time.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:21k
- /*
- * linux/arch/i386/kernel/time.c
- *
- * Copyright (C) 1991, 1992, 1995 Linus Torvalds
- *
- * This file contains the PC-specific time handling details:
- * reading the RTC at bootup, etc..
- * 1994-07-02 Alan Modra
- * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
- * 1995-03-26 Markus Kuhn
- * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
- * precision CMOS clock update
- * 1996-05-03 Ingo Molnar
- * fixed time warps in do_[slow|fast]_gettimeoffset()
- * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
- * "A Kernel Model for Precision Timekeeping" by Dave Mills
- * 1998-09-05 (Various)
- * More robust do_fast_gettimeoffset() algorithm implemented
- * (works with APM, Cyrix 6x86MX and Centaur C6),
- * monotonic gettimeofday() with fast_get_timeoffset(),
- * drift-proof precision TSC calibration on boot
- * (C. Scott Ananian <cananian@alumni.princeton.edu>, Andrew D.
- * Balsa <andrebalsa@altern.org>, Philip Gladstone <philip@raptor.com>;
- * ported from 2.0.35 Jumbo-9 by Michael Krause <m.krause@tu-harburg.de>).
- * 1998-12-16 Andrea Arcangeli
- * Fixed Jumbo-9 code in 2.1.131: do_gettimeofday was missing 1 jiffy
- * because was not accounting lost_ticks.
- * 1998-12-24 Copyright (C) 1998 Andrea Arcangeli
- * Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
- * serialize accesses to xtime/lost_ticks).
- */
- #include <linux/errno.h>
- #include <linux/sched.h>
- #include <linux/kernel.h>
- #include <linux/param.h>
- #include <linux/string.h>
- #include <linux/mm.h>
- #include <linux/interrupt.h>
- #include <linux/time.h>
- #include <linux/delay.h>
- #include <linux/init.h>
- #include <linux/smp.h>
- #include <asm/io.h>
- #include <asm/smp.h>
- #include <asm/irq.h>
- #include <asm/msr.h>
- #include <asm/delay.h>
- #include <asm/mpspec.h>
- #include <asm/uaccess.h>
- #include <asm/processor.h>
- #include <linux/mc146818rtc.h>
- #include <linux/timex.h>
- #include <linux/config.h>
- #include <asm/fixmap.h>
- #include <asm/cobalt.h>
- /*
- * for x86_do_profile()
- */
- #include <linux/irq.h>
- unsigned long cpu_khz; /* Detected as we calibrate the TSC */
- /* Number of usecs that the last interrupt was delayed */
- static int delay_at_last_interrupt;
- static unsigned long last_tsc_low; /* lsb 32 bits of Time Stamp Counter */
- /* Cached *multiplier* to convert TSC counts to microseconds.
- * (see the equation below).
- * Equal to 2^32 * (1 / (clocks per usec) ).
- * Initialized in time_init.
- */
- unsigned long fast_gettimeoffset_quotient;
- extern rwlock_t xtime_lock;
- extern unsigned long wall_jiffies;
- spinlock_t rtc_lock = SPIN_LOCK_UNLOCKED;
- static inline unsigned long do_fast_gettimeoffset(void)
- {
- register unsigned long eax, edx;
- /* Read the Time Stamp Counter */
- rdtsc(eax,edx);
- /* .. relative to previous jiffy (32 bits is enough) */
- eax -= last_tsc_low; /* tsc_low delta */
- /*
- * Time offset = (tsc_low delta) * fast_gettimeoffset_quotient
- * = (tsc_low delta) * (usecs_per_clock)
- * = (tsc_low delta) * (usecs_per_jiffy / clocks_per_jiffy)
- *
- * Using a mull instead of a divl saves up to 31 clock cycles
- * in the critical path.
