cr2));
  387. __asm__("movl %%cr3, %0": "=r" (cr3));
  388. /* This could fault if %cr4 does not exist */
  389. __asm__("1: movl %%cr4, %0 n"
  390. "2: n"
  391. ".section __ex_table,"a" n"
  392. ".long 1b,2b n"
  393. ".previous n"
  394. : "=r" (cr4): "0" (0));
  395. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lxn", cr0, cr2, cr3, cr4);
  396. show_trace(&regs->esp);
  397. }
  398. /*
  399.  * No need to lock the MM as we are the last user
  400.  */
  401. void release_segments(struct mm_struct *mm)
  402. {
  403. void * ldt = mm->context.segments;
  404. /*
  405.  * free the LDT
  406.  */
  407. if (ldt) {
  408. mm->context.segments = NULL;
  409. clear_LDT();
  410. vfree(ldt);
  411. }
  412. }
  413. /*
  414.  * Create a kernel thread
  415.  */
  416. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  417. {
  418. long retval, d0;
  419. __asm__ __volatile__(
  420. "movl %%esp,%%esint"
  421. "int $0x80nt" /* Linux/i386 system call */
  422. "cmpl %%esp,%%esint" /* child or parent? */
  423. "je 1fnt" /* parent - jump */
  424. /* Load the argument into eax, and push it.  That way, it does
  425.  * not matter whether the called function is compiled with
  426.  * -mregparm or not.  */
  427. "movl %4,%%eaxnt"
  428. "pushl %%eaxnt"
  429. "call *%5nt" /* call fn */
  430. "movl %3,%0nt" /* exit */
  431. "int $0x80n"
  432. "1:t"
  433. :"=&a" (retval), "=&S" (d0)
  434. :"0" (__NR_clone), "i" (__NR_exit),
  435.  "r" (arg), "r" (fn),
  436.  "b" (flags | CLONE_VM)
  437. : "memory");
  438. return retval;
  439. }
  440. /*
  441.  * Free current thread data structures etc..
  442.  */
  443. void exit_thread(void)
  444. {
  445. /* nothing to do ... */
  446. }
  447. void flush_thread(void)
  448. {
  449. struct task_struct *tsk = current;
  450. memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
  451. /*
  452.  * Forget coprocessor state..
  453.  */
  454. clear_fpu(tsk);
  455. tsk->used_math = 0;
  456. }
  457. void release_thread(struct task_struct *dead_task)
  458. {
  459. if (dead_task->mm) {
  460. void * ldt = dead_task->mm->context.segments;
  461. // temporary debugging check
  462. if (ldt) {
  463. printk("WARNING: dead process %8s still has LDT? <%p>n",
  464. dead_task->comm, ldt);
  465. BUG();
  466. }
  467. }
  468. release_x86_irqs(dead_task);
  469. }
  470. /*
  471.  * we do not have to muck with descriptors here, that is
  472.  * done in switch_mm() as needed.
  473.  */
  474. void copy_segments(struct task_struct *p, struct mm_struct *new_mm)
  475. {
  476. struct mm_struct * old_mm;
  477. void *old_ldt, *ldt;
  478. ldt = NULL;
  479. old_mm = current->mm;
  480. if (old_mm && (old_ldt = old_mm->context.segments) != NULL) {
  481. /*
  482.  * Completely new LDT, we initialize it from the parent:
  483.  */
  484. ldt = vmalloc(LDT_ENTRIES*LDT_ENTRY_SIZE);
  485. if (!ldt)
  486. printk(KERN_WARNING "ldt allocation failedn");
  487. else
  488. memcpy(ldt, old_ldt, LDT_ENTRIES*LDT_ENTRY_SIZE);
  489. }
  490. new_mm->context.segments = ldt;
  491. new_mm->context.cpuvalid = ~0UL; /* valid on all CPU's - they can't have stale data */
  492. }
  493. /*
  494.  * Save a segment.
