fp_util.S
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:36k
- /*
- * fp_util.S
- *
- * Copyright Roman Zippel, 1997. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, and the entire permission notice in its entirety,
- * including the disclaimer of warranties.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. The name of the author may not be used to endorse or promote
- * products derived from this software without specific prior
- * written permission.
- *
- * ALTERNATIVELY, this product may be distributed under the terms of
- * the GNU General Public License, in which case the provisions of the GPL are
- * required INSTEAD OF the above restrictions. (This clause is
- * necessary due to a potential bad interaction between the GPL and
- * the restrictions contained in a BSD-style copyright.)
- *
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
- * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
- * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
- * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
- * OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #include <linux/config.h>
- #include "fp_emu.h"
- /*
- * Here are lots of conversion and normalization functions mainly
- * used by fp_scan.S
- * Note that these functions are optimized for "normal" numbers,
- * these are handled first and exit as fast as possible, this is
- * especially important for fp_normalize_ext/fp_conv_ext2ext, as
- * it's called very often.
- * The register usage is optimized for fp_scan.S and which register
- * is currently at that time unused, be careful if you want change
- * something here. %d0 and %d1 is always usable, sometimes %d2 (or
- * only the lower half) most function have to return the %a0
- * unmodified, so that the caller can immediatly reuse it.
- */
- .globl fp_ill, fp_end
- | exits from fp_scan:
- | illegal instruction
- fp_ill:
- printf ,"fp_illegaln"
- rts
- | completed instruction
- fp_end:
- tst.l (TASK_MM-8,%a2)
- jmi 1f
- tst.l (TASK_MM-4,%a2)
- jmi 1f
- tst.l (TASK_MM,%a2)
- jpl 2f
- 1: printf ,"oops:%p,%p,%pn",3,%a2@(TASK_MM-8),%a2@(TASK_MM-4),%a2@(TASK_MM)
- 2: clr.l %d0
- rts
- .globl fp_conv_long2ext, fp_conv_single2ext
- .globl fp_conv_double2ext, fp_conv_ext2ext
- .globl fp_normalize_ext, fp_normalize_double
- .globl fp_normalize_single, fp_normalize_single_fast
- .globl fp_conv_ext2double, fp_conv_ext2single
- .globl fp_conv_ext2long, fp_conv_ext2short
- .globl fp_conv_ext2byte
- .globl fp_finalrounding_single, fp_finalrounding_single_fast
- .globl fp_finalrounding_double
- .globl fp_finalrounding, fp_finaltest, fp_final
- /*
- * First several conversion functions from a source operand
- * into the extended format. Note, that only fp_conv_ext2ext
- * normalizes the number and is always called after the other
- * conversion functions, which only move the information into
- * fp_ext structure.
- */
- | fp_conv_long2ext:
- |
- | args: %d0 = source (32-bit long)
- | %a0 = destination (ptr to struct fp_ext)
- fp_conv_long2ext:
- printf PCONV,"l2e: %p -> %p(",2,%d0,%a0
- clr.l %d1 | sign defaults to zero
- tst.l %d0
- jeq fp_l2e_zero | is source zero?
- jpl 1f | positive?
- moveq #1,%d1
- neg.l %d0
- 1: swap %d1
- move.w #0x3fff+31,%d1
- move.l %d1,(%a0)+ | set sign / exp
- move.l %d0,(%a0)+ | set mantissa
- clr.l (%a0)
- subq.l #8,%a0 | restore %a0
- printx PCONV,%a0@
- printf PCONV,")n"
- rts
- | source is zero
- fp_l2e_zero:
- clr.l (%a0)+
- clr.l (%a0)+
- clr.l (%a0)
- subq.l #8,%a0
- printx PCONV,%a0@
- printf PCONV,")n"
- rts
- | fp_conv_single2ext
- | args: %d0 = source (single-precision fp value)
- | %a0 = dest (struct fp_ext *)
- fp_conv_single2ext:
- printf PCONV,"s2e: %p -> %p(",2,%d0,%a0
- move.l %d0,%d1
- lsl.l #8,%d0 | shift mantissa
- lsr.l #8,%d1 | exponent / sign
- lsr.l #7,%d1
- lsr.w #8,%d1
- jeq fp_s2e_small | zero / denormal?
- cmp.w #0xff,%d1 | NaN / Inf?
- jeq fp_s2e_large
- bset #31,%d0 | set explizit bit
- add.w #0x3fff-0x7f,%d1 | re-bias the exponent.
- 9: move.l %d1,(%a0)+ | fp_ext.sign, fp_ext.exp
- move.l %d0,(%a0)+ | high lword of fp_ext.mant
- clr.l (%a0) | low lword = 0
- subq.l #8,%a0
- printx PCONV,%a0@
- printf PCONV,")n"
- rts
- | zeros and denormalized
- fp_s2e_small:
- | exponent is zero, so explizit bit is already zero too
- tst.l %d0
- jeq 9b
- move.w #0x4000-0x7f,%d1
- jra 9b
- | infinities and NAN
- fp_s2e_large:
- bclr #31,%d0 | clear explizit bit
- move.w #0x7fff,%d1
- jra 9b
- fp_conv_double2ext:
- #ifdef FPU_EMU_DEBUG
- getuser.l %a1@(0),%d0,fp_err_ua2,%a1
- getuser.l %a1@(4),%d1,fp_err_ua2,%a1
- printf PCONV,"d2e: %p%p -> %p(",3,%d0,%d1,%a0
- #endif
- getuser.l (%a1)+,%d0,fp_err_ua2,%a1
- move.l %d0,%d1
- lsl.l #8,%d0 | shift high mantissa
- lsl.l #3,%d0
- lsr.l #8,%d1 | exponent / sign
- lsr.l #7,%d1
- lsr.w #5,%d1
- jeq fp_d2e_small | zero / denormal?
- cmp.w #0x7ff,%d1 | NaN / Inf?
- jeq fp_d2e_large
- bset #31,%d0 | set explizit bit
- add.w #0x3fff-0x3ff,%d1 | re-bias the exponent.