- */
- __asm__("mull %2"
- :"=a" (eax), "=d" (edx)
- :"rm" (fast_gettimeoffset_quotient),
- "0" (eax));
- /* our adjusted time offset in microseconds */
- return delay_at_last_interrupt + edx;
- }
- #define TICK_SIZE tick
- spinlock_t i8253_lock = SPIN_LOCK_UNLOCKED;
- extern spinlock_t i8259A_lock;
- #ifndef CONFIG_X86_TSC
- /* This function must be called with interrupts disabled
- * It was inspired by Steve McCanne's microtime-i386 for BSD. -- jrs
- *
- * However, the pc-audio speaker driver changes the divisor so that
- * it gets interrupted rather more often - it loads 64 into the
- * counter rather than 11932! This has an adverse impact on
- * do_gettimeoffset() -- it stops working! What is also not
- * good is that the interval that our timer function gets called
- * is no longer 10.0002 ms, but 9.9767 ms. To get around this
- * would require using a different timing source. Maybe someone
- * could use the RTC - I know that this can interrupt at frequencies
- * ranging from 8192Hz to 2Hz. If I had the energy, I'd somehow fix
- * it so that at startup, the timer code in sched.c would select
- * using either the RTC or the 8253 timer. The decision would be
- * based on whether there was any other device around that needed
- * to trample on the 8253. I'd set up the RTC to interrupt at 1024 Hz,
- * and then do some jiggery to have a version of do_timer that
- * advanced the clock by 1/1024 s. Every time that reached over 1/100
- * of a second, then do all the old code. If the time was kept correct
- * then do_gettimeoffset could just return 0 - there is no low order
- * divider that can be accessed.
- *
- * Ideally, you would be able to use the RTC for the speaker driver,
- * but it appears that the speaker driver really needs interrupt more
- * often than every 120 us or so.
- *
- * Anyway, this needs more thought.... pjsg (1993-08-28)
- *
- * If you are really that interested, you should be reading
- * comp.protocols.time.ntp!
- */
- static unsigned long do_slow_gettimeoffset(void)
- {
- int count;
- static int count_p = LATCH; /* for the first call after boot */
- static unsigned long jiffies_p = 0;
- /*
- * cache volatile jiffies temporarily; we have IRQs turned off.
- */
- unsigned long jiffies_t;
- /* gets recalled with irq locally disabled */
- spin_lock(&i8253_lock);
- /* timer count may underflow right here */
- outb_p(0x00, 0x43); /* latch the count ASAP */
- count = inb_p(0x40); /* read the latched count */
- /*
- * We do this guaranteed double memory access instead of a _p
- * postfix in the previous port access. Wheee, hackady hack
- */
- jiffies_t = jiffies;
- count |= inb_p(0x40) << 8;
-
- /* VIA686a test code... reset the latch if count > max + 1 */
- if (count > LATCH) {
- outb_p(0x34, 0x43);
- outb_p(LATCH & 0xff, 0x40);
- outb(LATCH >> 8, 0x40);
- count = LATCH - 1;
- }
-
- spin_unlock(&i8253_lock);
- /*
- * avoiding timer inconsistencies (they are rare, but they happen)...
- * there are two kinds of problems that must be avoided here:
- * 1. the timer counter underflows
- * 2. hardware problem with the timer, not giving us continuous time,
- * the counter does small "jumps" upwards on some Pentium systems,
- * (see c't 95/10 page 335 for Neptun bug.)
- */
- /* you can safely undefine this if you don't have the Neptune chipset */
- #define BUGGY_NEPTUN_TIMER
- if( jiffies_t == jiffies_p ) {
- if( count > count_p ) {
- /* the nutcase */
- int i;
- spin_lock(&i8259A_lock);
- /*
- * This is tricky when I/O APICs are used;
- * see do_timer_interrupt().
- */
- i = inb(0x20);
- spin_unlock(&i8259A_lock);
- /* assumption about timer being IRQ0 */
- if (i & 0x01) {
- /*
- * We cannot detect lost timer interrupts ...