  495.  */
  496. #define savesegment(seg,value) 
  497. asm volatile("movl %%" #seg ",%0":"=m" (*(int *)&(value)))
  498. int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
  499. unsigned long unused,
  500. struct task_struct * p, struct pt_regs * regs)
  501. {
  502. struct pt_regs * childregs;
  503. childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p)) - 1;
  504. struct_cpy(childregs, regs);
  505. childregs->eax = 0;
  506. childregs->esp = esp;
  507. p->thread.esp = (unsigned long) childregs;
  508. p->thread.esp0 = (unsigned long) (childregs+1);
  509. p->thread.eip = (unsigned long) ret_from_fork;
  510. savesegment(fs,p->thread.fs);
  511. savesegment(gs,p->thread.gs);
  512. unlazy_fpu(current);
  513. struct_cpy(&p->thread.i387, &current->thread.i387);
  514. return 0;
  515. }
  516. /*
  517.  * fill in the user structure for a core dump..
  518.  */
  519. void dump_thread(struct pt_regs * regs, struct user * dump)
  520. {
  521. int i;
  522. /* changed the size calculations - should hopefully work better. lbt */
  523. dump->magic = CMAGIC;
  524. dump->start_code = 0;
  525. dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
  526. dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
  527. dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
  528. dump->u_dsize -= dump->u_tsize;
  529. dump->u_ssize = 0;
  530. for (i = 0; i < 8; i++)
  531. dump->u_debugreg[i] = current->thread.debugreg[i];  
  532. if (dump->start_stack < TASK_SIZE)
  533. dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
  534. dump->regs.ebx = regs->ebx;
  535. dump->regs.ecx = regs->ecx;
  536. dump->regs.edx = regs->edx;
  537. dump->regs.esi = regs->esi;
  538. dump->regs.edi = regs->edi;
  539. dump->regs.ebp = regs->ebp;
  540. dump->regs.eax = regs->eax;
  541. dump->regs.ds = regs->xds;
  542. dump->regs.es = regs->xes;
  543. savesegment(fs,dump->regs.fs);
  544. savesegment(gs,dump->regs.gs);
  545. dump->regs.orig_eax = regs->orig_eax;
  546. dump->regs.eip = regs->eip;
  547. dump->regs.cs = regs->xcs;
  548. dump->regs.eflags = regs->eflags;
  549. dump->regs.esp = regs->esp;
  550. dump->regs.ss = regs->xss;
  551. dump->u_fpvalid = dump_fpu (regs, &dump->i387);
  552. }
  553. /*
  554.  * This special macro can be used to load a debugging register
  555.  */
  556. #define loaddebug(thread,register) 
  557. __asm__("movl %0,%%db" #register  
  558. : /* no output */ 
  559. :"r" (thread->debugreg[register]))
  560. /*
  561.  * switch_to(x,yn) should switch tasks from x to y.
  562.  *
  563.  * We fsave/fwait so that an exception goes off at the right time
  564.  * (as a call from the fsave or fwait in effect) rather than to
  565.  * the wrong process. Lazy FP saving no longer makes any sense
  566.  * with modern CPU's, and this simplifies a lot of things (SMP
  567.  * and UP become the same).
  568.  *
  569.  * NOTE! We used to use the x86 hardware context switching. The
  570.  * reason for not using it any more becomes apparent when you
  571.  * try to recover gracefully from saved state that is no longer
  572.  * valid (stale segment register values in particular). With the
  573.  * hardware task-switch, there is no way to fix up bad state in
  574.  * a reasonable manner.
  575.  *
  576.  * The fact that Intel documents the hardware task-switching to
  577.  * be slow is a fairly red herring - this code is not noticeably
  578.  * faster. However, there _is_ some room for improvement here,
  579.  * so the performance issues may eventually be a valid point.
  580.  * More important, however, is the fact that this allows us much
  581.  * more flexibility.
  582.  */
  583. void __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  584. {
  585. struct thread_struct *prev = &prev_p->thread,
  586.  *next = &next_p->thread;
  587. struct tss_struct *tss = init_tss + smp_processor_id();
  588. unlazy_fpu(prev_p);
  589. /*
  590.  * Reload esp0, LDT and the page table pointer:
  591.  */
  592. tss->esp0 = next->esp0;
  593. /*
  594.  * Save away %fs and %gs. No need to save %es and %ds, as
  595.  * those are always kernel segments while inside the kernel.
  596.  */
  597. asm volatile("movl %%fs,%0":"=m" (*(int *)&prev->fs));
  598. asm volatile("movl %%gs,%0":"=m" (*(int *)&prev->gs));
  599. /*
  600.  * Restore %fs and %gs.