- 9: move.l %d1,(%a0)+ | fp_ext.sign, fp_ext.exp
- move.l %d0,(%a0)+
- getuser.l (%a1)+,%d0,fp_err_ua2,%a1
- move.l %d0,%d1
- lsl.l #8,%d0
- lsl.l #3,%d0
- move.l %d0,(%a0)
- moveq #21,%d0
- lsr.l %d0,%d1
- or.l %d1,-(%a0)
- subq.l #4,%a0
- printx PCONV,%a0@
- printf PCONV,")n"
- rts
- | zeros and denormalized
- fp_d2e_small:
- | exponent is zero, so explizit bit is already zero too
- tst.l %d0
- jeq 9b
- move.w #0x4000-0x3ff,%d1
- jra 9b
- | infinities and NAN
- fp_d2e_large:
- bclr #31,%d0 | clear explizit bit
- move.w #0x7fff,%d1
- jra 9b
- | fp_conv_ext2ext:
- | originally used to get longdouble from userspace, now it's
- | called before arithmetic operations to make sure the number
- | is normalized [maybe rename it?].
- | args: %a0 = dest (struct fp_ext *)
- | returns 0 in %d0 for a NaN, otherwise 1
- fp_conv_ext2ext:
- printf PCONV,"e2e: %p(",1,%a0
- printx PCONV,%a0@
- printf PCONV,"), "
- move.l (%a0)+,%d0
- cmp.w #0x7fff,%d0 | Inf / NaN?
- jeq fp_e2e_large
- move.l (%a0),%d0
- jpl fp_e2e_small | zero / denorm?
- | The high bit is set, so normalization is irrelevant.
- fp_e2e_checkround:
- subq.l #4,%a0
- #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
- move.b (%a0),%d0
- jne fp_e2e_round
- #endif
- printf PCONV,"%p(",1,%a0
- printx PCONV,%a0@
- printf PCONV,")n"
- moveq #1,%d0
- rts
- #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
- fp_e2e_round:
- fp_set_sr FPSR_EXC_INEX2
- clr.b (%a0)
- move.w (FPD_RND,FPDATA),%d2
- jne fp_e2e_roundother | %d2 == 0, round to nearest
- tst.b %d0 | test guard bit
- jpl 9f | zero is closer
- btst #0,(11,%a0) | test lsb bit
- jne fp_e2e_doroundup | round to infinity
- lsl.b #1,%d0 | check low bits
- jeq 9f | round to zero
- fp_e2e_doroundup:
- addq.l #1,(8,%a0)
- jcc 9f
- addq.l #1,(4,%a0)
- jcc 9f
- move.w #0x8000,(4,%a0)
- addq.w #1,(2,%a0)
- 9: printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- fp_e2e_roundother:
- subq.w #2,%d2
- jcs 9b | %d2 < 2, round to zero
- jhi 1f | %d2 > 2, round to +infinity
- tst.b (1,%a0) | to -inf
- jne fp_e2e_doroundup | negative, round to infinity
- jra 9b | positive, round to zero
- 1: tst.b (1,%a0) | to +inf
- jeq fp_e2e_doroundup | positive, round to infinity
- jra 9b | negative, round to zero
- #endif
- | zeros and subnormals:
- | try to normalize these anyway.
- fp_e2e_small:
- jne fp_e2e_small1 | high lword zero?
- move.l (4,%a0),%d0
- jne fp_e2e_small2
- #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
- clr.l %d0
- move.b (-4,%a0),%d0
- jne fp_e2e_small3
- #endif
- | Genuine zero.
- clr.w -(%a0)
- subq.l #2,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- moveq #1,%d0
- rts
- | definitely subnormal, need to shift all 64 bits
- fp_e2e_small1:
- bfffo %d0{#0,#32},%d1
- move.w -(%a0),%d2
- sub.w %d1,%d2
- jcc 1f
- | Pathologically small, denormalize.
- add.w %d2,%d1
- clr.w %d2
- 1: move.w %d2,(%a0)+
- move.w %d1,%d2
- jeq fp_e2e_checkround
- | fancy 64-bit double-shift begins here
- lsl.l %d2,%d0
- move.l %d0,(%a0)+
- move.l (%a0),%d0
- move.l %d0,%d1
- lsl.l %d2,%d0
- move.l %d0,(%a0)
- neg.w %d2
- and.w #0x1f,%d2
- lsr.l %d2,%d1
- or.l %d1,-(%a0)
- #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
- fp_e2e_extra1:
- clr.l %d0
- move.b (-4,%a0),%d0
- neg.w %d2
- add.w #24,%d2
- jcc 1f
- clr.b (-4,%a0)
- lsl.l %d2,%d0
- or.l %d0,(4,%a0)
- jra fp_e2e_checkround
- 1: addq.w #8,%d2
- lsl.l %d2,%d0
- move.b %d0,(-4,%a0)
- lsr.l #8,%d0
- or.l %d0,(4,%a0)
- #endif
- jra fp_e2e_checkround
- | pathologically small subnormal
- fp_e2e_small2:
- bfffo %d0{#0,#32},%d1
- add.w #32,%d1
- move.w -(%a0),%d2
- sub.w %d1,%d2
- jcc 1f
- | Beyond pathologically small, denormalize.
- add.w %d2,%d1
- clr.w %d2
- 1: move.w %d2,(%a0)+
- ext.l %d1
- jeq fp_e2e_checkround
- clr.l (4,%a0)
- sub.w #32,%d2
- jcs 1f
- lsl.l %d1,%d0 | lower lword needs only to be shifted
- move.l %d0,(%a0) | into the higher lword
- #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
- clr.l %d0
- move.b (-4,%a0),%d0
- clr.b (-4,%a0)
- neg.w %d1
- add.w #32,%d1
- bfins %d0,(%a0){%d1,#8}
- #endif
- jra fp_e2e_checkround
- 1: neg.w %d1 | lower lword is splitted between
- bfins %d0,(%a0){%d1,#32} | higher and lower lword
- #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC
- jra fp_e2e_checkround
- #else
- move.w %d1,%d2
- jra fp_e2e_extra1
- | These are extremely small numbers, that will mostly end up as zero
- | anyway, so this is only important for correct rounding.
- fp_e2e_small3:
- bfffo %d0{#24,#8},%d1
- add.w #40,%d1
- move.w -(%a0),%d2
- sub.w %d1,%d2
- jcc 1f
- | Pathologically small, denormalize.