- * well, that's why we call them lost, don't we? :)
- * [hmm, on the Pentium and Alpha we can ... sort of]
- */
- count -= LATCH;
- } else {
- #ifdef BUGGY_NEPTUN_TIMER
- /*
- * for the Neptun bug we know that the 'latch'
- * command doesnt latch the high and low value
- * of the counter atomically. Thus we have to
- * substract 256 from the counter
- * ... funny, isnt it? :)
- */
- count -= 256;
- #else
- printk("do_slow_gettimeoffset(): hardware timer problem?n");
- #endif
- }
- }
- } else
- jiffies_p = jiffies_t;
- count_p = count;
- count = ((LATCH-1) - count) * TICK_SIZE;
- count = (count + LATCH/2) / LATCH;
- return count;
- }
- static unsigned long (*do_gettimeoffset)(void) = do_slow_gettimeoffset;
- #else
- #define do_gettimeoffset() do_fast_gettimeoffset()
- #endif
- /*
- * This version of gettimeofday has microsecond resolution
- * and better than microsecond precision on fast x86 machines with TSC.
- */
- void do_gettimeofday(struct timeval *tv)
- {
- unsigned long flags;
- unsigned long usec, sec;
- read_lock_irqsave(&xtime_lock, flags);
- usec = do_gettimeoffset();
- {
- unsigned long lost = jiffies - wall_jiffies;
- if (lost)
- usec += lost * (1000000 / HZ);
- }
- sec = xtime.tv_sec;
- usec += xtime.tv_usec;
- read_unlock_irqrestore(&xtime_lock, flags);
- while (usec >= 1000000) {
- usec -= 1000000;
- sec++;
- }
- tv->tv_sec = sec;
- tv->tv_usec = usec;
- }
- void do_settimeofday(struct timeval *tv)
- {
- write_lock_irq(&xtime_lock);
- /*
- * This is revolting. We need to set "xtime" correctly. However, the
- * value in this location is the value at the most recent update of
- * wall time. Discover what correction gettimeofday() would have
- * made, and then undo it!
- */
- tv->tv_usec -= do_gettimeoffset();
- tv->tv_usec -= (jiffies - wall_jiffies) * (1000000 / HZ);
- while (tv->tv_usec < 0) {
- tv->tv_usec += 1000000;
- tv->tv_sec--;
- }
- xtime = *tv;
- time_adjust = 0; /* stop active adjtime() */
- time_status |= STA_UNSYNC;
- time_maxerror = NTP_PHASE_LIMIT;
- time_esterror = NTP_PHASE_LIMIT;
- write_unlock_irq(&xtime_lock);
- }
- /*
- * In order to set the CMOS clock precisely, set_rtc_mmss has to be
- * called 500 ms after the second nowtime has started, because when
- * nowtime is written into the registers of the CMOS clock, it will
- * jump to the next second precisely 500 ms later. Check the Motorola
- * MC146818A or Dallas DS12887 data sheet for details.
- *
- * BUG: This routine does not handle hour overflow properly; it just
- * sets the minutes. Usually you'll only notice that after reboot!