  601.  */
  602. loadsegment(fs, next->fs);
  603. loadsegment(gs, next->gs);
  604. /*
  605.  * Now maybe reload the debug registers
  606.  */
  607. if (next->debugreg[7]){
  608. loaddebug(next, 0);
  609. loaddebug(next, 1);
  610. loaddebug(next, 2);
  611. loaddebug(next, 3);
  612. /* no 4 and 5 */
  613. loaddebug(next, 6);
  614. loaddebug(next, 7);
  615. }
  616. if (prev->ioperm || next->ioperm) {
  617. if (next->ioperm) {
  618. /*
  619.  * 4 cachelines copy ... not good, but not that
  620.  * bad either. Anyone got something better?
  621.  * This only affects processes which use ioperm().
  622.  * [Putting the TSSs into 4k-tlb mapped regions
  623.  * and playing VM tricks to switch the IO bitmap
  624.  * is not really acceptable.]
  625.  */
  626. memcpy(tss->io_bitmap, next->io_bitmap,
  627.  IO_BITMAP_SIZE*sizeof(unsigned long));
  628. tss->bitmap = IO_BITMAP_OFFSET;
  629. } else
  630. /*
  631.  * a bitmap offset pointing outside of the TSS limit
  632.  * causes a nicely controllable SIGSEGV if a process
  633.  * tries to use a port IO instruction. The first
  634.  * sys_ioperm() call sets up the bitmap properly.
  635.  */
  636. tss->bitmap = INVALID_IO_BITMAP_OFFSET;
  637. }
  638. }
  639. asmlinkage int sys_fork(struct pt_regs regs)
  640. {
  641. return do_fork(SIGCHLD, regs.esp, &regs, 0);
  642. }
  643. asmlinkage int sys_clone(struct pt_regs regs)
  644. {
  645. unsigned long clone_flags;
  646. unsigned long newsp;
  647. clone_flags = regs.ebx;
  648. newsp = regs.ecx;
  649. if (!newsp)
  650. newsp = regs.esp;
  651. return do_fork(clone_flags, newsp, &regs, 0);
  652. }
  653. /*
  654.  * This is trivial, and on the face of it looks like it
  655.  * could equally well be done in user mode.
  656.  *
  657.  * Not so, for quite unobvious reasons - register pressure.
  658.  * In user mode vfork() cannot have a stack frame, and if
  659.  * done by calling the "clone()" system call directly, you
  660.  * do not have enough call-clobbered registers to hold all
  661.  * the information you need.
  662.  */
  663. asmlinkage int sys_vfork(struct pt_regs regs)
  664. {
  665. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0);
  666. }
  667. /*
  668.  * sys_execve() executes a new program.
  669.  */
  670. asmlinkage int sys_execve(struct pt_regs regs)
  671. {
  672. int error;
  673. char * filename;
  674. filename = getname((char *) regs.ebx);
  675. error = PTR_ERR(filename);
  676. if (IS_ERR(filename))
  677. goto out;
  678. error = do_execve(filename, (char **) regs.ecx, (char **) regs.edx, &regs);
  679. if (error == 0)
  680. current->ptrace &= ~PT_DTRACE;
  681. putname(filename);
  682. out:
  683. return error;
  684. }
  685. /*
  686.  * These bracket the sleeping functions..
  687.  */
  688. extern void scheduling_functions_start_here(void);
  689. extern void scheduling_functions_end_here(void);
  690. #define first_sched ((unsigned long) scheduling_functions_start_here)
  691. #define last_sched ((unsigned long) scheduling_functions_end_here)
  692. unsigned long get_wchan(struct task_struct *p)
  693. {
  694. unsigned long ebp, esp, eip;
  695. unsigned long stack_page;
  696. int count = 0;
  697. if (!p || p == current || p->state == TASK_RUNNING)
  698. return 0;
  699. stack_page = (unsigned long)p;
  700. esp = p->thread.esp;
  701. if (!stack_page || esp < stack_page || esp > 8188+stack_page)
  702. return 0;
  703. /* include/asm-i386/system.h:switch_to() pushes ebp last. */
  704. ebp = *(unsigned long *) esp;
  705. do {
  706. if (ebp < stack_page || ebp > 8184+stack_page)
  707. return 0;
  708. eip = *(unsigned long *) (ebp+4);
  709. if (eip < first_sched || eip >= last_sched)
  710. return eip;
  711. ebp = *(unsigned long *) ebp;
  712. } while (count++ < 16);
  713. return 0;
  714. }
  715. #undef last_sched
  716. #undef first_sched