- add.w %d2,%d1
- clr.w %d2
- 1: move.w %d2,(%a0)+
- ext.l %d1
- jeq fp_e2e_checkround
- cmp.w #8,%d1
- jcs 2f
- 1: clr.b (-4,%a0)
- sub.w #64,%d1
- jcs 1f
- add.w #24,%d1
- lsl.l %d1,%d0
- move.l %d0,(%a0)
- jra fp_e2e_checkround
- 1: neg.w %d1
- bfins %d0,(%a0){%d1,#8}
- jra fp_e2e_checkround
- 2: lsl.l %d1,%d0
- move.b %d0,(-4,%a0)
- lsr.l #8,%d0
- move.b %d0,(7,%a0)
- jra fp_e2e_checkround
- #endif
- 1: move.l %d0,%d1 | lower lword is splitted between
- lsl.l %d2,%d0 | higher and lower lword
- move.l %d0,(%a0)
- move.l %d1,%d0
- neg.w %d2
- add.w #32,%d2
- lsr.l %d2,%d0
- move.l %d0,-(%a0)
- jra fp_e2e_checkround
- | Infinities and NaNs
- fp_e2e_large:
- move.l (%a0)+,%d0
- jne 3f
- 1: tst.l (%a0)
- jne 4f
- moveq #1,%d0
- 2: subq.l #8,%a0
- printf PCONV,"%p(",1,%a0
- printx PCONV,%a0@
- printf PCONV,")n"
- rts
- | we have maybe a NaN, shift off the highest bit
- 3: lsl.l #1,%d0
- jeq 1b
- | we have a NaN, clear the return value
- 4: clrl %d0
- jra 2b
- /*
- * Normalization functions. Call these on the output of general
- * FP operators, and before any conversion into the destination
- * formats. fp_normalize_ext has always to be called first, the
- * following conversion functions expect an already normalized
- * number.
- */
- | fp_normalize_ext:
- | normalize an extended in extended (unpacked) format, basically
- | it does the same as fp_conv_ext2ext, additionally it also does
- | the necessary postprocessing checks.
- | args: %a0 (struct fp_ext *)
- | NOTE: it does _not_ modify %a0/%a1 and the upper word of %d2
- fp_normalize_ext:
- printf PNORM,"ne: %p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,"), "
- move.l (%a0)+,%d0
- cmp.w #0x7fff,%d0 | Inf / NaN?
- jeq fp_ne_large
- move.l (%a0),%d0
- jpl fp_ne_small | zero / denorm?
- | The high bit is set, so normalization is irrelevant.
- fp_ne_checkround:
- subq.l #4,%a0
- #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
- move.b (%a0),%d0
- jne fp_ne_round
- #endif
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
- fp_ne_round:
- fp_set_sr FPSR_EXC_INEX2
- clr.b (%a0)
- move.w (FPD_RND,FPDATA),%d2
- jne fp_ne_roundother | %d2 == 0, round to nearest
- tst.b %d0 | test guard bit
- jpl 9f | zero is closer
- btst #0,(11,%a0) | test lsb bit
- jne fp_ne_doroundup | round to infinity
- lsl.b #1,%d0 | check low bits
- jeq 9f | round to zero
- fp_ne_doroundup:
- addq.l #1,(8,%a0)
- jcc 9f
- addq.l #1,(4,%a0)
- jcc 9f
- addq.w #1,(2,%a0)
- move.w #0x8000,(4,%a0)
- 9: printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- fp_ne_roundother:
- subq.w #2,%d2
- jcs 9b | %d2 < 2, round to zero
- jhi 1f | %d2 > 2, round to +infinity
- tst.b (1,%a0) | to -inf
- jne fp_ne_doroundup | negative, round to infinity
- jra 9b | positive, round to zero
- 1: tst.b (1,%a0) | to +inf
- jeq fp_ne_doroundup | positive, round to infinity
- jra 9b | negative, round to zero
- #endif
- | Zeros and subnormal numbers
- | These are probably merely subnormal, rather than "denormalized"
- | numbers, so we will try to make them normal again.
- fp_ne_small:
- jne fp_ne_small1 | high lword zero?
- move.l (4,%a0),%d0
- jne fp_ne_small2
- #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
- clr.l %d0
- move.b (-4,%a0),%d0
- jne fp_ne_small3
- #endif
- | Genuine zero.
- clr.w -(%a0)
- subq.l #2,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- | Subnormal.
- fp_ne_small1:
- bfffo %d0{#0,#32},%d1
- move.w -(%a0),%d2
- sub.w %d1,%d2
- jcc 1f
- | Pathologically small, denormalize.
- add.w %d2,%d1
- clr.w %d2
- fp_set_sr FPSR_EXC_UNFL
- 1: move.w %d2,(%a0)+
- move.w %d1,%d2
- jeq fp_ne_checkround
- | This is exactly the same 64-bit double shift as seen above.
- lsl.l %d2,%d0
- move.l %d0,(%a0)+
- move.l (%a0),%d0
- move.l %d0,%d1
- lsl.l %d2,%d0
- move.l %d0,(%a0)
- neg.w %d2
- and.w #0x1f,%d2
- lsr.l %d2,%d1
- or.l %d1,-(%a0)
- #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
- fp_ne_extra1:
- clr.l %d0
- move.b (-4,%a0),%d0
- neg.w %d2
- add.w #24,%d2
- jcc 1f
- clr.b (-4,%a0)
- lsl.l %d2,%d0
- or.l %d0,(4,%a0)
- jra fp_ne_checkround
- 1: addq.w #8,%d2
- lsl.l %d2,%d0
- move.b %d0,(-4,%a0)
- lsr.l #8,%d0
- or.l %d0,(4,%a0)
- #endif
- jra fp_ne_checkround
- | May or may not be subnormal, if so, only 32 bits to shift.
- fp_ne_small2:
- bfffo %d0{#0,#32},%d1
- add.w #32,%d1
- move.w -(%a0),%d2
- sub.w %d1,%d2
- jcc 1f
- | Beyond pathologically small, denormalize.