- */
- static int set_rtc_mmss(unsigned long nowtime)
- {
- int retval = 0;
- int real_seconds, real_minutes, cmos_minutes;
- unsigned char save_control, save_freq_select;
- /* gets recalled with irq locally disabled */
- spin_lock(&rtc_lock);
- save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
- CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
- save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
- CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
- cmos_minutes = CMOS_READ(RTC_MINUTES);
- if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
- BCD_TO_BIN(cmos_minutes);
- /*
- * since we're only adjusting minutes and seconds,
- * don't interfere with hour overflow. This avoids
- * messing with unknown time zones but requires your
- * RTC not to be off by more than 15 minutes
- */
- real_seconds = nowtime % 60;
- real_minutes = nowtime / 60;
- if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
- real_minutes += 30; /* correct for half hour time zone */
- real_minutes %= 60;
- if (abs(real_minutes - cmos_minutes) < 30) {
- if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
- BIN_TO_BCD(real_seconds);
- BIN_TO_BCD(real_minutes);
- }
- CMOS_WRITE(real_seconds,RTC_SECONDS);
- CMOS_WRITE(real_minutes,RTC_MINUTES);
- } else {
- printk(KERN_WARNING
- "set_rtc_mmss: can't update from %d to %dn",
- cmos_minutes, real_minutes);
- retval = -1;
- }
- /* The following flags have to be released exactly in this order,
- * otherwise the DS12887 (popular MC146818A clone with integrated
- * battery and quartz) will not reset the oscillator and will not
- * update precisely 500 ms later. You won't find this mentioned in
- * the Dallas Semiconductor data sheets, but who believes data
- * sheets anyway ... -- Markus Kuhn
- */
- CMOS_WRITE(save_control, RTC_CONTROL);
- CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
- spin_unlock(&rtc_lock);
- return retval;
- }
- /* last time the cmos clock got updated */
- static long last_rtc_update;
- int timer_ack;
- /*
- * timer_interrupt() needs to keep up the real-time clock,
- * as well as call the "do_timer()" routine every clocktick
- */
- static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
- {
- #ifdef CONFIG_X86_IO_APIC
- if (timer_ack) {
- /*
- * Subtle, when I/O APICs are used we have to ack timer IRQ
- * manually to reset the IRR bit for do_slow_gettimeoffset().
- * This will also deassert NMI lines for the watchdog if run
- * on an 82489DX-based system.
- */
- spin_lock(&i8259A_lock);
- outb(0x0c, 0x20);
- /* Ack the IRQ; AEOI will end it automatically. */
- inb(0x20);
- spin_unlock(&i8259A_lock);
- }
- #endif
- #ifdef CONFIG_VISWS
- /* Clear the interrupt */
- co_cpu_write(CO_CPU_STAT,co_cpu_read(CO_CPU_STAT) & ~CO_STAT_TIMEINTR);
- #endif
- do_timer(regs);
- /*
- * In the SMP case we use the local APIC timer interrupt to do the
- * profiling, except when we simulate SMP mode on a uniprocessor
- * system, in that case we have to call the local interrupt handler.
- */
- #ifndef CONFIG_X86_LOCAL_APIC
- if (!user_mode(regs))
- x86_do_profile(regs->eip);
- #else
- if (!using_apic_timer)
- smp_local_timer_interrupt(regs);
- #endif
- /*
- * If we have an externally synchronized Linux clock, then update
- * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
- * called as close as possible to 500 ms before the new second starts.
- */
- if ((time_status & STA_UNSYNC) == 0 &&
- xtime.tv_sec > last_rtc_update + 660 &&
- xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 &&
- xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) {
- if (set_rtc_mmss(xtime.tv_sec) == 0)
- last_rtc_update = xtime.tv_sec;
- else
- last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
- }
-
- #ifdef CONFIG_MCA
- if( MCA_bus ) {
- /* The PS/2 uses level-triggered interrupts. You can't
- turn them off, nor would you want to (any attempt to
- enable edge-triggered interrupts usually gets intercepted by a
- special hardware circuit). Hence we have to acknowledge
- the timer interrupt. Through some incredibly stupid
- design idea, the reset for IRQ 0 is done by setting the
- high bit of the PPI port B (0x61). Note that some PS/2s,
- notably the 55SX, work fine if this is removed. */
- irq = inb_p( 0x61 ); /* read the current state */
- outb_p( irq|0x80, 0x61 ); /* reset the IRQ */
- }
- #endif
- }
- static int use_tsc;
- /*
- * This is the same as the above, except we _also_ save the current
- * Time Stamp Counter value at the time of the timer interrupt, so that
- * we later on can estimate the time of day more exactly.
- */
- static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
- {
- int count;
- /*
- * Here we are in the timer irq handler. We just have irqs locally
- * disabled but we don't know if the timer_bh is running on the other
- * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
- * the irq version of write_lock because as just said we have irq
- * locally disabled. -arca
- */
- write_lock(&xtime_lock);
- if (use_tsc)
- {
- /*
- * It is important that these two operations happen almost at
- * the same time. We do the RDTSC stuff first, since it's
- * faster. To avoid any inconsistencies, we need interrupts
- * disabled locally.
