multi_arith.h
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:21k
- /* multi_arith.h: multi-precision integer arithmetic functions, needed
- to do extended-precision floating point.
- (c) 1998 David Huggins-Daines.
- Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
- David Mosberger-Tang.
- You may copy, modify, and redistribute this file under the terms of
- the GNU General Public License, version 2, or any later version, at
- your convenience. */
- /* Note:
- These are not general multi-precision math routines. Rather, they
- implement the subset of integer arithmetic that we need in order to
- multiply, divide, and normalize 128-bit unsigned mantissae. */
- #ifndef MULTI_ARITH_H
- #define MULTI_ARITH_H
- #if 0 /* old code... */
- /* Unsigned only, because we don't need signs to multiply and divide. */
- typedef unsigned int int128[4];
- /* Word order */
- enum {
- MSW128,
- NMSW128,
- NLSW128,
- LSW128
- };
- /* big-endian */
- #define LO_WORD(ll) (((unsigned int *) &ll)[1])
- #define HI_WORD(ll) (((unsigned int *) &ll)[0])
- /* Convenience functions to stuff various integer values into int128s */
- extern inline void zero128(int128 a)
- {
- a[LSW128] = a[NLSW128] = a[NMSW128] = a[MSW128] = 0;
- }
- /* Human-readable word order in the arguments */
- extern inline void set128(unsigned int i3,
- unsigned int i2,
- unsigned int i1,
- unsigned int i0,
- int128 a)
- {
- a[LSW128] = i0;
- a[NLSW128] = i1;
- a[NMSW128] = i2;
- a[MSW128] = i3;
- }
- /* Convenience functions (for testing as well) */
- extern inline void int64_to_128(unsigned long long src,
- int128 dest)
- {
- dest[LSW128] = (unsigned int) src;
- dest[NLSW128] = src >> 32;
- dest[NMSW128] = dest[MSW128] = 0;
- }
- extern inline void int128_to_64(const int128 src,
- unsigned long long *dest)
- {
- *dest = src[LSW128] | (long long) src[NLSW128] << 32;
- }
- extern inline void put_i128(const int128 a)
- {
- printk("%08x %08x %08x %08xn", a[MSW128], a[NMSW128],
- a[NLSW128], a[LSW128]);
- }
- /* Internal shifters:
- Note that these are only good for 0 < count < 32.
- */
- extern inline void _lsl128(unsigned int count, int128 a)
- {
- a[MSW128] = (a[MSW128] << count) | (a[NMSW128] >> (32 - count));
- a[NMSW128] = (a[NMSW128] << count) | (a[NLSW128] >> (32 - count));
- a[NLSW128] = (a[NLSW128] << count) | (a[LSW128] >> (32 - count));
- a[LSW128] <<= count;
- }
- extern inline void _lsr128(unsigned int count, int128 a)
- {
- a[LSW128] = (a[LSW128] >> count) | (a[NLSW128] << (32 - count));
- a[NLSW128] = (a[NLSW128] >> count) | (a[NMSW128] << (32 - count));
- a[NMSW128] = (a[NMSW128] >> count) | (a[MSW128] << (32 - count));
- a[MSW128] >>= count;
- }
- /* Should be faster, one would hope */
- extern inline void lslone128(int128 a)
- {
- asm volatile ("lsl.l #1,%0n"
- "roxl.l #1,%1n"
- "roxl.l #1,%2n"
- "roxl.l #1,%3n"
- :
- "=d" (a[LSW128]),
- "=d"(a[NLSW128]),
- "=d"(a[NMSW128]),
- "=d"(a[MSW128])
- :
- "0"(a[LSW128]),
- "1"(a[NLSW128]),
- "2"(a[NMSW128]),
- "3"(a[MSW128]));
- }
- extern inline void lsrone128(int128 a)
- {
- asm volatile ("lsr.l #1,%0n"
- "roxr.l #1,%1n"
- "roxr.l #1,%2n"
- "roxr.l #1,%3n"
- :
- "=d" (a[MSW128]),
- "=d"(a[NMSW128]),
- "=d"(a[NLSW128]),
- "=d"(a[LSW128])
- :
- "0"(a[MSW128]),
- "1"(a[NMSW128]),
- "2"(a[NLSW128]),
- "3"(a[LSW128]));
- }
- /* Generalized 128-bit shifters:
- These bit-shift to a multiple of 32, then move whole longwords. */
- extern inline void lsl128(unsigned int count, int128 a)
- {
- int wordcount, i;
- if (count % 32)
- _lsl128(count % 32, a);
- if (0 == (wordcount = count / 32))
- return;
- /* argh, gak, endian-sensitive */
- for (i = 0; i < 4 - wordcount; i++) {
