l1.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:71k
- /* $Id$
- *
- * This file is subject to the terms and conditions of the GNU General Public
- * License. See the file "COPYING" in the main directory of this archive
- * for more details.
- *
- * Copyright (C) 1992 - 1997, 2000 Silicon Graphics, Inc.
- * Copyright (C) 2000 by Colin Ngam
- */
- /* In general, this file is organized in a hierarchy from lower-level
- * to higher-level layers, as follows:
- *
- * UART routines
- * Bedrock/L1 "PPP-like" protocol implementation
- * System controller "message" interface (allows multiplexing
- * of various kinds of requests and responses with
- * console I/O)
- * Console interfaces (there are two):
- * (1) "elscuart", used in the IP35prom and (maybe) some
- * debugging situations elsewhere, and
- * (2) "l1_cons", the glue that allows the L1 to act
- * as the system console for the stdio libraries
- *
- * Routines making use of the system controller "message"-style interface
- * can be found in l1_command.c. Their names are leftover from early SN0,
- * when the "module system controller" (msc) was known as the "entry level
- * system controller" (elsc). The names and signatures of those functions
- * remain unchanged in order to keep the SN0 -> SN1 system controller
- * changes fairly localized.
- */
- #include <linux/types.h>
- #include <linux/config.h>
- #include <linux/slab.h>
- #include <linux/spinlock.h>
- #include <asm/sn/sgi.h>
- #include <asm/sn/iograph.h>
- #include <asm/sn/invent.h>
- #include <asm/sn/hcl.h>
- #include <asm/sn/hcl_util.h>
- #include <asm/sn/labelcl.h>
- #include <asm/sn/eeprom.h>
- #include <asm/sn/ksys/i2c.h>
- #include <asm/sn/router.h>
- #include <asm/sn/module.h>
- #include <asm/sn/ksys/l1.h>
- #include <asm/sn/nodepda.h>
- #include <asm/sn/clksupport.h>
- #include <asm/sn/sn1/uart16550.h>
- /*
- * Delete this when atomic_clear is part of atomic.h.
- */
- static __inline__ int
- atomic_clear (int i, atomic_t *v)
- {
- __s32 old, new;
- do {
- old = atomic_read(v);
- new = old & ~i;
- } while (ia64_cmpxchg("acq", v, old, new, sizeof(atomic_t)) != old);
- return new;
- }
- #if defined(EEPROM_DEBUG)
- #define db_printf(x) printk x
- #else
- #define db_printf(x)
- #endif
- // From irix/kern/sys/SN/SN1/bdrkhspecregs.h
- #define HSPEC_UART_0 0x00000080 /* UART Registers */
- /*********************************************************************
- * Hardware-level (UART) driver routines.
- */
- /* macros for reading/writing registers */
- #define LD(x) (*(volatile uint64_t *)(x))
- #define SD(x, v) (LD(x) = (uint64_t) (v))
- /* location of uart receive/xmit data register */
- #define L1_UART_BASE(n) ((ulong)REMOTE_HSPEC_ADDR((n), HSPEC_UART_0))
- #define LOCAL_HUB LOCAL_HUB_ADDR
- #define LOCK_HUB REMOTE_HUB_ADDR
- #define ADDR_L1_REG(n, r)
- (L1_UART_BASE(n) | ( (r) << 3 ))
- #define READ_L1_UART_REG(n, r)
- ( LD(ADDR_L1_REG((n), (r))) )
- #define WRITE_L1_UART_REG(n, r, v)
- ( SD(ADDR_L1_REG((n), (r)), (v)) )
- /* UART-related #defines */
- #define UART_BAUD_RATE 57600
- #define UART_FIFO_DEPTH 0xf0
- #define UART_DELAY_SPAN 10
- #define UART_PUTC_TIMEOUT 50000
- #define UART_INIT_TIMEOUT 100000
- /* error codes */
- #define UART_SUCCESS 0
- #define UART_TIMEOUT (-1)
- #define UART_LINK (-2)
- #define UART_NO_CHAR (-3)
- #define UART_VECTOR (-4)
- #ifdef BRINGUP
- #define UART_DELAY(x) { int i; i = x * 1000; while (--i); }
- #else
- #define UART_DELAY(x) us_delay(x)
- #endif
- /*
- * Some macros for handling Endian-ness
- */
- #ifdef LITTLE_ENDIAN
- #define COPY_INT_TO_BUFFER(_b, _i, _n)
- {
- _b[_i++] = (_n >> 24) & 0xff;
- _b[_i++] = (_n >> 16) & 0xff;
- _b[_i++] = (_n >> 8) & 0xff;
- _b[_i++] = _n & 0xff;
- }
- #define COPY_BUFFER_TO_INT(_b, _i, _n)
- {
- _n = (_b[_i++] << 24) & 0xff;
- _n |= (_b[_i++] << 16) & 0xff;
- _n |= (_b[_i++] << 8) & 0xff;
- _n |= _b[_i++] & 0xff;
- }
- #define COPY_BUFFER_TO_BUFFER(_b, _i, _bn)
- {
- char *_xyz = (char *)_bn;
- _xyz[3] = _b[_i++];
- _xyz[2] = _b[_i++];
- _xyz[1] = _b[_i++];
- _xyz[0] = _b[_i++];
- }
- #else /* BIG_ENDIAN */
- extern char *bcopy(const char * src, char * dest, int count);
- #define COPY_INT_TO_BUFFER(_b, _i, _n)
- {
- bcopy((char *)&_n, _b, sizeof(_n));
- _i += sizeof(_n);
- }
- #define COPY_BUFFER_TO_INT(_b, _i, _n)
- {
- bcopy(&_b[_i], &_n, sizeof(_n));
- _i += sizeof(_n);
- }
- #define COPY_BUFFER_TO_BUFFER(_b, _i, _bn)
- {
- bcopy(&(_b[_i]), _bn, sizeof(int));
- _i += sizeof(int);
- }
- #endif /* LITTLE_ENDIAN */
- void kmem_free(void *where, int size);
- #define BCOPY(x,y,z) memcpy(y,x,z)
- /*
- * Console locking defines and functions.