- */
- /*
- * Interrupts are just disabled locally since the timer irq
- * has the SA_INTERRUPT flag set. -arca
- */
-
- /* read Pentium cycle counter */
- rdtscl(last_tsc_low);
- spin_lock(&i8253_lock);
- outb_p(0x00, 0x43); /* latch the count ASAP */
- count = inb_p(0x40); /* read the latched count */
- count |= inb(0x40) << 8;
- spin_unlock(&i8253_lock);
- count = ((LATCH-1) - count) * TICK_SIZE;
- delay_at_last_interrupt = (count + LATCH/2) / LATCH;
- }
-
- do_timer_interrupt(irq, NULL, regs);
- write_unlock(&xtime_lock);
- }
- /* not static: needed by APM */
- unsigned long get_cmos_time(void)
- {
- unsigned int year, mon, day, hour, min, sec;
- int i;
- spin_lock(&rtc_lock);
- /* The Linux interpretation of the CMOS clock register contents:
- * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
- * RTC registers show the second which has precisely just started.
- * Let's hope other operating systems interpret the RTC the same way.
- */
- /* read RTC exactly on falling edge of update flag */
- for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */
- if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
- break;
- for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms */
- if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
- break;
- do { /* Isn't this overkill ? UIP above should guarantee consistency */
- sec = CMOS_READ(RTC_SECONDS);
- min = CMOS_READ(RTC_MINUTES);
- hour = CMOS_READ(RTC_HOURS);
- day = CMOS_READ(RTC_DAY_OF_MONTH);
- mon = CMOS_READ(RTC_MONTH);
- year = CMOS_READ(RTC_YEAR);
- } while (sec != CMOS_READ(RTC_SECONDS));
- if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
- {
- BCD_TO_BIN(sec);
- BCD_TO_BIN(min);
- BCD_TO_BIN(hour);
- BCD_TO_BIN(day);
- BCD_TO_BIN(mon);
- BCD_TO_BIN(year);
- }
- spin_unlock(&rtc_lock);
- if ((year += 1900) < 1970)
- year += 100;
- return mktime(year, mon, day, hour, min, sec);
- }
- static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};
- /* ------ Calibrate the TSC -------
- * Return 2^32 * (1 / (TSC clocks per usec)) for do_fast_gettimeoffset().
- * Too much 64-bit arithmetic here to do this cleanly in C, and for
- * accuracy's sake we want to keep the overhead on the CTC speaker (channel 2)
- * output busy loop as low as possible. We avoid reading the CTC registers
- * directly because of the awkward 8-bit access mechanism of the 82C54
- * device.
- */
- #define CALIBRATE_LATCH (5 * LATCH)
- #define CALIBRATE_TIME (5 * 1000020/HZ)
- static unsigned long __init calibrate_tsc(void)
- {
- /* Set the Gate high, disable speaker */
- outb((inb(0x61) & ~0x02) | 0x01, 0x61);
- /*
- * Now let's take care of CTC channel 2
- *
- * Set the Gate high, program CTC channel 2 for mode 0,
- * (interrupt on terminal count mode), binary count,
- * load 5 * LATCH count, (LSB and MSB) to begin countdown.