- add.w %d2,%d1
- clr.w %d2
- fp_set_sr FPSR_EXC_UNFL
- 1: move.w %d2,(%a0)+
- ext.l %d1
- jeq fp_ne_checkround
- clr.l (4,%a0)
- sub.w #32,%d1
- jcs 1f
- lsl.l %d1,%d0 | lower lword needs only to be shifted
- move.l %d0,(%a0) | into the higher lword
- #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
- clr.l %d0
- move.b (-4,%a0),%d0
- clr.b (-4,%a0)
- neg.w %d1
- add.w #32,%d1
- bfins %d0,(%a0){%d1,#8}
- #endif
- jra fp_ne_checkround
- 1: neg.w %d1 | lower lword is splitted between
- bfins %d0,(%a0){%d1,#32} | higher and lower lword
- #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC
- jra fp_ne_checkround
- #else
- move.w %d1,%d2
- jra fp_ne_extra1
- | These are extremely small numbers, that will mostly end up as zero
- | anyway, so this is only important for correct rounding.
- fp_ne_small3:
- bfffo %d0{#24,#8},%d1
- add.w #40,%d1
- move.w -(%a0),%d2
- sub.w %d1,%d2
- jcc 1f
- | Pathologically small, denormalize.
- add.w %d2,%d1
- clr.w %d2
- 1: move.w %d2,(%a0)+
- ext.l %d1
- jeq fp_ne_checkround
- cmp.w #8,%d1
- jcs 2f
- 1: clr.b (-4,%a0)
- sub.w #64,%d1
- jcs 1f
- add.w #24,%d1
- lsl.l %d1,%d0
- move.l %d0,(%a0)
- jra fp_ne_checkround
- 1: neg.w %d1
- bfins %d0,(%a0){%d1,#8}
- jra fp_ne_checkround
- 2: lsl.l %d1,%d0
- move.b %d0,(-4,%a0)
- lsr.l #8,%d0
- move.b %d0,(7,%a0)
- jra fp_ne_checkround
- #endif
- | Infinities and NaNs, again, same as above.
- fp_ne_large:
- move.l (%a0)+,%d0
- jne 3f
- 1: tst.l (%a0)
- jne 4f
- 2: subq.l #8,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- | we have maybe a NaN, shift off the highest bit
- 3: move.l %d0,%d1
- lsl.l #1,%d1
- jne 4f
- clr.l (-4,%a0)
- jra 1b
- | we have a NaN, test if it is signaling
- 4: bset #30,%d0
- jne 2b
- fp_set_sr FPSR_EXC_SNAN
- move.l %d0,(-4,%a0)
- jra 2b
- | these next two do rounding as per the IEEE standard.
- | values for the rounding modes appear to be:
- | 0: Round to nearest
- | 1: Round to zero
- | 2: Round to -Infinity
- | 3: Round to +Infinity
- | both functions expect that fp_normalize was already
- | called (and extended argument is already normalized
- | as far as possible), these are used if there is different
- | rounding precision is selected and before converting
- | into single/double
- | fp_normalize_double:
- | normalize an extended with double (52-bit) precision
- | args: %a0 (struct fp_ext *)
- fp_normalize_double:
- printf PNORM,"nd: %p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,"), "
- move.l (%a0)+,%d2
- tst.w %d2
- jeq fp_nd_zero | zero / denormalized
- cmp.w #0x7fff,%d2
- jeq fp_nd_huge | NaN / infinitive.
- sub.w #0x4000-0x3ff,%d2 | will the exponent fit?
- jcs fp_nd_small | too small.
- cmp.w #0x7fe,%d2
- jcc fp_nd_large | too big.
- addq.l #4,%a0
- move.l (%a0),%d0 | low lword of mantissa
- | now, round off the low 11 bits.
- fp_nd_round:
- moveq #21,%d1
- lsl.l %d1,%d0 | keep 11 low bits.
- jne fp_nd_checkround | Are they non-zero?
- | nothing to do here
- 9: subq.l #8,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- | Be careful with the X bit! It contains the lsb
- | from the shift above, it is needed for round to nearest.
- fp_nd_checkround:
- fp_set_sr FPSR_EXC_INEX2 | INEX2 bit
- and.w #0xf800,(2,%a0) | clear bits 0-10
- move.w (FPD_RND,FPDATA),%d2 | rounding mode
- jne 2f | %d2 == 0, round to nearest
- tst.l %d0 | test guard bit
- jpl 9b | zero is closer
- | here we test the X bit by adding it to %d2
- clr.w %d2 | first set z bit, addx only clears it
- addx.w %d2,%d2 | test lsb bit
- | IEEE754-specified "round to even" behaviour. If the guard
- | bit is set, then the number is odd, so rounding works like
- | in grade-school arithmetic (i.e. 1.5 rounds to 2.0)
- | Otherwise, an equal distance rounds towards zero, so as not
- | to produce an odd number. This is strange, but it is what
- | the standard says.
- jne fp_nd_doroundup | round to infinity
- lsl.l #1,%d0 | check low bits
- jeq 9b | round to zero
- fp_nd_doroundup:
- | round (the mantissa, that is) towards infinity
- add.l #0x800,(%a0)
- jcc 9b | no overflow, good.
- addq.l #1,-(%a0) | extend to high lword
- jcc 1f | no overflow, good.
- | Yow! we have managed to overflow the mantissa. Since this
- | only happens when %d1 was 0xfffff800, it is now zero, so
- | reset the high bit, and increment the exponent.
- move.w #0x8000,(%a0)
- addq.w #1,-(%a0)
- cmp.w #0x43ff,(%a0)+ | exponent now overflown?
- jeq fp_nd_large | yes, so make it infinity.
- 1: subq.l #4,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- 2: subq.w #2,%d2
- jcs 9b | %d2 < 2, round to zero
- jhi 3f | %d2 > 2, round to +infinity
- | Round to +Inf or -Inf. High word of %d2 contains the
- | sign of the number, by the way.
- swap %d2 | to -inf
- tst.b %d2
- jne fp_nd_doroundup | negative, round to infinity
- jra 9b | positive, round to zero
- 3: swap %d2 | to +inf
- tst.b %d2
- jeq fp_nd_doroundup | positive, round to infinity
- jra 9b | negative, round to zero
- | Exponent underflow. Try to make a denormal, and set it to
- | the smallest possible fraction if this fails.
- fp_nd_small:
- fp_set_sr FPSR_EXC_UNFL | set UNFL bit
- move.w #0x3c01,(-2,%a0) | 2**-1022
- neg.w %d2 | degree of underflow
- cmp.w #32,%d2 | single or double shift?
- jcc 1f
- | Again, another 64-bit double shift.
