decbin.S
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:15k
- |
- | decbin.sa 3.3 12/19/90
- |
- | Description: Converts normalized packed bcd value pointed to by
- | register A6 to extended-precision value in FP0.
- |
- | Input: Normalized packed bcd value in ETEMP(a6).
- |
- | Output: Exact floating-point representation of the packed bcd value.
- |
- | Saves and Modifies: D2-D5
- |
- | Speed: The program decbin takes ??? cycles to execute.
- |
- | Object Size:
- |
- | External Reference(s): None.
- |
- | Algorithm:
- | Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
- | and NaN operands are dispatched without entering this routine)
- | value in 68881/882 format at location ETEMP(A6).
- |
- | A1. Convert the bcd exponent to binary by successive adds and muls.
- | Set the sign according to SE. Subtract 16 to compensate
- | for the mantissa which is to be interpreted as 17 integer
- | digits, rather than 1 integer and 16 fraction digits.
- | Note: this operation can never overflow.
- |
- | A2. Convert the bcd mantissa to binary by successive
- | adds and muls in FP0. Set the sign according to SM.
- | The mantissa digits will be converted with the decimal point
- | assumed following the least-significant digit.
- | Note: this operation can never overflow.
- |
- | A3. Count the number of leading/trailing zeros in the
- | bcd string. If SE is positive, count the leading zeros;
- | if negative, count the trailing zeros. Set the adjusted
- | exponent equal to the exponent from A1 and the zero count
- | added if SM = 1 and subtracted if SM = 0. Scale the
- | mantissa the equivalent of forcing in the bcd value:
- |
- | SM = 0 a non-zero digit in the integer position
- | SM = 1 a non-zero digit in Mant0, lsd of the fraction
- |
- | this will insure that any value, regardless of its
- | representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
- | consistently.
- |
- | A4. Calculate the factor 10^exp in FP1 using a table of
- | 10^(2^n) values. To reduce the error in forming factors
- | greater than 10^27, a directed rounding scheme is used with
- | tables rounded to RN, RM, and RP, according to the table
- | in the comments of the pwrten section.
- |
- | A5. Form the final binary number by scaling the mantissa by
- | the exponent factor. This is done by multiplying the
- | mantissa in FP0 by the factor in FP1 if the adjusted
- | exponent sign is positive, and dividing FP0 by FP1 if
- | it is negative.
- |
- | Clean up and return. Check if the final mul or div resulted
- | in an inex2 exception. If so, set inex1 in the fpsr and
- | check if the inex1 exception is enabled. If so, set d7 upper
- | word to $0100. This will signal unimp.sa that an enabled inex1
- | exception occurred. Unimp will fix the stack.
- |
- | Copyright (C) Motorola, Inc. 1990
- | All Rights Reserved
- |
- | THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
- | The copyright notice above does not evidence any
- | actual or intended publication of such source code.
- |DECBIN idnt 2,1 | Motorola 040 Floating Point Software Package
- |section 8
- .include "fpsp.h"
- |
- | PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
- | to nearest, minus, and plus, respectively. The tables include
- | 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding
- | is required until the power is greater than 27, however, all
- | tables include the first 5 for ease of indexing.
- |
- |xref PTENRN
- |xref PTENRM
- |xref PTENRP
- RTABLE: .byte 0,0,0,0
- .byte 2,3,2,3
- .byte 2,3,3,2
- .byte 3,2,2,3
- .global decbin
- .global calc_e
- .global pwrten
- .global calc_m
- .global norm
- .global ap_st_z
- .global ap_st_n
- |
- .set FNIBS,7
- .set FSTRT,0
- |
- .set ESTRT,4
- .set EDIGITS,2 |
- |
- | Constants in single precision
- FZERO: .long 0x00000000
- FONE: .long 0x3F800000
- FTEN: .long 0x41200000
- .set TEN,10
- |
- decbin:
- | fmovel #0,FPCR ;clr real fpcr
- moveml %d2-%d5,-(%a7)
- |
- | Calculate exponent:
- | 1. Copy bcd value in memory for use as a working copy.