- *
- */
- #ifdef BRINGUP
- #define FORCE_CONSOLE_NASID
- #endif
- #define HUB_LOCK 16
- #define PRIMARY_LOCK_TIMEOUT 10000000
- #define HUB_LOCK_REG(n) LOCK_HUB(n, MD_PERF_CNT0)
- #define SET_BITS(reg, bits) SD(reg, LD(reg) | (bits))
- #define CLR_BITS(reg, bits) SD(reg, LD(reg) & ~(bits))
- #define TST_BITS(reg, bits) ((LD(reg) & (bits)) != 0)
- #define HUB_TEST_AND_SET(n) LD(LOCK_HUB(n,LB_SCRATCH_REG3_RZ))
- #define HUB_CLEAR(n) SD(LOCK_HUB(n,LB_SCRATCH_REG3),0)
- #define RTC_TIME_MAX ((rtc_time_t) ~0ULL)
- /*
- * primary_lock
- *
- * Allows CPU's 0-3 to mutually exclude the hub from one another by
- * obtaining a blocking lock. Does nothing if only one CPU is active.
- *
- * This lock should be held just long enough to set or clear a global
- * lock bit. After a relatively short timeout period, this routine
- * figures something is wrong, and steals the lock. It does not set
- * any other CPU to "dead".
- */
- inline void
- primary_lock(nasid_t nasid)
- {
- rtc_time_t expire;
- expire = rtc_time() + PRIMARY_LOCK_TIMEOUT;
- while (HUB_TEST_AND_SET(nasid)) {
- if (rtc_time() > expire) {
- HUB_CLEAR(nasid);
- }
- }
- }
- /*
- * primary_unlock (internal)
- *
- * Counterpart to primary_lock
- */
- inline void
- primary_unlock(nasid_t nasid)
- {
- HUB_CLEAR(nasid);
- }
- /*
- * hub_unlock
- *
- * Counterpart to hub_lock_timeout and hub_lock
- */
- inline void
- hub_unlock(nasid_t nasid, int level)
- {
- uint64_t mask = 1ULL << level;
- primary_lock(nasid);
- CLR_BITS(HUB_LOCK_REG(nasid), mask);
- primary_unlock(nasid);
- }
- /*
- * hub_lock_timeout
- *
- * Uses primary_lock to implement multiple lock levels.
- *
- * There are 20 lock levels from 0 to 19 (limited by the number of bits
- * in HUB_LOCK_REG). To prevent deadlock, multiple locks should be
- * obtained in order of increasingly higher level, and released in the
- * reverse order.
- *
- * A timeout value of 0 may be used for no timeout.
- *
- * Returns 0 if successful, -1 if lock times out.
- */
- inline int
- hub_lock_timeout(nasid_t nasid, int level, rtc_time_t timeout)
- {
- uint64_t mask = 1ULL << level;
- rtc_time_t expire = (timeout ? rtc_time() + timeout : RTC_TIME_MAX);
- int done = 0;
- while (! done) {
- while (TST_BITS(HUB_LOCK_REG(nasid), mask)) {
- if (rtc_time() > expire)
- return -1;
- }
- primary_lock(nasid);
- if (! TST_BITS(HUB_LOCK_REG(nasid), mask)) {
- SET_BITS(HUB_LOCK_REG(nasid), mask);
- done = 1;
- }
- primary_unlock(nasid);
- }
- return 0;
- }
- #define LOCK_TIMEOUT (0x1500000 * 1) /* 0x1500000 is ~30 sec */
- inline void
- lock_console(nasid_t nasid)
- {
- int ret;
- ret = hub_lock_timeout(nasid, HUB_LOCK, (rtc_time_t)LOCK_TIMEOUT);
- if ( ret != 0 ) {
- /* timeout */
- hub_unlock(nasid, HUB_LOCK);
- /* If the 2nd lock fails, just pile ahead.... */
- hub_lock_timeout(nasid, HUB_LOCK, (rtc_time_t)LOCK_TIMEOUT);
- }
- }
- inline void
- unlock_console(nasid_t nasid)
- {
- hub_unlock(nasid, HUB_LOCK);
- }
- int
- get_L1_baud(void)
- {
- return UART_BAUD_RATE;
- }
- /* uart driver functions */
- static void
- uart_delay( rtc_time_t delay_span )
- {
- UART_DELAY( delay_span );
- }
- #define UART_PUTC_READY(n) ( (READ_L1_UART_REG((n), REG_LSR) & LSR_XHRE) && (READ_L1_UART_REG((n), REG_MSR) & MSR_CTS) )
- static int
- uart_putc( l1sc_t *sc )
- {
- #ifdef BRINGUP
- /* need a delay to avoid dropping chars */
- UART_DELAY(57);
- #endif
- #ifdef FORCE_CONSOLE_NASID
- /* We need this for the console write path _elscuart_flush() -> brl1_send() */
- sc->nasid = 0;
- #endif
- WRITE_L1_UART_REG( sc->nasid, REG_DAT,
- sc->send[sc->sent] );
- return UART_SUCCESS;
- }
- static int
- uart_getc( l1sc_t *sc )
- {
- u_char lsr_reg = 0;
- nasid_t nasid = sc->nasid;
- #ifdef FORCE_CONSOLE_NASID
- nasid = sc->nasid = 0;
- #endif
- if( (lsr_reg = READ_L1_UART_REG( nasid, REG_LSR )) &
- (LSR_RCA | LSR_PARERR | LSR_FRMERR) )
- {
- if( lsr_reg & LSR_RCA )
- return( (u_char)READ_L1_UART_REG( nasid, REG_DAT ) );
- else if( lsr_reg & (LSR_PARERR | LSR_FRMERR) ) {
- return UART_LINK;
- }
- }
- return UART_NO_CHAR;
- }
- #define PROM_SER_CLK_SPEED 12000000
- #define PROM_SER_DIVISOR(x) (PROM_SER_CLK_SPEED / ((x) * 16))