- a[i] = a[i + wordcount];
- }
- for (i = 3; i >= 4 - wordcount; --i) {
- a[i] = 0;
- }
- }
- extern inline void lsr128(unsigned int count, int128 a)
- {
- int wordcount, i;
- if (count % 32)
- _lsr128(count % 32, a);
- if (0 == (wordcount = count / 32))
- return;
- for (i = 3; i >= wordcount; --i) {
- a[i] = a[i - wordcount];
- }
- for (i = 0; i < wordcount; i++) {
- a[i] = 0;
- }
- }
- extern inline int orl128(int a, int128 b)
- {
- b[LSW128] |= a;
- }
- extern inline int btsthi128(const int128 a)
- {
- return a[MSW128] & 0x80000000;
- }
- /* test bits (numbered from 0 = LSB) up to and including "top" */
- extern inline int bftestlo128(int top, const int128 a)
- {
- int r = 0;
- if (top > 31)
- r |= a[LSW128];
- if (top > 63)
- r |= a[NLSW128];
- if (top > 95)
- r |= a[NMSW128];
- r |= a[3 - (top / 32)] & ((1 << (top % 32 + 1)) - 1);
- return (r != 0);
- }
- /* Aargh. We need these because GCC is broken */
- /* FIXME: do them in assembly, for goodness' sake! */
- extern inline void mask64(int pos, unsigned long long *mask)
- {
- *mask = 0;
- if (pos < 32) {
- LO_WORD(*mask) = (1 << pos) - 1;
- return;
- }
- LO_WORD(*mask) = -1;
- HI_WORD(*mask) = (1 << (pos - 32)) - 1;
- }
- extern inline void bset64(int pos, unsigned long long *dest)
- {
- /* This conditional will be optimized away. Thanks, GCC! */
- if (pos < 32)
- asm volatile ("bset %1,%0":"=m"
- (LO_WORD(*dest)):"id"(pos));
- else
- asm volatile ("bset %1,%0":"=m"
- (HI_WORD(*dest)):"id"(pos - 32));
- }
- extern inline int btst64(int pos, unsigned long long dest)
- {
- if (pos < 32)
- return (0 != (LO_WORD(dest) & (1 << pos)));
- else
- return (0 != (HI_WORD(dest) & (1 << (pos - 32))));
- }
- extern inline void lsl64(int count, unsigned long long *dest)
- {
- if (count < 32) {
- HI_WORD(*dest) = (HI_WORD(*dest) << count)
- | (LO_WORD(*dest) >> count);
- LO_WORD(*dest) <<= count;
- return;
- }
- count -= 32;
- HI_WORD(*dest) = LO_WORD(*dest) << count;
- LO_WORD(*dest) = 0;
- }
- extern inline void lsr64(int count, unsigned long long *dest)
- {
- if (count < 32) {
- LO_WORD(*dest) = (LO_WORD(*dest) >> count)
- | (HI_WORD(*dest) << (32 - count));
- HI_WORD(*dest) >>= count;
- return;
- }
- count -= 32;
- LO_WORD(*dest) = HI_WORD(*dest) >> count;
- HI_WORD(*dest) = 0;
- }
- #endif
- extern inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt)
- {
- reg->exp += cnt;
- switch (cnt) {
- case 0 ... 8:
- reg->lowmant = reg->mant.m32[1] << (8 - cnt);
- reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
- (reg->mant.m32[0] << (32 - cnt));
- reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
- break;
- case 9 ... 32:
- reg->lowmant = reg->mant.m32[1] >> (cnt - 8);
- if (reg->mant.m32[1] << (40 - cnt))
- reg->lowmant |= 1;
- reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
- (reg->mant.m32[0] << (32 - cnt));
- reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
- break;
- case 33 ... 39:
- asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant)
- : "m" (reg->mant.m32[0]), "d" (64 - cnt));
- if (reg->mant.m32[1] << (40 - cnt))
- reg->lowmant |= 1;
- reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
- reg->mant.m32[0] = 0;
- break;
- case 40 ... 71:
- reg->lowmant = reg->mant.m32[0] >> (cnt - 40);
- if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1])
- reg->lowmant |= 1;
- reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
- reg->mant.m32[0] = 0;
- break;
- default:
- reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1];
- reg->mant.m32[0] = 0;
- reg->mant.m32[1] = 0;
- break;
- }
- }
- extern inline int fp_overnormalize(struct fp_ext *reg)
- {
- int shift;
- if (reg->mant.m32[0]) {
- asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0]));
- reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift));
- reg->mant.m32[1] = (reg->mant.m32[1] << shift);
- } else {
- asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1]));
- reg->mant.m32[0] = (reg->mant.m32[1] << shift);
- reg->mant.m32[1] = 0;
- shift += 32;
- }
- return shift;
- }
- extern inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src)
- {
- int carry;
- /* we assume here, gcc only insert move and a clr instr */
- asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant)
- : "g,d" (src->lowmant), "0,0" (dest->lowmant));
- asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1])
- : "d" (src->mant.m32[1]), "0" (dest->mant.m32[1]));
- asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0])
- : "d" (src->mant.m32[0]), "0" (dest->mant.m32[0]));
- asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0));
- return carry;
- }
- extern inline int fp_addcarry(struct fp_ext *reg)
- {
- if (++reg->exp == 0x7fff) {
- if (reg->mant.m64)
- fp_set_sr(FPSR_EXC_INEX2);
- reg->mant.m64 = 0;
- fp_set_sr(FPSR_EXC_OVFL);
- return 0;
- }
- reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0);
- reg->mant.m32[1] = (reg->mant.m32[1] >> 1) |
- (reg->mant.m32[0] << 31);
- reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000;
- return 1;
- }
- extern inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1, struct fp_ext *src2)
- {
- /* we assume here, gcc only insert move and a clr instr */
- asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant)
- : "g,d" (src2->lowmant), "0,0" (src1->lowmant));
- asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1])
- : "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1]));
- asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0])
- : "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0]));
- }
- #define fp_mul64(desth, destl, src1, src2) ({
- asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth)
- : "g" (src1), "0" (src2));
- })
- #define fp_div64(quot, rem, srch, srcl, div)
- asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem)
- : "dm" (div), "1" (srch), "0" (srcl))
- #define fp_add64(dest1, dest2, src1, src2) ({
- asm ("add.l %1,%0" : "=d,=dm" (dest2)
- : "dm,d" (src2), "0,0" (dest2));
- asm ("addx.l %1,%0" : "=d" (dest1)
- : "d" (src1), "0" (dest1));
- })
- #define fp_addx96(dest, src) ({
- /* we assume here, gcc only insert move and a clr instr */
- asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2])
- : "g,d" (temp.m32[1]), "0,0" (dest->m32[2]));
- asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1])
- : "d" (temp.m32[0]), "0" (dest->m32[1]));
- asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0])
- : "d" (0), "0" (dest->m32[0]));
- })
- #define fp_sub64(dest, src) ({
- asm ("sub.l %1,%0" : "=d,=dm" (dest.m32[1])
- : "dm,d" (src.m32[1]), "0,0" (dest.m32[1]));
- asm ("subx.l %1,%0" : "=d" (dest.m32[0])
- : "d" (src.m32[0]), "0" (dest.m32[0]));
- })
- #define fp_sub96c(dest, srch, srcm, srcl) ({
- char carry;
- asm ("sub.l %1,%0" : "=d,=dm" (dest.m32[2])
- : "dm,d" (srcl), "0,0" (dest.m32[2]));
- asm ("subx.l %1,%0" : "=d" (dest.m32[1])
- : "d" (srcm), "0" (dest.m32[1]));
- asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0])
- : "d" (srch), "1" (dest.m32[0]));
- carry;
- })
- extern inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1, struct fp_ext *src2)
- {
- union fp_mant64 temp;
- fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]);
- fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]);
- fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]);
- fp_addx96(dest, temp);
- fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]);
- fp_addx96(dest, temp);
- }
- extern inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src, struct fp_ext *div)
- {
- union fp_mant128 tmp;
- union fp_mant64 tmp64;
- unsigned long *mantp = dest->m32;
- unsigned long fix, rem, first, dummy;
- int i;
- /* the algorithm below requires dest to be smaller than div,
- but both have the high bit set */
- if (src->mant.m64 >= div->mant.m64) {
- fp_sub64(src->mant, div->mant);
- *mantp = 1;
- } else
- *mantp = 0;
- mantp++;
- /* basic idea behind this algorithm: we can't divide two 64bit numbers
- (AB/CD) directly, but we can calculate AB/C0, but this means this
- quotient is off by C0/CD, so we have to multiply the first result
- to fix the result, after that we have nearly the correct result
- and only a few corrections are needed. */
- /* C0/CD can be precalculated, but it's an 64bit division again, but
- we can make it a bit easier, by dividing first through C so we get
- 10/1D and now only a single shift and the value fits into 32bit. */
- fix = 0x80000000;
- dummy = div->mant.m32[1] / div->mant.m32[0] + 1;
- dummy = (dummy >> 1) | fix;
- fp_div64(fix, dummy, fix, 0, dummy);
- fix--;
- for (i = 0; i < 3; i++, mantp++) {
- if (src->mant.m32[0] == div->mant.m32[0]) {
- fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]);
- fp_mul64(*mantp, dummy, first, fix);
- *mantp += fix;
- } else {
- fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]);
- fp_mul64(*mantp, dummy, first, fix);
- }
- fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp);
- fp_add64(tmp.m32[0], tmp.m32[1], 0, rem);
- tmp.m32[2] = 0;
- fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]);
- fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]);
- src->mant.m32[0] = tmp.m32[1];
- src->mant.m32[1] = tmp.m32[2];
- while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) {
- src->mant.m32[0] = tmp.m32[1];
- src->mant.m32[1] = tmp.m32[2];
- *mantp += 1;
- }
- }
- }
- #if 0
- extern inline unsigned int fp_fls128(union fp_mant128 *src)
- {
- unsigned long data;
- unsigned int res, off;
- if ((data = src->m32[0]))
- off = 0;
- else if ((data = src->m32[1]))
- off = 32;
- else if ((data = src->m32[2]))
- off = 64;
- else if ((data = src->m32[3]))
- off = 96;
- else
- return 128;
- asm ("bfffo %1{#0,#32},%0" : "=d" (res) : "dm" (data));
- return res + off;
- }
- extern inline void fp_shiftmant128(union fp_mant128 *src, int shift)
- {
- unsigned long sticky;
- switch (shift) {
- case 0:
- return;
- case 1:
- asm volatile ("lsl.l #1,%0"
- : "=d" (src->m32[3]) : "0" (src->m32[3]));
- asm volatile ("roxl.l #1,%0"
- : "=d" (src->m32[2]) : "0" (src->m32[2]));
- asm volatile ("roxl.l #1,%0"
- : "=d" (src->m32[1]) : "0" (src->m32[1]));
- asm volatile ("roxl.l #1,%0"
- : "=d" (src->m32[0]) : "0" (src->m32[0]));
- return;
- case 2 ... 31:
- src->m32[0] = (src->m32[0] << shift) | (src->m32[1] >> (32 - shift));
- src->m32[1] = (src->m32[1] << shift) | (src->m32[2] >> (32 - shift));
- src->m32[2] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift));
- src->m32[3] = (src->m32[3] << shift);
- return;
- case 32 ... 63:
- shift -= 32;
- src->m32[0] = (src->m32[1] << shift) | (src->m32[2] >> (32 - shift));
- src->m32[1] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift));
- src->m32[2] = (src->m32[3] << shift);
- src->m32[3] = 0;
- return;
- case 64 ... 95:
- shift -= 64;
- src->m32[0] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift));
- src->m32[1] = (src->m32[3] << shift);
- src->m32[2] = src->m32[3] = 0;
- return;
- case 96 ... 127:
- shift -= 96;
- src->m32[0] = (src->m32[3] << shift);