- | 2. Calculate absolute value of exponent in d1 by mul and add.
- | 3. Correct for exponent sign.
- | 4. Subtract 16 to compensate for interpreting the mant as all integer digits.
- | (i.e., all digits assumed left of the decimal point.)
- |
- | Register usage:
- |
- | calc_e:
- | (*) d0: temp digit storage
- | (*) d1: accumulator for binary exponent
- | (*) d2: digit count
- | (*) d3: offset pointer
- | ( ) d4: first word of bcd
- | ( ) a0: pointer to working bcd value
- | ( ) a6: pointer to original bcd value
- | (*) FP_SCR1: working copy of original bcd value
- | (*) L_SCR1: copy of original exponent word
- |
- calc_e:
- movel #EDIGITS,%d2 |# of nibbles (digits) in fraction part
- moveql #ESTRT,%d3 |counter to pick up digits
- leal FP_SCR1(%a6),%a0 |load tmp bcd storage address
- movel ETEMP(%a6),(%a0) |save input bcd value
- movel ETEMP_HI(%a6),4(%a0) |save words 2 and 3
- movel ETEMP_LO(%a6),8(%a0) |and work with these
- movel (%a0),%d4 |get first word of bcd
- clrl %d1 |zero d1 for accumulator
- e_gd:
- mulul #TEN,%d1 |mul partial product by one digit place
- bfextu %d4{%d3:#4},%d0 |get the digit and zero extend into d0
- addl %d0,%d1 |d1 = d1 + d0
- addqb #4,%d3 |advance d3 to the next digit
- dbf %d2,e_gd |if we have used all 3 digits, exit loop
- btst #30,%d4 |get SE
- beqs e_pos |don't negate if pos
- negl %d1 |negate before subtracting
- e_pos:
- subl #16,%d1 |sub to compensate for shift of mant
- bges e_save |if still pos, do not neg
- negl %d1 |now negative, make pos and set SE
- orl #0x40000000,%d4 |set SE in d4,
- orl #0x40000000,(%a0) |and in working bcd
- e_save:
- movel %d1,L_SCR1(%a6) |save exp in memory
- |
- |
- | Calculate mantissa:
- | 1. Calculate absolute value of mantissa in fp0 by mul and add.
- | 2. Correct for mantissa sign.
- | (i.e., all digits assumed left of the decimal point.)
- |
- | Register usage:
- |
- | calc_m:
- | (*) d0: temp digit storage
- | (*) d1: lword counter
- | (*) d2: digit count
- | (*) d3: offset pointer
- | ( ) d4: words 2 and 3 of bcd
- | ( ) a0: pointer to working bcd value
- | ( ) a6: pointer to original bcd value
- | (*) fp0: mantissa accumulator
- | ( ) FP_SCR1: working copy of original bcd value
- | ( ) L_SCR1: copy of original exponent word
- |
- calc_m:
- moveql #1,%d1 |word counter, init to 1
- fmoves FZERO,%fp0 |accumulator
- |
- |
- | Since the packed number has a long word between the first & second parts,
- | get the integer digit then skip down & get the rest of the
- | mantissa. We will unroll the loop once.
- |
- bfextu (%a0){#28:#4},%d0 |integer part is ls digit in long word
- faddb %d0,%fp0 |add digit to sum in fp0
- |
- |
- | Get the rest of the mantissa.
- |
- loadlw:
- movel (%a0,%d1.L*4),%d4 |load mantissa longword into d4
- moveql #FSTRT,%d3 |counter to pick up digits
- moveql #FNIBS,%d2 |reset number of digits per a0 ptr
- md2b:
- fmuls FTEN,%fp0 |fp0 = fp0 * 10
- bfextu %d4{%d3:#4},%d0 |get the digit and zero extend
- faddb %d0,%fp0 |fp0 = fp0 + digit
- |
- |
- | If all the digits (8) in that long word have been converted (d2=0),
- | then inc d1 (=2) to point to the next long word and reset d3 to 0
- | to initialize the digit offset, and set d2 to 7 for the digit count;
- | else continue with this long word.