- move.l (%a0),%d0
- move.l %d0,%d1
- lsr.l %d2,%d0
- move.l %d0,(%a0)+
- move.l (%a0),%d0
- lsr.l %d2,%d0
- neg.w %d2
- add.w #32,%d2
- lsl.l %d2,%d1
- or.l %d1,%d0
- move.l (%a0),%d1
- move.l %d0,(%a0)
- | Check to see if we shifted off any significant bits
- lsl.l %d2,%d1
- jeq fp_nd_round | Nope, round.
- bset #0,%d0 | Yes, so set the "sticky bit".
- jra fp_nd_round | Now, round.
- | Another 64-bit single shift and store
- 1: sub.w #32,%d2
- cmp.w #32,%d2 | Do we really need to shift?
- jcc 2f | No, the number is too small.
- move.l (%a0),%d0
- clr.l (%a0)+
- move.l %d0,%d1
- lsr.l %d2,%d0
- neg.w %d2
- add.w #32,%d2
- | Again, check to see if we shifted off any significant bits.
- tst.l (%a0)
- jeq 1f
- bset #0,%d0 | Sticky bit.
- 1: move.l %d0,(%a0)
- lsl.l %d2,%d1
- jeq fp_nd_round
- bset #0,%d0
- jra fp_nd_round
- | Sorry, the number is just too small.
- 2: clr.l (%a0)+
- clr.l (%a0)
- moveq #1,%d0 | Smallest possible fraction,
- jra fp_nd_round | round as desired.
- | zero and denormalized
- fp_nd_zero:
- tst.l (%a0)+
- jne 1f
- tst.l (%a0)
- jne 1f
- subq.l #8,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts | zero. nothing to do.
- | These are not merely subnormal numbers, but true denormals,
- | i.e. pathologically small (exponent is 2**-16383) numbers.
- | It is clearly impossible for even a normal extended number
- | with that exponent to fit into double precision, so just
- | write these ones off as "too darn small".
- 1: fp_set_sr FPSR_EXC_UNFL | Set UNFL bit
- clr.l (%a0)
- clr.l -(%a0)
- move.w #0x3c01,-(%a0) | i.e. 2**-1022
- addq.l #6,%a0
- moveq #1,%d0
- jra fp_nd_round | round.
- | Exponent overflow. Just call it infinity.
- fp_nd_large:
- move.w #0x7ff,%d0
- and.w (6,%a0),%d0
- jeq 1f
- fp_set_sr FPSR_EXC_INEX2
- 1: fp_set_sr FPSR_EXC_OVFL
- move.w (FPD_RND,FPDATA),%d2
- jne 3f | %d2 = 0 round to nearest
- 1: move.w #0x7fff,(-2,%a0)
- clr.l (%a0)+
- clr.l (%a0)
- 2: subq.l #8,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- 3: subq.w #2,%d2
- jcs 5f | %d2 < 2, round to zero
- jhi 4f | %d2 > 2, round to +infinity
- tst.b (-3,%a0) | to -inf
- jne 1b
- jra 5f
- 4: tst.b (-3,%a0) | to +inf
- jeq 1b
- 5: move.w #0x43fe,(-2,%a0)
- moveq #-1,%d0
- move.l %d0,(%a0)+
- move.w #0xf800,%d0
- move.l %d0,(%a0)
- jra 2b
- | Infinities or NaNs
- fp_nd_huge:
- subq.l #4,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- | fp_normalize_single:
- | normalize an extended with single (23-bit) precision
- | args: %a0 (struct fp_ext *)
- fp_normalize_single:
- printf PNORM,"ns: %p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,") "
- addq.l #2,%a0
- move.w (%a0)+,%d2
- jeq fp_ns_zero | zero / denormalized
- cmp.w #0x7fff,%d2
- jeq fp_ns_huge | NaN / infinitive.
- sub.w #0x4000-0x7f,%d2 | will the exponent fit?
- jcs fp_ns_small | too small.
- cmp.w #0xfe,%d2
- jcc fp_ns_large | too big.
- move.l (%a0)+,%d0 | get high lword of mantissa
- fp_ns_round:
- tst.l (%a0) | check the low lword
- jeq 1f
- | Set a sticky bit if it is non-zero. This should only
- | affect the rounding in what would otherwise be equal-
- | distance situations, which is what we want it to do.
- bset #0,%d0
- 1: clr.l (%a0) | zap it from memory.
- | now, round off the low 8 bits of the hi lword.
- tst.b %d0 | 8 low bits.
- jne fp_ns_checkround | Are they non-zero?
- | nothing to do here
- subq.l #8,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- fp_ns_checkround:
- fp_set_sr FPSR_EXC_INEX2 | INEX2 bit
- clr.b -(%a0) | clear low byte of high lword
- subq.l #3,%a0
- move.w (FPD_RND,FPDATA),%d2 | rounding mode
- jne 2f | %d2 == 0, round to nearest
- tst.b %d0 | test guard bit
- jpl 9f | zero is closer
- btst #8,%d0 | test lsb bit
- | round to even behaviour, see above.
- jne fp_ns_doroundup | round to infinity
- lsl.b #1,%d0 | check low bits
- jeq 9f | round to zero
- fp_ns_doroundup:
- | round (the mantissa, that is) towards infinity
- add.l #0x100,(%a0)
- jcc 9f | no overflow, good.
- | Overflow. This means that the %d1 was 0xffffff00, so it
- | is now zero. We will set the mantissa to reflect this, and
- | increment the exponent (checking for overflow there too)
- move.w #0x8000,(%a0)
- addq.w #1,-(%a0)
- cmp.w #0x407f,(%a0)+ | exponent now overflown?
- jeq fp_ns_large | yes, so make it infinity.
- 9: subq.l #4,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- | check nondefault rounding modes
- 2: subq.w #2,%d2
- jcs 9b | %d2 < 2, round to zero
- jhi 3f | %d2 > 2, round to +infinity
- tst.b (-3,%a0) | to -inf
- jne fp_ns_doroundup | negative, round to infinity
- jra 9b | positive, round to zero
- 3: tst.b (-3,%a0) | to +inf
- jeq fp_ns_doroundup | positive, round to infinity
- jra 9b | negative, round to zero
- | Exponent underflow. Try to make a denormal, and set it to
- | the smallest possible fraction if this fails.