- src->m32[1] = src->m32[2] = src->m32[3] = 0;
- return;
- case -31 ... -1:
- shift = -shift;
- sticky = 0;
- if (src->m32[3] << (32 - shift))
- sticky = 1;
- src->m32[3] = (src->m32[3] >> shift) | (src->m32[2] << (32 - shift)) | sticky;
- src->m32[2] = (src->m32[2] >> shift) | (src->m32[1] << (32 - shift));
- src->m32[1] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift));
- src->m32[0] = (src->m32[0] >> shift);
- return;
- case -63 ... -32:
- shift = -shift - 32;
- sticky = 0;
- if ((src->m32[2] << (32 - shift)) || src->m32[3])
- sticky = 1;
- src->m32[3] = (src->m32[2] >> shift) | (src->m32[1] << (32 - shift)) | sticky;
- src->m32[2] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift));
- src->m32[1] = (src->m32[0] >> shift);
- src->m32[0] = 0;
- return;
- case -95 ... -64:
- shift = -shift - 64;
- sticky = 0;
- if ((src->m32[1] << (32 - shift)) || src->m32[2] || src->m32[3])
- sticky = 1;
- src->m32[3] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift)) | sticky;
- src->m32[2] = (src->m32[0] >> shift);
- src->m32[1] = src->m32[0] = 0;
- return;
- case -127 ... -96:
- shift = -shift - 96;
- sticky = 0;
- if ((src->m32[0] << (32 - shift)) || src->m32[1] || src->m32[2] || src->m32[3])
- sticky = 1;
- src->m32[3] = (src->m32[0] >> shift) | sticky;
- src->m32[2] = src->m32[1] = src->m32[0] = 0;
- return;
- }
- if (shift < 0 && (src->m32[0] || src->m32[1] || src->m32[2] || src->m32[3]))
- src->m32[3] = 1;
- else
- src->m32[3] = 0;
- src->m32[2] = 0;
- src->m32[1] = 0;
- src->m32[0] = 0;
- }
- #endif
- extern inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src, int shift)
- {
- unsigned long tmp;
- switch (shift) {
- case 0:
- dest->mant.m64 = src->m64[0];
- dest->lowmant = src->m32[2] >> 24;
- if (src->m32[3] || (src->m32[2] << 8))
- dest->lowmant |= 1;
- break;
- case 1:
- asm volatile ("lsl.l #1,%0"
- : "=d" (tmp) : "0" (src->m32[2]));
- asm volatile ("roxl.l #1,%0"
- : "=d" (dest->mant.m32[1]) : "0" (src->m32[1]));
- asm volatile ("roxl.l #1,%0"
- : "=d" (dest->mant.m32[0]) : "0" (src->m32[0]));
- dest->lowmant = tmp >> 24;
- if (src->m32[3] || (tmp << 8))
- dest->lowmant |= 1;
- break;
- case 31:
- asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
- : "=d" (dest->mant.m32[0])
- : "d" (src->m32[0]), "0" (src->m32[1]));
- asm volatile ("roxr.l #1,%0"
- : "=d" (dest->mant.m32[1]) : "0" (src->m32[2]));
- asm volatile ("roxr.l #1,%0"
- : "=d" (tmp) : "0" (src->m32[3]));
- dest->lowmant = tmp >> 24;
- if (src->m32[3] << 7)
- dest->lowmant |= 1;
- break;
- case 32:
- dest->mant.m32[0] = src->m32[1];
- dest->mant.m32[1] = src->m32[2];
- dest->lowmant = src->m32[3] >> 24;
- if (src->m32[3] << 8)
- dest->lowmant |= 1;
- break;
- }
- }
- #if 0 /* old code... */
- extern inline int fls(unsigned int a)
- {
- int r;
- asm volatile ("bfffo %1{#0,#32},%0"
- : "=d" (r) : "md" (a));
- return r;
- }
- /* fls = "find last set" (cf. ffs(3)) */
- extern inline int fls128(const int128 a)
- {
- if (a[MSW128])
- return fls(a[MSW128]);
- if (a[NMSW128])
- return fls(a[NMSW128]) + 32;
- /* XXX: it probably never gets beyond this point in actual
- use, but that's indicative of a more general problem in the
- algorithm (i.e. as per the actual 68881 implementation, we
- really only need at most 67 bits of precision [plus
- overflow]) so I'm not going to fix it. */
- if (a[NLSW128])
- return fls(a[NLSW128]) + 64;
- if (a[LSW128])
- return fls(a[LSW128]) + 96;
- else
- return -1;
- }
- extern inline int zerop128(const int128 a)
- {
- return !(a[LSW128] | a[NLSW128] | a[NMSW128] | a[MSW128]);
- }
- extern inline int nonzerop128(const int128 a)
- {
- return (a[LSW128] | a[NLSW128] | a[NMSW128] | a[MSW128]);