- |
- addqb #4,%d3 |advance d3 to the next digit
- dbf %d2,md2b |check for last digit in this lw
- nextlw:
- addql #1,%d1 |inc lw pointer in mantissa
- cmpl #2,%d1 |test for last lw
- ble loadlw |if not, get last one
-
- |
- | Check the sign of the mant and make the value in fp0 the same sign.
- |
- m_sign:
- btst #31,(%a0) |test sign of the mantissa
- beq ap_st_z |if clear, go to append/strip zeros
- fnegx %fp0 |if set, negate fp0
-
- |
- | Append/strip zeros:
- |
- | For adjusted exponents which have an absolute value greater than 27*,
- | this routine calculates the amount needed to normalize the mantissa
- | for the adjusted exponent. That number is subtracted from the exp
- | if the exp was positive, and added if it was negative. The purpose
- | of this is to reduce the value of the exponent and the possibility
- | of error in calculation of pwrten.
- |
- | 1. Branch on the sign of the adjusted exponent.
- | 2p.(positive exp)
- | 2. Check M16 and the digits in lwords 2 and 3 in descending order.
- | 3. Add one for each zero encountered until a non-zero digit.
- | 4. Subtract the count from the exp.
- | 5. Check if the exp has crossed zero in #3 above; make the exp abs
- | and set SE.
- | 6. Multiply the mantissa by 10**count.
- | 2n.(negative exp)
- | 2. Check the digits in lwords 3 and 2 in descending order.
- | 3. Add one for each zero encountered until a non-zero digit.
- | 4. Add the count to the exp.
- | 5. Check if the exp has crossed zero in #3 above; clear SE.
- | 6. Divide the mantissa by 10**count.
- |
- | *Why 27? If the adjusted exponent is within -28 < expA < 28, than
- | any adjustment due to append/strip zeros will drive the resultant
- | exponent towards zero. Since all pwrten constants with a power
- | of 27 or less are exact, there is no need to use this routine to
- | attempt to lessen the resultant exponent.
- |
- | Register usage:
- |
- | ap_st_z:
- | (*) d0: temp digit storage
- | (*) d1: zero count
- | (*) d2: digit count
- | (*) d3: offset pointer
- | ( ) d4: first word of bcd
- | (*) d5: lword counter
- | ( ) a0: pointer to working bcd value
- | ( ) FP_SCR1: working copy of original bcd value
- | ( ) L_SCR1: copy of original exponent word
- |
- |
- | First check the absolute value of the exponent to see if this
- | routine is necessary. If so, then check the sign of the exponent
- | and do append (+) or strip (-) zeros accordingly.
- | This section handles a positive adjusted exponent.
- |
- ap_st_z:
- movel L_SCR1(%a6),%d1 |load expA for range test
- cmpl #27,%d1 |test is with 27
- ble pwrten |if abs(expA) <28, skip ap/st zeros
- btst #30,(%a0) |check sign of exp
- bne ap_st_n |if neg, go to neg side
- clrl %d1 |zero count reg
- movel (%a0),%d4 |load lword 1 to d4
- bfextu %d4{#28:#4},%d0 |get M16 in d0
- bnes ap_p_fx |if M16 is non-zero, go fix exp
- addql #1,%d1 |inc zero count
- moveql #1,%d5 |init lword counter
- movel (%a0,%d5.L*4),%d4 |get lword 2 to d4
- bnes ap_p_cl |if lw 2 is zero, skip it
- addql #8,%d1 |and inc count by 8
- addql #1,%d5 |inc lword counter
- movel (%a0,%d5.L*4),%d4 |get lword 3 to d4
- ap_p_cl:
- clrl %d3 |init offset reg
- moveql #7,%d2 |init digit counter
- ap_p_gd:
- bfextu %d4{%d3:#4},%d0 |get digit
- bnes ap_p_fx |if non-zero, go to fix exp
- addql #4,%d3 |point to next digit
- addql #1,%d1 |inc digit counter
- dbf %d2,ap_p_gd |get next digit
- ap_p_fx:
- movel %d1,%d0 |copy counter to d2
- movel L_SCR1(%a6),%d1 |get adjusted exp from memory
- subl %d0,%d1 |subtract count from exp
- bges ap_p_fm |if still pos, go to pwrten
- negl %d1 |now its neg; get abs
- movel (%a0),%d4 |load lword 1 to d4
- orl #0x40000000,%d4 | and set SE in d4
- orl #0x40000000,(%a0) | and in memory
- |
- | Calculate the mantissa multiplier to compensate for the striping of
- | zeros from the mantissa.