- fp_ns_small:
- fp_set_sr FPSR_EXC_UNFL | set UNFL bit
- move.w #0x3f81,(-2,%a0) | 2**-126
- neg.w %d2 | degree of underflow
- cmp.w #32,%d2 | single or double shift?
- jcc 2f
- | a 32-bit shift.
- move.l (%a0),%d0
- move.l %d0,%d1
- lsr.l %d2,%d0
- move.l %d0,(%a0)+
- | Check to see if we shifted off any significant bits.
- neg.w %d2
- add.w #32,%d2
- lsl.l %d2,%d1
- jeq 1f
- bset #0,%d0 | Sticky bit.
- | Check the lower lword
- 1: tst.l (%a0)
- jeq fp_ns_round
- clr (%a0)
- bset #0,%d0 | Sticky bit.
- jra fp_ns_round
- | Sorry, the number is just too small.
- 2: clr.l (%a0)+
- clr.l (%a0)
- moveq #1,%d0 | Smallest possible fraction,
- jra fp_ns_round | round as desired.
- | Exponent overflow. Just call it infinity.
- fp_ns_large:
- tst.b (3,%a0)
- jeq 1f
- fp_set_sr FPSR_EXC_INEX2
- 1: fp_set_sr FPSR_EXC_OVFL
- move.w (FPD_RND,FPDATA),%d2
- jne 3f | %d2 = 0 round to nearest
- 1: move.w #0x7fff,(-2,%a0)
- clr.l (%a0)+
- clr.l (%a0)
- 2: subq.l #8,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- 3: subq.w #2,%d2
- jcs 5f | %d2 < 2, round to zero
- jhi 4f | %d2 > 2, round to +infinity
- tst.b (-3,%a0) | to -inf
- jne 1b
- jra 5f
- 4: tst.b (-3,%a0) | to +inf
- jeq 1b
- 5: move.w #0x407e,(-2,%a0)
- move.l #0xffffff00,(%a0)+
- clr.l (%a0)
- jra 2b
- | zero and denormalized
- fp_ns_zero:
- tst.l (%a0)+
- jne 1f
- tst.l (%a0)
- jne 1f
- subq.l #8,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts | zero. nothing to do.
- | These are not merely subnormal numbers, but true denormals,
- | i.e. pathologically small (exponent is 2**-16383) numbers.
- | It is clearly impossible for even a normal extended number
- | with that exponent to fit into single precision, so just
- | write these ones off as "too darn small".
- 1: fp_set_sr FPSR_EXC_UNFL | Set UNFL bit
- clr.l (%a0)
- clr.l -(%a0)
- move.w #0x3f81,-(%a0) | i.e. 2**-126
- addq.l #6,%a0
- moveq #1,%d0
- jra fp_ns_round | round.
- | Infinities or NaNs
- fp_ns_huge:
- subq.l #4,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- | fp_normalize_single_fast:
- | normalize an extended with single (23-bit) precision
- | this is only used by fsgldiv/fsgdlmul, where the
- | operand is not completly normalized.
- | args: %a0 (struct fp_ext *)
- fp_normalize_single_fast:
- printf PNORM,"nsf: %p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,") "
- addq.l #2,%a0
- move.w (%a0)+,%d2
- cmp.w #0x7fff,%d2
- jeq fp_nsf_huge | NaN / infinitive.
- move.l (%a0)+,%d0 | get high lword of mantissa
- fp_nsf_round:
- tst.l (%a0) | check the low lword
- jeq 1f
- | Set a sticky bit if it is non-zero. This should only
- | affect the rounding in what would otherwise be equal-
- | distance situations, which is what we want it to do.
- bset #0,%d0
- 1: clr.l (%a0) | zap it from memory.
- | now, round off the low 8 bits of the hi lword.
- tst.b %d0 | 8 low bits.
- jne fp_nsf_checkround | Are they non-zero?
- | nothing to do here
- subq.l #8,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- fp_nsf_checkround:
- fp_set_sr FPSR_EXC_INEX2 | INEX2 bit
- clr.b -(%a0) | clear low byte of high lword
- subq.l #3,%a0
- move.w (FPD_RND,FPDATA),%d2 | rounding mode
- jne 2f | %d2 == 0, round to nearest
- tst.b %d0 | test guard bit
- jpl 9f | zero is closer
- btst #8,%d0 | test lsb bit
- | round to even behaviour, see above.
- jne fp_nsf_doroundup | round to infinity
- lsl.b #1,%d0 | check low bits
- jeq 9f | round to zero
- fp_nsf_doroundup:
- | round (the mantissa, that is) towards infinity
- add.l #0x100,(%a0)
- jcc 9f | no overflow, good.
- | Overflow. This means that the %d1 was 0xffffff00, so it
- | is now zero. We will set the mantissa to reflect this, and
- | increment the exponent (checking for overflow there too)
- move.w #0x8000,(%a0)
- addq.w #1,-(%a0)
- cmp.w #0x407f,(%a0)+ | exponent now overflown?
- jeq fp_nsf_large | yes, so make it infinity.
- 9: subq.l #4,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- | check nondefault rounding modes
- 2: subq.w #2,%d2
- jcs 9b | %d2 < 2, round to zero
- jhi 3f | %d2 > 2, round to +infinity
- tst.b (-3,%a0) | to -inf
- jne fp_nsf_doroundup | negative, round to infinity
- jra 9b | positive, round to zero
- 3: tst.b (-3,%a0) | to +inf
- jeq fp_nsf_doroundup | positive, round to infinity
- jra 9b | negative, round to zero
- | Exponent overflow. Just call it infinity.
- fp_nsf_large:
- tst.b (3,%a0)
- jeq 1f
- fp_set_sr FPSR_EXC_INEX2
- 1: fp_set_sr FPSR_EXC_OVFL
- move.w (FPD_RND,FPDATA),%d2
- jne 3f | %d2 = 0 round to nearest
- 1: move.w #0x7fff,(-2,%a0)
- clr.l (%a0)+
- clr.l (%a0)
- 2: subq.l #8,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- 3: subq.w #2,%d2
- jcs 5f | %d2 < 2, round to zero
- jhi 4f | %d2 > 2, round to +infinity
- tst.b (-3,%a0) | to -inf
- jne 1b
- jra 5f
- 4: tst.b (-3,%a0) | to +inf
- jeq 1b
- 5: move.w #0x407e,(-2,%a0)
- move.l #0xffffff00,(%a0)+
- clr.l (%a0)
- jra 2b
- | Infinities or NaNs
- fp_nsf_huge:
- subq.l #4,%a0
- printf PNORM,"%p(",1,%a0
- printx PNORM,%a0@
- printf PNORM,")n"
- rts
- | conv_ext2int (macro):
- | Generates a subroutine that converts an extended value to an
- | integer of a given size, again, with the appropriate type of
- | rounding.