- static void
- uart_init( l1sc_t *sc, int baud )
- {
- rtc_time_t expire;
- int clkdiv;
- nasid_t nasid;
- clkdiv = PROM_SER_DIVISOR(baud);
- expire = rtc_time() + UART_INIT_TIMEOUT;
- nasid = sc->nasid;
-
- /* make sure the transmit FIFO is empty */
- while( !(READ_L1_UART_REG( nasid, REG_LSR ) & LSR_XSRE) ) {
- uart_delay( UART_DELAY_SPAN );
- if( rtc_time() > expire ) {
- break;
- }
- }
- if ( sc->uart == BRL1_LOCALUART )
- lock_console(nasid);
- WRITE_L1_UART_REG( nasid, REG_LCR, LCR_DLAB );
- uart_delay( UART_DELAY_SPAN );
- WRITE_L1_UART_REG( nasid, REG_DLH, (clkdiv >> 8) & 0xff );
- uart_delay( UART_DELAY_SPAN );
- WRITE_L1_UART_REG( nasid, REG_DLL, clkdiv & 0xff );
- uart_delay( UART_DELAY_SPAN );
- /* set operating parameters and set DLAB to 0 */
- WRITE_L1_UART_REG( nasid, REG_LCR, LCR_BITS8 | LCR_STOP1 );
- uart_delay( UART_DELAY_SPAN );
- WRITE_L1_UART_REG( nasid, REG_MCR, MCR_RTS | MCR_AFE );
- uart_delay( UART_DELAY_SPAN );
- /* disable interrupts */
- WRITE_L1_UART_REG( nasid, REG_ICR, 0x0 );
- uart_delay( UART_DELAY_SPAN );
- /* enable FIFO mode and reset both FIFOs */
- WRITE_L1_UART_REG( nasid, REG_FCR, FCR_FIFOEN );
- uart_delay( UART_DELAY_SPAN );
- WRITE_L1_UART_REG( nasid, REG_FCR,
- FCR_FIFOEN | FCR_RxFIFO | FCR_TxFIFO );
- if ( sc->uart == BRL1_LOCALUART )
- unlock_console(nasid);
- }
- /* This requires the console lock */
- static void
- uart_intr_enable( l1sc_t *sc, u_char mask )
- {
- u_char lcr_reg, icr_reg;
- nasid_t nasid = sc->nasid;
- /* make sure that the DLAB bit in the LCR register is 0
- */
- lcr_reg = READ_L1_UART_REG( nasid, REG_LCR );
- lcr_reg &= ~(LCR_DLAB);
- WRITE_L1_UART_REG( nasid, REG_LCR, lcr_reg );
- /* enable indicated interrupts
- */
- icr_reg = READ_L1_UART_REG( nasid, REG_ICR );
- icr_reg |= mask;
- WRITE_L1_UART_REG( nasid, REG_ICR, icr_reg /*(ICR_RIEN | ICR_TIEN)*/ );
- }
- /* This requires the console lock */
- static void
- uart_intr_disable( l1sc_t *sc, u_char mask )
- {
- u_char lcr_reg, icr_reg;
- nasid_t nasid = sc->nasid;
- /* make sure that the DLAB bit in the LCR register is 0
- */
- lcr_reg = READ_L1_UART_REG( nasid, REG_LCR );
- lcr_reg &= ~(LCR_DLAB);
- WRITE_L1_UART_REG( nasid, REG_LCR, lcr_reg );
- /* enable indicated interrupts
- */
- icr_reg = READ_L1_UART_REG( nasid, REG_ICR );
- icr_reg &= mask;
- WRITE_L1_UART_REG( nasid, REG_ICR, icr_reg /*(ICR_RIEN | ICR_TIEN)*/ );
- }
- #define uart_enable_xmit_intr(sc)
- uart_intr_enable((sc), ICR_TIEN)
- #define uart_disable_xmit_intr(sc)
- uart_intr_disable((sc), ~(ICR_TIEN))
- #define uart_enable_recv_intr(sc)
- uart_intr_enable((sc), ICR_RIEN)
- #define uart_disable_recv_intr(sc)
- uart_intr_disable((sc), ~(ICR_RIEN))
- /*********************************************************************
- * Routines for accessing a remote (router) UART
- */
- #define READ_RTR_L1_UART_REG(p, n, r, v)
- {
- if( vector_read_node( (p), (n), 0,
- RR_JBUS1(r), (v) ) ) {
- return UART_VECTOR;
- }
- }
- #define WRITE_RTR_L1_UART_REG(p, n, r, v)
- {
- if( vector_write_node( (p), (n), 0,
- RR_JBUS1(r), (v) ) ) {
- return UART_VECTOR;
- }
- }
- #define RTR_UART_PUTC_TIMEOUT UART_PUTC_TIMEOUT*10
- #define RTR_UART_DELAY_SPAN UART_DELAY_SPAN
- #define RTR_UART_INIT_TIMEOUT UART_INIT_TIMEOUT*10
- static int
- rtr_uart_putc( l1sc_t *sc )
- {
- uint64_t regval, c;
- nasid_t nasid = sc->nasid;
- net_vec_t path = sc->uart;
- rtc_time_t expire = rtc_time() + RTR_UART_PUTC_TIMEOUT;
- #ifdef FORCE_CONSOLE_NASID
- /* We need this for the console write path _elscuart_flush() -> brl1_send() */
- nasid = sc->nasid = 0;
- #endif
- c = (sc->send[sc->sent] & 0xffULL);
-
- while( 1 )
- {
- /* Check for "tx hold reg empty" bit. */
- READ_RTR_L1_UART_REG( path, nasid, REG_LSR, ®val );
- if( regval & LSR_XHRE )
- {
- WRITE_RTR_L1_UART_REG( path, nasid, REG_DAT, c );
- return UART_SUCCESS;
- }
- if( rtc_time() >= expire )
- {
- return UART_TIMEOUT;
- }
- uart_delay( RTR_UART_DELAY_SPAN );
- }
- }
- static int
- rtr_uart_getc( l1sc_t *sc )
- {
- uint64_t regval;
- nasid_t nasid = sc->nasid;
- net_vec_t path = sc->uart;
- #ifdef FORCE_CONSOLE_NASID