- }
- /* Addition and subtraction */
- /* Do these in "pure" assembly, because "extended" asm is unmanageable
- here */
- extern inline void add128(const int128 a, int128 b)
- {
- /* rotating carry flags */
- unsigned int carry[2];
- carry[0] = a[LSW128] > (0xffffffff - b[LSW128]);
- b[LSW128] += a[LSW128];
- carry[1] = a[NLSW128] > (0xffffffff - b[NLSW128] - carry[0]);
- b[NLSW128] = a[NLSW128] + b[NLSW128] + carry[0];
- carry[0] = a[NMSW128] > (0xffffffff - b[NMSW128] - carry[1]);
- b[NMSW128] = a[NMSW128] + b[NMSW128] + carry[1];
- b[MSW128] = a[MSW128] + b[MSW128] + carry[0];
- }
- /* Note: assembler semantics: "b -= a" */
- extern inline void sub128(const int128 a, int128 b)
- {
- /* rotating borrow flags */
- unsigned int borrow[2];
- borrow[0] = b[LSW128] < a[LSW128];
- b[LSW128] -= a[LSW128];
- borrow[1] = b[NLSW128] < a[NLSW128] + borrow[0];
- b[NLSW128] = b[NLSW128] - a[NLSW128] - borrow[0];
- borrow[0] = b[NMSW128] < a[NMSW128] + borrow[1];
- b[NMSW128] = b[NMSW128] - a[NMSW128] - borrow[1];
- b[MSW128] = b[MSW128] - a[MSW128] - borrow[0];
- }
- /* Poor man's 64-bit expanding multiply */
- extern inline void mul64(unsigned long long a,
- unsigned long long b,
- int128 c)
- {
- unsigned long long acc;
- int128 acc128;
- zero128(acc128);
- zero128(c);
- /* first the low words */
- if (LO_WORD(a) && LO_WORD(b)) {
- acc = (long long) LO_WORD(a) * LO_WORD(b);
- c[NLSW128] = HI_WORD(acc);
- c[LSW128] = LO_WORD(acc);
- }
- /* Next the high words */
- if (HI_WORD(a) && HI_WORD(b)) {
- acc = (long long) HI_WORD(a) * HI_WORD(b);
- c[MSW128] = HI_WORD(acc);
- c[NMSW128] = LO_WORD(acc);
- }
- /* The middle words */
- if (LO_WORD(a) && HI_WORD(b)) {
- acc = (long long) LO_WORD(a) * HI_WORD(b);
- acc128[NMSW128] = HI_WORD(acc);
- acc128[NLSW128] = LO_WORD(acc);
- add128(acc128, c);
- }
- /* The first and last words */
- if (HI_WORD(a) && LO_WORD(b)) {
- acc = (long long) HI_WORD(a) * LO_WORD(b);
- acc128[NMSW128] = HI_WORD(acc);
- acc128[NLSW128] = LO_WORD(acc);
- add128(acc128, c);
- }
- }
- /* Note: unsigned */
- extern inline int cmp128(int128 a, int128 b)
- {
- if (a[MSW128] < b[MSW128])
- return -1;
- if (a[MSW128] > b[MSW128])
- return 1;
- if (a[NMSW128] < b[NMSW128])
- return -1;
- if (a[NMSW128] > b[NMSW128])
- return 1;
- if (a[NLSW128] < b[NLSW128])
- return -1;
- if (a[NLSW128] > b[NLSW128])
- return 1;
- return (signed) a[LSW128] - b[LSW128];
- }
- inline void div128(int128 a, int128 b, int128 c)
- {
- int128 mask;
- /* Algorithm:
- Shift the divisor until it's at least as big as the
- dividend, keeping track of the position to which we've
- shifted it, i.e. the power of 2 which we've multiplied it
- by.
- Then, for this power of 2 (the mask), and every one smaller
- than it, subtract the mask from the dividend and add it to
- the quotient until the dividend is smaller than the raised
- divisor. At this point, divide the dividend and the mask
- by 2 (i.e. shift one place to the right). Lather, rinse,
- and repeat, until there are no more powers of 2 left. */
- /* FIXME: needless to say, there's room for improvement here too. */
- /* Shift up */
- /* XXX: since it just has to be "at least as big", we can
- probably eliminate this horribly wasteful loop. I will
- have to prove this first, though */
- set128(0, 0, 0, 1, mask);
- while (cmp128(b, a) < 0 && !btsthi128(b)) {
- lslone128(b);
- lslone128(mask);
- }
- /* Shift down */
- zero128(c);
- do {
- if (cmp128(a, b) >= 0) {
- sub128(b, a);
- add128(mask, c);
- }
- lsrone128(mask);
- lsrone128(b);
- } while (nonzerop128(mask));
- /* The remainder is in a... */
- }
- #endif
- #endif /* MULTI_ARITH_H */