- | Macro arguments:
- | s: size, as given in an assembly instruction.
- | b: number of bits in that size.
- | Subroutine arguments:
- | %a0: source (struct fp_ext *)
- | Returns the integer in %d0 (like it should)
- .macro conv_ext2int s,b
- .set inf,(1<<(b-1))-1 | i.e. MAXINT
- printf PCONV,"e2i%d: %p(",2,#b,%a0
- printx PCONV,%a0@
- printf PCONV,") "
- addq.l #2,%a0
- move.w (%a0)+,%d2 | exponent
- jeq fp_e2i_zerob | zero / denorm (== 0, here)
- cmp.w #0x7fff,%d2
- jeq fp_e2i_hugeb | Inf / NaN
- sub.w #0x3ffe,%d2
- jcs fp_e2i_smallb
- cmp.w #b,%d2
- jhi fp_e2i_largeb
- move.l (%a0),%d0
- move.l %d0,%d1
- lsl.l %d2,%d1
- jne fp_e2i_roundb
- tst.l (4,%a0)
- jne fp_e2i_roundb
- neg.w %d2
- add.w #32,%d2
- lsr.l %d2,%d0
- 9: tst.w (-4,%a0)
- jne 1f
- tst.s %d0
- jmi fp_e2i_largeb
- printf PCONV,"-> %pn",1,%d0
- rts
- 1: neg.s %d0
- jeq 1f
- jpl fp_e2i_largeb
- 1: printf PCONV,"-> %pn",1,%d0
- rts
- fp_e2i_roundb:
- fp_set_sr FPSR_EXC_INEX2 | INEX2 bit
- neg.w %d2
- add.w #32,%d2
- .if b>16
- jeq 5f
- .endif
- lsr.l %d2,%d0
- move.w (FPD_RND,FPDATA),%d2 | rounding mode
- jne 2f | %d2 == 0, round to nearest
- tst.l %d1 | test guard bit
- jpl 9b | zero is closer
- btst %d2,%d0 | test lsb bit (%d2 still 0)
- jne fp_e2i_doroundupb
- lsl.l #1,%d1 | check low bits
- jne fp_e2i_doroundupb
- tst.l (4,%a0)
- jeq 9b
- fp_e2i_doroundupb:
- addq.l #1,%d0
- jra 9b
- | check nondefault rounding modes
- 2: subq.w #2,%d2
- jcs 9b | %d2 < 2, round to zero
- jhi 3f | %d2 > 2, round to +infinity
- tst.w (-4,%a0) | to -inf
- jne fp_e2i_doroundupb | negative, round to infinity
- jra 9b | positive, round to zero
- 3: tst.w (-4,%a0) | to +inf
- jeq fp_e2i_doroundupb | positive, round to infinity
- jra 9b | negative, round to zero
- | we are only want -2**127 get correctly rounded here,
- | since the guard bit is in the lower lword.
- | everything else ends up anyway as overflow.
- .if b>16
- 5: move.w (FPD_RND,FPDATA),%d2 | rounding mode
- jne 2b | %d2 == 0, round to nearest
- move.l (4,%a0),%d1 | test guard bit
- jpl 9b | zero is closer
- lsl.l #1,%d1 | check low bits
- jne fp_e2i_doroundupb
- jra 9b
- .endif
- fp_e2i_zerob:
- clr.l %d0
- tst.l (%a0)+
- jne 1f
- tst.l (%a0)
- jeq 3f
- 1: subq.l #4,%a0
- fp_clr_sr FPSR_EXC_UNFL | fp_normalize_ext has set this bit
- fp_e2i_smallb:
- fp_set_sr FPSR_EXC_INEX2
- clr.l %d0
- move.w (FPD_RND,FPDATA),%d2 | rounding mode
- subq.w #2,%d2
- jcs 3f | %d2 < 2, round to nearest/zero
- jhi 2f | %d2 > 2, round to +infinity
- tst.w (-4,%a0) | to -inf
- jeq 3f
- subq.s #1,%d0
- jra 3f
- 2: tst.w (-4,%a0) | to +inf
- jne 3f
- addq.s #1,%d0
- 3: printf PCONV,"-> %pn",1,%d0
- rts
- fp_e2i_largeb:
- fp_set_sr FPSR_EXC_OPERR
- move.s #inf,%d0
- tst.w (-4,%a0)
- jeq 1f
- addq.s #1,%d0
- 1: printf PCONV,"-> %pn",1,%d0
- rts
- fp_e2i_hugeb:
- move.s (%a0),%d0
- tst.l (%a0)
- jne 1f
- tst.l (%a0)
- jeq fp_e2i_largeb
- | fp_normalize_ext has set this bit already
- | and made the number nonsignaling
- 1: fp_tst_sr FPSR_EXC_SNAN
- jne 1f
- fp_set_sr FPSR_EXC_OPERR
- 1: printf PCONV,"-> %pn",1,%d0
- rts
- .endm
- fp_conv_ext2long:
- conv_ext2int l,32
- fp_conv_ext2short:
- conv_ext2int w,16
- fp_conv_ext2byte:
- conv_ext2int b,8
- fp_conv_ext2double:
- jsr fp_normalize_double
- printf PCONV,"e2d: %p(",1,%a0
- printx PCONV,%a0@
- printf PCONV,"), "
- move.l (%a0)+,%d2
- cmp.w #0x7fff,%d2
- jne 1f
- move.w #0x7ff,%d2
- move.l (%a0)+,%d0
- jra 2f
- 1: sub.w #0x3fff-0x3ff,%d2
- move.l (%a0)+,%d0
- jmi 2f
- clr.w %d2
- 2: lsl.w #5,%d2
- lsl.l #7,%d2
- lsl.l #8,%d2
- move.l %d0,%d1
- lsl.l #1,%d0
- lsr.l #4,%d0
- lsr.l #8,%d0
- or.l %d2,%d0
- putuser.l %d0,(%a1)+,fp_err_ua2,%a1
- moveq #21,%d0
- lsl.l %d0,%d1
- move.l (%a0),%d0