- nasid = sc->nasid = 0;
- #endif
- READ_RTR_L1_UART_REG( path, nasid, REG_LSR, ®val );
- if( regval & (LSR_RCA | LSR_PARERR | LSR_FRMERR) )
- {
- if( regval & LSR_RCA )
- {
- READ_RTR_L1_UART_REG( path, nasid, REG_DAT, ®val );
- return( (int)regval );
- }
- else
- {
- return UART_LINK;
- }
- }
- return UART_NO_CHAR;
- }
- static int
- rtr_uart_init( l1sc_t *sc, int baud )
- {
- rtc_time_t expire;
- int clkdiv;
- nasid_t nasid;
- net_vec_t path;
- uint64_t regval;
- clkdiv = PROM_SER_DIVISOR(baud);
- expire = rtc_time() + RTR_UART_INIT_TIMEOUT;
- nasid = sc->nasid;
- path = sc->uart;
- /* make sure the transmit FIFO is empty */
- while(1) {
- READ_RTR_L1_UART_REG( path, nasid, REG_LSR, ®val );
- if( regval & LSR_XSRE ) {
- break;
- }
- if( rtc_time() > expire ) {
- break;
- }
- uart_delay( RTR_UART_DELAY_SPAN );
- }
- WRITE_RTR_L1_UART_REG( path, nasid, REG_LCR, LCR_DLAB );
- uart_delay( UART_DELAY_SPAN );
- WRITE_RTR_L1_UART_REG( path, nasid, REG_DLH, (clkdiv >> 8) & 0xff );
- uart_delay( UART_DELAY_SPAN );
- WRITE_RTR_L1_UART_REG( path, nasid, REG_DLL, clkdiv & 0xff );
- uart_delay( UART_DELAY_SPAN );
- /* set operating parameters and set DLAB to 0 */
- WRITE_RTR_L1_UART_REG( path, nasid, REG_LCR, LCR_BITS8 | LCR_STOP1 );
- uart_delay( UART_DELAY_SPAN );
- WRITE_RTR_L1_UART_REG( path, nasid, REG_MCR, MCR_RTS | MCR_AFE );
- uart_delay( UART_DELAY_SPAN );
- /* disable interrupts */
- WRITE_RTR_L1_UART_REG( path, nasid, REG_ICR, 0x0 );
- uart_delay( UART_DELAY_SPAN );
- /* enable FIFO mode and reset both FIFOs */
- WRITE_RTR_L1_UART_REG( path, nasid, REG_FCR, FCR_FIFOEN );
- uart_delay( UART_DELAY_SPAN );
- WRITE_RTR_L1_UART_REG( path, nasid, REG_FCR,
- FCR_FIFOEN | FCR_RxFIFO | FCR_TxFIFO );
- return 0;
- }
- /*********************************************************************
- * subchannel manipulation
- *
- * The SUBCH_[UN]LOCK macros are used to arbitrate subchannel
- * allocation. SUBCH_DATA_[UN]LOCK control access to data structures
- * associated with particular subchannels (e.g., receive queues).
- *
- */
- #ifdef SPINLOCKS_WORK
- #define SUBCH_LOCK(sc) spin_lock_irq( &((sc)->subch_lock) )
- #define SUBCH_UNLOCK(sc) spin_unlock_irq( &((sc)->subch_lock) )
- #define SUBCH_DATA_LOCK(sbch) spin_lock_irq( &((sbch)->data_lock) )
- #define SUBCH_DATA_UNLOCK(sbch) spin_unlock_irq( &((sbch)->data_lock) )
- #else
- #define SUBCH_LOCK(sc)
- #define SUBCH_UNLOCK(sc)
- #define SUBCH_DATA_LOCK(sbch)
- #define SUBCH_DATA_UNLOCK(sbch)
- #endif
- /* get_myid is an internal function that reads the PI_CPU_NUM
- * register of the local bedrock to determine which of the
- * four possible CPU's "this" one is
- */
- static int
- get_myid( void )
- {
- return( LD(LOCAL_HUB(PI_CPU_NUM)) );
- }
- /*********************************************************************
- * Queue manipulation macros
- *
- *
- */
- #define NEXT(p) (((p) + 1) & (BRL1_QSIZE-1)) /* assume power of 2 */
- #define cq_init(q) bzero((q), sizeof (*(q)))
- #define cq_empty(q) ((q)->ipos == (q)->opos)
- #define cq_full(q) (NEXT((q)->ipos) == (q)->opos)
- #define cq_used(q) ((q)->opos <= (q)->ipos ?
- (q)->ipos - (q)->opos :
- BRL1_QSIZE + (q)->ipos - (q)->opos)
- #define cq_room(q) ((q)->opos <= (q)->ipos ?
- BRL1_QSIZE - 1 + (q)->opos - (q)->ipos :
- (q)->opos - (q)->ipos - 1)
- #define cq_add(q, c) ((q)->buf[(q)->ipos] = (u_char) (c),
- (q)->ipos = NEXT((q)->ipos))
- #define cq_rem(q, c) ((c) = (q)->buf[(q)->opos],
- (q)->opos = NEXT((q)->opos))
- #define cq_discard(q) ((q)->opos = NEXT((q)->opos))
- #define cq_tent_full(q) (NEXT((q)->tent_next) == (q)->opos)
- #define cq_tent_len(q) ((q)->ipos <= (q)->tent_next ?
- (q)->tent_next - (q)->ipos :
- BRL1_QSIZE + (q)->tent_next - (q)->ipos)
- #define cq_tent_add(q, c)
- ((q)->buf[(q)->tent_next] = (u_char) (c),
- (q)->tent_next = NEXT((q)->tent_next))
- #define cq_commit_tent(q)
- ((q)->ipos = (q)->tent_next)
- #define cq_discard_tent(q)
- ((q)->tent_next = (q)->ipos)
- /*********************************************************************
- * CRC-16 (for checking bedrock/L1 packets).
- *
- * These are based on RFC 1662 ("PPP in HDLC-like framing").