- */
- outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
- outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
- outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
- {
- unsigned long startlow, starthigh;
- unsigned long endlow, endhigh;
- unsigned long count;
- rdtsc(startlow,starthigh);
- count = 0;
- do {
- count++;
- } while ((inb(0x61) & 0x20) == 0);
- rdtsc(endlow,endhigh);
- last_tsc_low = endlow;
- /* Error: ECTCNEVERSET */
- if (count <= 1)
- goto bad_ctc;
- /* 64-bit subtract - gcc just messes up with long longs */
- __asm__("subl %2,%0nt"
- "sbbl %3,%1"
- :"=a" (endlow), "=d" (endhigh)
- :"g" (startlow), "g" (starthigh),
- "0" (endlow), "1" (endhigh));
- /* Error: ECPUTOOFAST */
- if (endhigh)
- goto bad_ctc;
- /* Error: ECPUTOOSLOW */
- if (endlow <= CALIBRATE_TIME)
- goto bad_ctc;
- __asm__("divl %2"
- :"=a" (endlow), "=d" (endhigh)
- :"r" (endlow), "0" (0), "1" (CALIBRATE_TIME));
- return endlow;
- }
- /*
- * The CTC wasn't reliable: we got a hit on the very first read,
- * or the CPU was so fast/slow that the quotient wouldn't fit in
- * 32 bits..
- */
- bad_ctc:
- return 0;
- }
- void __init time_init(void)
- {
- extern int x86_udelay_tsc;
-
- xtime.tv_sec = get_cmos_time();
- xtime.tv_usec = 0;
- /*
- * If we have APM enabled or the CPU clock speed is variable
- * (CPU stops clock on HLT or slows clock to save power)
- * then the TSC timestamps may diverge by up to 1 jiffy from
- * 'real time' but nothing will break.
- * The most frequent case is that the CPU is "woken" from a halt
- * state by the timer interrupt itself, so we get 0 error. In the
- * rare cases where a driver would "wake" the CPU and request a
- * timestamp, the maximum error is < 1 jiffy. But timestamps are
- * still perfectly ordered.
- * Note that the TSC counter will be reset if APM suspends
- * to disk; this won't break the kernel, though, 'cuz we're
- * smart. See arch/i386/kernel/apm.c.
- */
- /*
- * Firstly we have to do a CPU check for chips with
- * a potentially buggy TSC. At this point we haven't run
- * the ident/bugs checks so we must run this hook as it
- * may turn off the TSC flag.
- *
- * NOTE: this doesnt yet handle SMP 486 machines where only
- * some CPU's have a TSC. Thats never worked and nobody has
- * moaned if you have the only one in the world - you fix it!
- */
-
- dodgy_tsc();
-
- if (cpu_has_tsc) {
- unsigned long tsc_quotient = calibrate_tsc();
- if (tsc_quotient) {
- fast_gettimeoffset_quotient = tsc_quotient;
- use_tsc = 1;
- /*
- * We could be more selective here I suspect
- * and just enable this for the next intel chips ?
- */
- x86_udelay_tsc = 1;
- #ifndef do_gettimeoffset
- do_gettimeoffset = do_fast_gettimeoffset;
- #endif
- /* report CPU clock rate in Hz.
- * The formula is (10^6 * 2^32) / (2^32 * 1 / (clocks/us)) =
- * clock/second. Our precision is about 100 ppm.
- */
- { unsigned long eax=0, edx=1000;
- __asm__("divl %2"
- :"=a" (cpu_khz), "=d" (edx)
- :"r" (tsc_quotient),
- "0" (eax), "1" (edx));
- printk("Detected %lu.%03lu MHz processor.n", cpu_khz / 1000, cpu_khz % 1000);
- }
- }
- }
- #ifdef CONFIG_VISWS
- printk("Starting Cobalt Timer system clockn");
- /* Set the countdown value */
- co_cpu_write(CO_CPU_TIMEVAL, CO_TIME_HZ/HZ);
- /* Start the timer */
- co_cpu_write(CO_CPU_CTRL, co_cpu_read(CO_CPU_CTRL) | CO_CTRL_TIMERUN);
- /* Enable (unmask) the timer interrupt */
- co_cpu_write(CO_CPU_CTRL, co_cpu_read(CO_CPU_CTRL) & ~CO_CTRL_TIMEMASK);
- /* Wire cpu IDT entry to s/w handler (and Cobalt APIC to IDT) */
- setup_irq(CO_IRQ_TIMER, &irq0);
- #else
- setup_irq(0, &irq0);
- #endif
- }