- lsr.l #4,%d0
- lsr.l #7,%d0
- or.l %d1,%d0
- putuser.l %d0,(%a1),fp_err_ua2,%a1
- #ifdef FPU_EMU_DEBUG
- getuser.l %a1@(-4),%d0,fp_err_ua2,%a1
- getuser.l %a1@(0),%d1,fp_err_ua2,%a1
- printf PCONV,"%p(%08x%08x)n",3,%a1,%d0,%d1
- #endif
- rts
- fp_conv_ext2single:
- jsr fp_normalize_single
- printf PCONV,"e2s: %p(",1,%a0
- printx PCONV,%a0@
- printf PCONV,"), "
- move.l (%a0)+,%d1
- cmp.w #0x7fff,%d1
- jne 1f
- move.w #0xff,%d1
- move.l (%a0)+,%d0
- jra 2f
- 1: sub.w #0x3fff-0x7f,%d1
- move.l (%a0)+,%d0
- jmi 2f
- clr.w %d1
- 2: lsl.w #8,%d1
- lsl.l #7,%d1
- lsl.l #8,%d1
- bclr #31,%d0
- lsr.l #8,%d0
- or.l %d1,%d0
- printf PCONV,"%08xn",1,%d0
- rts
- | special return addresses for instr that
- | encode the rounding precision in the opcode
- | (e.g. fsmove,fdmove)
- fp_finalrounding_single:
- addq.l #8,%sp
- jsr fp_normalize_ext
- jsr fp_normalize_single
- jra fp_finaltest
- fp_finalrounding_single_fast:
- addq.l #8,%sp
- jsr fp_normalize_ext
- jsr fp_normalize_single_fast
- jra fp_finaltest
- fp_finalrounding_double:
- addq.l #8,%sp
- jsr fp_normalize_ext
- jsr fp_normalize_double
- jra fp_finaltest
- | fp_finaltest:
- | set the emulated status register based on the outcome of an
- | emulated instruction.
- fp_finalrounding:
- addq.l #8,%sp
- | printf ,"f: %pn",1,%a0
- jsr fp_normalize_ext
- move.w (FPD_PREC,FPDATA),%d0
- subq.w #1,%d0
- jcs fp_finaltest
- jne 1f
- jsr fp_normalize_single
- jra 2f
- 1: jsr fp_normalize_double
- 2:| printf ,"f: %pn",1,%a0
- fp_finaltest:
- | First, we do some of the obvious tests for the exception
- | status byte and condition code bytes of fp_sr here, so that
- | they do not have to be handled individually by every
- | emulated instruction.
- clr.l %d0
- addq.l #1,%a0
- tst.b (%a0)+ | sign
- jeq 1f
- bset #FPSR_CC_NEG-24,%d0 | N bit
- 1: cmp.w #0x7fff,(%a0)+ | exponent
- jeq 2f
- | test for zero
- moveq #FPSR_CC_Z-24,%d1
- tst.l (%a0)+
- jne 9f
- tst.l (%a0)
- jne 9f
- jra 8f
- | infinitiv and NAN
- 2: moveq #FPSR_CC_NAN-24,%d1
- move.l (%a0)+,%d2
- lsl.l #1,%d2 | ignore high bit
- jne 8f
- tst.l (%a0)
- jne 8f
- moveq #FPSR_CC_INF-24,%d1
- 8: bset %d1,%d0
- 9: move.b %d0,(FPD_FPSR+0,FPDATA) | set condition test result
- | move instructions enter here
- | Here, we test things in the exception status byte, and set
- | other things in the accrued exception byte accordingly.
- | Emulated instructions can set various things in the former,
- | as defined in fp_emu.h.
- fp_final:
- move.l (FPD_FPSR,FPDATA),%d0
- #if 0
- btst #FPSR_EXC_SNAN,%d0 | EXC_SNAN
- jne 1f
- btst #FPSR_EXC_OPERR,%d0 | EXC_OPERR
- jeq 2f
- 1: bset #FPSR_AEXC_IOP,%d0 | set IOP bit
- 2: btst #FPSR_EXC_OVFL,%d0 | EXC_OVFL
- jeq 1f
- bset #FPSR_AEXC_OVFL,%d0 | set OVFL bit
- 1: btst #FPSR_EXC_UNFL,%d0 | EXC_UNFL
- jeq 1f
- btst #FPSR_EXC_INEX2,%d0 | EXC_INEX2
- jeq 1f
- bset #FPSR_AEXC_UNFL,%d0 | set UNFL bit
- 1: btst #FPSR_EXC_DZ,%d0 | EXC_INEX1
- jeq 1f
- bset #FPSR_AEXC_DZ,%d0 | set DZ bit
- 1: btst #FPSR_EXC_OVFL,%d0 | EXC_OVFL
- jne 1f
- btst #FPSR_EXC_INEX2,%d0 | EXC_INEX2
- jne 1f
- btst #FPSR_EXC_INEX1,%d0 | EXC_INEX1
- jeq 2f
- 1: bset #FPSR_AEXC_INEX,%d0 | set INEX bit
- 2: move.l %d0,(FPD_FPSR,FPDATA)
- #else
- | same as above, greatly optimized, but untested (yet)
- move.l %d0,%d2
- lsr.l #5,%d0
- move.l %d0,%d1
- lsr.l #4,%d1
- or.l %d0,%d1
- and.b #0x08,%d1
- move.l %d2,%d0
- lsr.l #6,%d0
- or.l %d1,%d0
- move.l %d2,%d1
- lsr.l #4,%d1
- or.b #0xdf,%d1
- and.b %d1,%d0
- move.l %d2,%d1
- lsr.l #7,%d1
- and.b #0x80,%d1
- or.b %d1,%d0
- and.b #0xf8,%d0
- or.b %d0,%d2
- move.l %d2,(FPD_FPSR,FPDATA)
- #endif
- move.b (FPD_FPSR+2,FPDATA),%d0
- and.b (FPD_FPCR+2,FPDATA),%d0
- jeq 1f
- printf ,"send signal!!!n"
- 1: jra fp_end