- */
- static unsigned short fcstab[256] = {
- 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
- 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
- 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
- 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
- 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
- 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
- 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
- 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
- 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
- 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
- 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
- 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
- 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
- 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
- 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
- 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
- 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
- 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
- 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
- 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
- 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
- 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
- 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
- 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
- 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
- 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
- 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
- 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
- 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
- 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
- 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
- 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
- };
- #define INIT_CRC 0xFFFF /* initial CRC value */
- #define GOOD_CRC 0xF0B8 /* "good" final CRC value */
- static unsigned short crc16_calc( unsigned short crc, u_char c )
- {
- return( (crc >> 8) ^ fcstab[(crc ^ c) & 0xff] );
- }
- /***********************************************************************
- * The following functions implement the PPP-like bedrock/L1 protocol
- * layer.
- *
- */
- #define BRL1_FLAG_CH 0x7e
- #define BRL1_ESC_CH 0x7d
- #define BRL1_XOR_CH 0x20
- /* L1<->Bedrock packet types */
- #define BRL1_REQUEST 0x00
- #define BRL1_RESPONSE 0x20
- #define BRL1_EVENT 0x40
- #define BRL1_PKT_TYPE_MASK 0xE0
- #define BRL1_SUBCH_MASK 0x1F
- #define PKT_TYPE(tsb) ((tsb) & BRL1_PKT_TYPE_MASK)
- #define SUBCH(tsb) ((tsb) & BRL1_SUBCH_MASK)
- /* timeouts */
- #define BRL1_INIT_TIMEOUT 500000
- /*
- * brl1_discard_packet is a dummy "receive callback" used to get rid
- * of packets we don't want
- */
- void brl1_discard_packet( l1sc_t *sc, int ch )
- {
- brl1_sch_t *subch = &sc->subch[ch];
- sc_cq_t *q = subch->iqp;
- SUBCH_DATA_LOCK( subch );
- q->opos = q->ipos;
- atomic_clear( &(subch->packet_arrived), ~((unsigned)0) );
- SUBCH_DATA_UNLOCK( subch );
- }
- /*
- * brl1_send_chars sends the send buffer in the l1sc_t structure
- * out through the uart. Assumes that the caller has locked the
- * UART (or send buffer in the kernel).
- *
- * This routine doesn't block-- if you want it to, call it in
- * a loop.
- */
- static int
- brl1_send_chars( l1sc_t *sc )
- {
- /* In the kernel, we track the depth of the C brick's UART's
- * fifo in software, and only check if the UART is accepting
- * characters when our count indicates that the fifo should
- * be full.
- *
- * For remote (router) UARTs, and also for the local (C brick)
- * UART in the prom, we check with the UART before sending every
- * character.
- */
- if( sc->uart == BRL1_LOCALUART )
- {
- if( !(sc->fifo_space) && UART_PUTC_READY( sc->nasid ) )
- sc->fifo_space = UART_FIFO_DEPTH;
-
- while( (sc->sent < sc->send_len) && (sc->fifo_space) ) {
- uart_putc( sc );
- sc->fifo_space--;
- sc->sent++;
- }
- }
- else
- /* The following applies to all UARTs in the prom, and to remote
- * (router) UARTs in the kernel...
- */
- #define TIMEOUT_RETRIES 30
- {
- int result;
- int tries = 0;
- while( sc->sent < sc->send_len ) {
- result = sc->putc_f( sc );
- if( result >= 0 ) {
- (sc->sent)++;
- continue;
- }
- if( result == UART_TIMEOUT ) {
- tries++;
- /* send this character in TIMEOUT_RETRIES... */
- if( tries < TIMEOUT_RETRIES ) {
- continue;
- }
- /* ...or else... */
- else {
- /* ...drop the packet. */
- sc->sent = sc->send_len;
- return sc->send_len;
- }
- }
- if( result < 0 ) {
- return result;
- }
- }
- }
- return sc->sent;
- }
- /* brl1_send formats up a packet and (at least begins to) send it
- * to the uart. If the send buffer is in use when this routine obtains
- * the lock, it will behave differently depending on the "wait" parameter.
- * For wait == 0 (most I/O), it will return 0 (as in "zero bytes sent"),
- * hopefully encouraging the caller to back off (unlock any high-level
- * spinlocks) and allow the buffer some time to drain. For wait==1 (high-
- * priority I/O along the lines of kernel error messages), we will flush
- * the current contents of the send buffer and beat on the uart
- * until our message has been completely transmitted.