- |
- ap_p_fm:
- movel #PTENRN,%a1 |get address of power-of-ten table
- clrl %d3 |init table index
- fmoves FONE,%fp1 |init fp1 to 1
- moveql #3,%d2 |init d2 to count bits in counter
- ap_p_el:
- asrl #1,%d0 |shift lsb into carry
- bccs ap_p_en |if 1, mul fp1 by pwrten factor
- fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no)
- ap_p_en:
- addl #12,%d3 |inc d3 to next rtable entry
- tstl %d0 |check if d0 is zero
- bnes ap_p_el |if not, get next bit
- fmulx %fp1,%fp0 |mul mantissa by 10**(no_bits_shifted)
- bra pwrten |go calc pwrten
- |
- | This section handles a negative adjusted exponent.
- |
- ap_st_n:
- clrl %d1 |clr counter
- moveql #2,%d5 |set up d5 to point to lword 3
- movel (%a0,%d5.L*4),%d4 |get lword 3
- bnes ap_n_cl |if not zero, check digits
- subl #1,%d5 |dec d5 to point to lword 2
- addql #8,%d1 |inc counter by 8
- movel (%a0,%d5.L*4),%d4 |get lword 2
- ap_n_cl:
- movel #28,%d3 |point to last digit
- moveql #7,%d2 |init digit counter
- ap_n_gd:
- bfextu %d4{%d3:#4},%d0 |get digit
- bnes ap_n_fx |if non-zero, go to exp fix
- subql #4,%d3 |point to previous digit
- addql #1,%d1 |inc digit counter
- dbf %d2,ap_n_gd |get next digit
- ap_n_fx:
- movel %d1,%d0 |copy counter to d0
- movel L_SCR1(%a6),%d1 |get adjusted exp from memory
- subl %d0,%d1 |subtract count from exp
- bgts ap_n_fm |if still pos, go fix mantissa
- negl %d1 |take abs of exp and clr SE
- movel (%a0),%d4 |load lword 1 to d4
- andl #0xbfffffff,%d4 | and clr SE in d4
- andl #0xbfffffff,(%a0) | and in memory
- |
- | Calculate the mantissa multiplier to compensate for the appending of
- | zeros to the mantissa.
- |
- ap_n_fm:
- movel #PTENRN,%a1 |get address of power-of-ten table
- clrl %d3 |init table index
- fmoves FONE,%fp1 |init fp1 to 1
- moveql #3,%d2 |init d2 to count bits in counter
- ap_n_el:
- asrl #1,%d0 |shift lsb into carry
- bccs ap_n_en |if 1, mul fp1 by pwrten factor
- fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no)
- ap_n_en:
- addl #12,%d3 |inc d3 to next rtable entry
- tstl %d0 |check if d0 is zero
- bnes ap_n_el |if not, get next bit
- fdivx %fp1,%fp0 |div mantissa by 10**(no_bits_shifted)
- |
- |
- | Calculate power-of-ten factor from adjusted and shifted exponent.