- */
- static int
- brl1_send( l1sc_t *sc, char *msg, int len, u_char type_and_subch, int wait )
- {
- int index;
- int pkt_len = 0;
- unsigned short crc = INIT_CRC;
- char *send_ptr = sc->send;
- #ifdef BRINGUP
- /* We want to be sure that we are sending the entire packet before returning */
- wait = 1;
- #endif
- if ( sc->uart == BRL1_LOCALUART )
- lock_console(sc->nasid);
- if( sc->send_in_use ) {
- if( !wait ) {
- if ( sc->uart == BRL1_LOCALUART )
- unlock_console(sc->nasid);
- return 0; /* couldn't send anything; wait for buffer to drain */
- }
- else {
- /* buffer's in use, but we're synchronous I/O, so we're going
- * to send whatever's in there right now and take the buffer
- */
- while( sc->sent < sc->send_len )
- brl1_send_chars( sc );
- }
- }
- else {
- sc->send_in_use = 1;
- }
- *send_ptr++ = BRL1_FLAG_CH;
- *send_ptr++ = type_and_subch;
- pkt_len += 2;
- crc = crc16_calc( crc, type_and_subch );
- /* limit number of characters accepted to max payload size */
- if( len > (BRL1_QSIZE - 1) )
- len = (BRL1_QSIZE - 1);
- /* copy in the message buffer (inserting PPP
- * framing info where necessary)
- */
- for( index = 0; index < len; index++ ) {
- switch( *msg ) {
-
- case BRL1_FLAG_CH:
- *send_ptr++ = BRL1_ESC_CH;
- *send_ptr++ = (*msg) ^ BRL1_XOR_CH;
- pkt_len += 2;
- break;
-
- case BRL1_ESC_CH:
- *send_ptr++ = BRL1_ESC_CH;
- *send_ptr++ = (*msg) ^ BRL1_XOR_CH;
- pkt_len += 2;
- break;
-
- default:
- *send_ptr++ = *msg;
- pkt_len++;
- }
- crc = crc16_calc( crc, *msg );
- msg++;
- }
- crc ^= 0xffff;
- for( index = 0; index < sizeof(crc); index++ ) {
- char crc_char = (char)(crc & 0x00FF);
- if( (crc_char == BRL1_ESC_CH) || (crc_char == BRL1_FLAG_CH) ) {
- *send_ptr++ = BRL1_ESC_CH;
- pkt_len++;
- crc_char ^= BRL1_XOR_CH;
- }
- *send_ptr++ = crc_char;
- pkt_len++;
- crc >>= 8;
- }
-
- *send_ptr++ = BRL1_FLAG_CH;
- pkt_len++;
- sc->send_len = pkt_len;
- sc->sent = 0;
- do {
- brl1_send_chars( sc );
- } while( (sc->sent < sc->send_len) && wait );
- if( sc->sent == sc->send_len ) {
- /* success! release the send buffer */
- sc->send_in_use = 0;
- }
- else if( !wait ) {
- /* enable low-water interrupts so buffer will be drained */
- uart_enable_xmit_intr(sc);
- }
- if ( sc->uart == BRL1_LOCALUART )
- unlock_console(sc->nasid);
- return len;
- }
- /* internal function -- used by brl1_receive to read a character
- * from the uart and check whether errors occurred in the process.
- */
- static int
- read_uart( l1sc_t *sc, int *c, int *result )
- {
- *c = sc->getc_f( sc );
- /* no character is available */
- if( *c == UART_NO_CHAR ) {
- *result = BRL1_NO_MESSAGE;
- return 0;
- }
- /* some error in UART */
- if( *c < 0 ) {
- *result = BRL1_LINK;
- return 0;
- }
- /* everything's fine */
- *result = BRL1_VALID;
- return 1;
- }
- /*
- * brl1_receive
- *
- * This function reads a Bedrock-L1 protocol packet into the l1sc_t
- * response buffer.
- *
- * The operation of this function can be expressed as a finite state
- * machine:
- *
- START STATE INPUT TRANSITION
- ==========================================================
- BRL1_IDLE (reset or error) flag BRL1_FLAG
- other BRL1_IDLE@
- BRL1_FLAG (saw a flag (0x7e)) flag BRL1_FLAG
- escape BRL1_IDLE@
- header byte BRL1_HDR
- other BRL1_IDLE@
- BRL1_HDR (saw a type/subch byte)(see below) BRL1_BODY
- BRL1_HDR
- BRL1_BODY (reading packet body) flag BRL1_FLAG
- escape BRL1_ESC
- other BRL1_BODY
- BRL1_ESC (saw an escape (0x7d)) flag BRL1_FLAG@
- escape BRL1_IDLE@
- other BRL1_BODY
- ==========================================================
- "@" denotes an error transition.
- * The BRL1_HDR state is a transient state which doesn't read input,
- * but just provides a way in to code which decides to whom an
- * incoming packet should be directed.
- *
- * brl1_receive can be used to poll for input from the L1, or as
- * an interrupt service routine. It reads as much data as is
- * ready from the junk bus UART and places into the appropriate
- * input queues according to subchannel. The header byte is
- * stripped from console-type data, but is retained for message-
- * type data (L1 responses). A length byte will also be
- * prepended to message-type packets.
- *
- * This routine is non-blocking; if the caller needs to block
- * for input, it must call brl1_receive in a loop.
- *
- * brl1_receive returns when there is no more input, the queue
- * for the current incoming message is full, or there is an
- * error (parity error, bad header, bad CRC, etc.).
- */
- #define STATE_SET(l,s) ((l)->brl1_state = (s))
- #define STATE_GET(l) ((l)->brl1_state)
- #define LAST_HDR_SET(l,h) ((l)->brl1_last_hdr = (h))
- #define LAST_HDR_GET(l) ((l)->brl1_last_hdr)
- #define SEQSTAMP_INCR(l)
- #define SEQSTAMP_GET(l)
- #define VALID_HDR(c)
- ( SUBCH((c)) <= SC_CONS_SYSTEM
- ? PKT_TYPE((c)) == BRL1_REQUEST
- : ( PKT_TYPE((c)) == BRL1_RESPONSE ||
- PKT_TYPE((c)) == BRL1_EVENT ) )
- #define IS_TTY_PKT(l)
- ( SUBCH(LAST_HDR_GET(l)) <= SC_CONS_SYSTEM ? 1 : 0 )
- int
- brl1_receive( l1sc_t *sc )
- {
- int result; /* value to be returned by brl1_receive */
- int c; /* most-recently-read character */
- int done; /* set done to break out of recv loop */
- sc_cq_t *q; /* pointer to queue we're working with */
- result = BRL1_NO_MESSAGE;
- #ifdef FORCE_CONSOLE_NASID
- sc->nasid = 0;
- #endif
- if ( sc->uart == BRL1_LOCALUART )
- lock_console(sc->nasid);
- done = 0;
- while( !done )
- {
- switch( STATE_GET(sc) )
- {
- case BRL1_IDLE:
- /* Initial or error state. Waiting for a flag character
- * to resynchronize with the L1.
- */
- if( !read_uart( sc, &c, &result ) ) {
- /* error reading uart */
- done = 1;
- continue;
- }
-
- if( c == BRL1_FLAG_CH ) {
- /* saw a flag character */
- STATE_SET( sc, BRL1_FLAG );
- continue;
- }
- break;
-
- case BRL1_FLAG:
- /* One or more flag characters have been read; look for
- * the beginning of a packet (header byte).
- */
-
- if( !read_uart( sc, &c, &result ) ) {
- /* error reading uart */
- if( c != UART_NO_CHAR )
- STATE_SET( sc, BRL1_IDLE );
- done = 1;
- continue;
- }
-
- if( c == BRL1_FLAG_CH ) {
- /* multiple flags are OK */
- continue;
- }
- if( !VALID_HDR( c ) ) {
- /* if c isn't a flag it should have been
- * a valid header, so we have an error
- */
- result = BRL1_PROTOCOL;
- STATE_SET( sc, BRL1_IDLE );
- done = 1;
- continue;
- }
- /* we have a valid header byte */
- LAST_HDR_SET( sc, c );
- STATE_SET( sc, BRL1_HDR );
- break;
- case BRL1_HDR:
- /* A header byte has been read. Do some bookkeeping. */
- q = sc->subch[ SUBCH( LAST_HDR_GET(sc) ) ].iqp;
- ASSERT(q);
-
- if( !IS_TTY_PKT(sc) ) {
- /* if this is an event or command response rather
- * than console I/O, we need to reserve a couple
- * of extra spaces in the queue for the header
- * byte and a length byte; if we can't, stay in
- * the BRL1_HDR state.
- */
- if( cq_room( q ) < 2 ) {
- result = BRL1_FULL_Q;
- done = 1;
- continue;
- }
- cq_tent_add( q, 0 ); /* reserve length byte */
- cq_tent_add( q, LAST_HDR_GET( sc ) ); /* record header byte */
- }
- STATE_SET( sc, BRL1_BODY );
- break;
- case BRL1_BODY:
- /* A header byte has been read. We are now attempting
- * to receive the packet body.
- */
- q = sc->subch[ SUBCH( LAST_HDR_GET(sc) ) ].iqp;
- ASSERT(q);
- /* if the queue we want to write into is full, don't read from
- * the uart (this provides backpressure to the L1 side)
- */
- if( cq_tent_full( q ) ) {
- result = BRL1_FULL_Q;
- done = 1;
- continue;
- }
-
- if( !read_uart( sc, &c, &result ) ) {
- /* error reading uart */
- if( c != UART_NO_CHAR )
- STATE_SET( sc, BRL1_IDLE );
- done = 1;
- continue;
- }
- if( c == BRL1_ESC_CH ) {
- /* prepare to unescape the next character */
- STATE_SET( sc, BRL1_ESC );
- continue;
- }
-
- if( c == BRL1_FLAG_CH ) {
- /* flag signifies the end of a packet */
- unsigned short crc; /* holds the crc as we calculate it */
- int i; /* index variable */
- brl1_sch_t *subch; /* subchannel for received packet */
- brl1_notif_t callup; /* "data ready" callup */
- /* whatever else may happen, we've seen a flag and we're
- * starting a new packet
- */
- STATE_SET( sc, BRL1_FLAG );
- SEQSTAMP_INCR(sc); /* bump the packet sequence counter */
-
- /* if the packet body has less than 2 characters,
- * it can't be a well-formed packet. Discard it.
- */
- if( cq_tent_len( q ) < /* 2 + possible length byte */
- (2 + (IS_TTY_PKT(sc) ? 0 : 1)) )
- {
- result = BRL1_PROTOCOL;
- cq_discard_tent( q );
- STATE_SET( sc, BRL1_FLAG );
- done = 1;
- continue;
- }
-
- /* check CRC */
- /* accumulate CRC, starting with the header byte and
- * ending with the transmitted CRC. This should
- * result in a known good value.
- */
- crc = crc16_calc( INIT_CRC, LAST_HDR_GET(sc) );
- for( i = (q->ipos + (IS_TTY_PKT(sc) ? 0 : 2)) % BRL1_QSIZE;
- i != q->tent_next;
- i = (i + 1) % BRL1_QSIZE )
- {
- crc = crc16_calc( crc, q->buf[i] );
- }
- /* verify the caclulated crc against the "good" crc value;
- * if we fail, discard the bad packet and return an error.
- */
- if( crc != (unsigned short)GOOD_CRC ) {
- result = BRL1_CRC;
- cq_discard_tent( q );
- STATE_SET( sc, BRL1_FLAG );
- done = 1;
- continue;
- }
-
- /* so the crc check was ok. Now we discard the CRC
- * from the end of the received bytes.
- */
- q->tent_next += (BRL1_QSIZE - 2);
- q->tent_next %= BRL1_QSIZE;
- /* get the subchannel and lock it */
- subch = &(sc->subch[SUBCH( LAST_HDR_GET(sc) )]);
- SUBCH_DATA_LOCK( subch );
-
- /* if this isn't a console packet, we need to record
- * a length byte
- */
- if( !IS_TTY_PKT(sc) ) {
- q->buf[q->ipos] = cq_tent_len( q ) - 1;
- }
-
- /* record packet for posterity */
- cq_commit_tent( q );
- result = BRL1_VALID;
- /* notify subchannel owner that there's something
- * on the queue for them
- */
- atomic_inc(&(subch->packet_arrived));
- callup = subch->rx_notify;
- SUBCH_DATA_UNLOCK( subch );
- if( callup ) {
- if ( sc->uart == BRL1_LOCALUART )
- unlock_console(sc->nasid);
- (*callup)( sc, SUBCH(LAST_HDR_GET(sc)) );
- if ( sc->uart == BRL1_LOCALUART )
- lock_console(sc->nasid);
- }
- continue; /* go back for more! */
- }
-
- /* none of the special cases applied; we've got a normal
- * body character
- */
- cq_tent_add( q, c );
- break;
- case BRL1_ESC:
- /* saw an escape character. The next character will need
- * to be unescaped.