- |
- | Register usage:
- |
- | pwrten:
- | (*) d0: temp
- | ( ) d1: exponent
- | (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
- | (*) d3: FPCR work copy
- | ( ) d4: first word of bcd
- | (*) a1: RTABLE pointer
- | calc_p:
- | (*) d0: temp
- | ( ) d1: exponent
- | (*) d3: PWRTxx table index
- | ( ) a0: pointer to working copy of bcd
- | (*) a1: PWRTxx pointer
- | (*) fp1: power-of-ten accumulator
- |
- | Pwrten calculates the exponent factor in the selected rounding mode
- | according to the following table:
- |
- | Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode
- |
- | ANY ANY RN RN
- |
- | + + RP RP
- | - + RP RM
- | + - RP RM
- | - - RP RP
- |
- | + + RM RM
- | - + RM RP
- | + - RM RP
- | - - RM RM
- |
- | + + RZ RM
- | - + RZ RM
- | + - RZ RP
- | - - RZ RP
- |
- |
- pwrten:
- movel USER_FPCR(%a6),%d3 |get user's FPCR
- bfextu %d3{#26:#2},%d2 |isolate rounding mode bits
- movel (%a0),%d4 |reload 1st bcd word to d4
- asll #2,%d2 |format d2 to be
- bfextu %d4{#0:#2},%d0 | {FPCR[6],FPCR[5],SM,SE}
- addl %d0,%d2 |in d2 as index into RTABLE
- leal RTABLE,%a1 |load rtable base
- moveb (%a1,%d2),%d0 |load new rounding bits from table
- clrl %d3 |clear d3 to force no exc and extended
- bfins %d0,%d3{#26:#2} |stuff new rounding bits in FPCR
- fmovel %d3,%FPCR |write new FPCR
- asrl #1,%d0 |write correct PTENxx table
- bccs not_rp |to a1
- leal PTENRP,%a1 |it is RP
- bras calc_p |go to init section
- not_rp:
- asrl #1,%d0 |keep checking
- bccs not_rm
- leal PTENRM,%a1 |it is RM
- bras calc_p |go to init section
- not_rm:
- leal PTENRN,%a1 |it is RN
- calc_p:
- movel %d1,%d0 |copy exp to d0;use d0
- bpls no_neg |if exp is negative,
- negl %d0 |invert it
- orl #0x40000000,(%a0) |and set SE bit
- no_neg:
- clrl %d3 |table index
- fmoves FONE,%fp1 |init fp1 to 1
- e_loop:
- asrl #1,%d0 |shift next bit into carry
- bccs e_next |if zero, skip the mul
- fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no)
- e_next:
- addl #12,%d3 |inc d3 to next rtable entry
- tstl %d0 |check if d0 is zero
- bnes e_loop |not zero, continue shifting
- |
- |
- | Check the sign of the adjusted exp and make the value in fp0 the
- | same sign. If the exp was pos then multiply fp1*fp0;
- | else divide fp0/fp1.
- |
- | Register Usage:
- | norm:
- | ( ) a0: pointer to working bcd value
- | (*) fp0: mantissa accumulator
- | ( ) fp1: scaling factor - 10**(abs(exp))
- |
- norm:
- btst #30,(%a0) |test the sign of the exponent
- beqs mul |if clear, go to multiply
- div:
- fdivx %fp1,%fp0 |exp is negative, so divide mant by exp
- bras end_dec
- mul:
- fmulx %fp1,%fp0 |exp is positive, so multiply by exp
- |
- |
- | Clean up and return with result in fp0.
- |
- | If the final mul/div in decbin incurred an inex exception,
- | it will be inex2, but will be reported as inex1 by get_op.
- |
- end_dec:
- fmovel %FPSR,%d0 |get status register
- bclrl #inex2_bit+8,%d0 |test for inex2 and clear it
- fmovel %d0,%FPSR |return status reg w/o inex2
- beqs no_exc |skip this if no exc
- orl #inx1a_mask,USER_FPSR(%a6) |set inex1/ainex
- no_exc:
- moveml (%a7)+,%d2-%d5
- rts
- |end