- */
- q = sc->subch[ SUBCH( LAST_HDR_GET(sc) ) ].iqp;
- ASSERT(q);
- /* if the queue we want to write into is full, don't read from
- * the uart (this provides backpressure to the L1 side)
- */
- if( cq_tent_full( q ) ) {
- result = BRL1_FULL_Q;
- done = 1;
- continue;
- }
-
- if( !read_uart( sc, &c, &result ) ) {
- /* error reading uart */
- if( c != UART_NO_CHAR ) {
- cq_discard_tent( q );
- STATE_SET( sc, BRL1_IDLE );
- }
- done = 1;
- continue;
- }
-
- if( c == BRL1_FLAG_CH ) {
- /* flag after escape is an error */
- STATE_SET( sc, BRL1_FLAG );
- cq_discard_tent( q );
- result = BRL1_PROTOCOL;
- done = 1;
- continue;
- }
- if( c == BRL1_ESC_CH ) {
- /* two consecutive escapes is an error */
- STATE_SET( sc, BRL1_IDLE );
- cq_discard_tent( q );
- result = BRL1_PROTOCOL;
- done = 1;
- continue;
- }
-
- /* otherwise, we've got a character that needs
- * to be unescaped
- */
- cq_tent_add( q, (c ^ BRL1_XOR_CH) );
- STATE_SET( sc, BRL1_BODY );
- break;
- } /* end of switch( STATE_GET(sc) ) */
- } /* end of while(!done) */
-
- if ( sc->uart == BRL1_LOCALUART )
- unlock_console(sc->nasid);
- return result;
- }
- /* brl1_init initializes the Bedrock/L1 protocol layer. This includes
- * zeroing out the send and receive state information.
- */
- void
- brl1_init( l1sc_t *sc, nasid_t nasid, net_vec_t uart )
- {
- int i;
- brl1_sch_t *subch;
- bzero( sc, sizeof( *sc ) );
- #ifdef FORCE_CONSOLE_NASID
- nasid = (nasid_t)0;
- #endif
- sc->nasid = nasid;
- sc->uart = uart;
- sc->getc_f = (uart == BRL1_LOCALUART ? uart_getc : rtr_uart_getc);
- sc->putc_f = (uart == BRL1_LOCALUART ? uart_putc : rtr_uart_putc);
- sc->sol = 1;
- subch = sc->subch;
- /* initialize L1 subchannels
- */
- /* assign processor TTY channels */
- for( i = 0; i < CPUS_PER_NODE; i++, subch++ ) {
- subch->use = BRL1_SUBCH_RSVD;
- subch->packet_arrived = ATOMIC_INIT(0);
- spin_lock_init( &(subch->data_lock) );
- sv_init( &(subch->arrive_sv), &(subch->data_lock), SV_MON_SPIN | SV_ORDER_FIFO /* | SV_INTS */ );
- subch->tx_notify = NULL;
- /* (for now, drop elscuart packets in the kernel) */
- subch->rx_notify = brl1_discard_packet;
- subch->iqp = &sc->garbage_q;
- }
- /* assign system TTY channel (first free subchannel after each
- * processor's individual TTY channel has been assigned)
- */
- subch->use = BRL1_SUBCH_RSVD;
- subch->packet_arrived = ATOMIC_INIT(0);
- spin_lock_init( &(subch->data_lock) );
- sv_init( &(subch->arrive_sv), &subch->data_lock, SV_MON_SPIN | SV_ORDER_FIFO /* | SV_INTS */ );
- subch->tx_notify = NULL;
- if( sc->uart == BRL1_LOCALUART ) {
- subch->iqp = kmem_zalloc_node( sizeof(sc_cq_t), KM_NOSLEEP,
- NASID_TO_COMPACT_NODEID(nasid) );
- ASSERT( subch->iqp );
- cq_init( subch->iqp );
- subch->rx_notify = NULL;
- }
- else {
- /* we shouldn't be getting console input from remote UARTs */
- subch->iqp = &sc->garbage_q;
- subch->rx_notify = brl1_discard_packet;
- }
- subch++; i++;
- /* "reserved" subchannels (0x05-0x0F); for now, throw away
- * incoming packets
- */
- for( ; i < 0x10; i++, subch++ ) {
- subch->use = BRL1_SUBCH_FREE;
- subch->packet_arrived = ATOMIC_INIT(0);
- subch->tx_notify = NULL;
- subch->rx_notify = brl1_discard_packet;
- subch->iqp = &sc->garbage_q;
- }
- /* remaining subchannels are free */
- for( ; i < BRL1_NUM_SUBCHANS; i++, subch++ ) {
- subch->use = BRL1_SUBCH_FREE;
- subch->packet_arrived = ATOMIC_INIT(0);
- subch->tx_notify = NULL;
- subch->rx_notify = brl1_discard_packet;
- subch->iqp = &sc->garbage_q;
- }
- /* initialize synchronization structures
- */
- spin_lock_init( &(sc->subch_lock) );
- if( sc->uart == BRL1_LOCALUART ) {
- uart_init( sc, UART_BAUD_RATE );
- }
- else {
- rtr_uart_init( sc, UART_BAUD_RATE );
- }
- /* Set up remaining fields using L1 command functions-- elsc_module_get
- * to read the module id, elsc_debug_get to see whether or not we're
- * in verbose mode.
- */
- {
- extern int elsc_module_get(l1sc_t *);
- sc->modid = elsc_module_get( sc );
- sc->modid = (sc->modid < 0 ? INVALID_MODULE : sc->modid);
- sc->verbose = 1;
- }
- }
- /* These are functions to use from serial_in/out when in protocol
- * mode to send and receive uart control regs. These are external
- * interfaces into the protocol driver.
- */
- void
- l1_control_out(int offset, int value)
- {
- nasid_t nasid = 0; //(get_elsc())->nasid;
- WRITE_L1_UART_REG(nasid, offset, value);
- }
- int
- l1_control_in(int offset)
- {
- nasid_t nasid = 0; //(get_elsc())->nasid;
- return(READ_L1_UART_REG(nasid, offset));
- }
- #define PUTCHAR(ch)
- {
- while( (!(READ_L1_UART_REG( nasid, REG_LSR ) & LSR_XHRE)) ||
- (!(READ_L1_UART_REG( nasid, REG_MSR ) & MSR_CTS)) );
- WRITE_L1_UART_REG( nasid, REG_DAT, (ch) );
- }
- int
- l1_serial_out( char *str, int len )
- {
- int sent = len;
- char crc_char;
- unsigned short crc = INIT_CRC;
- nasid_t nasid = 0; //(get_elsc())->nasid;
- lock_console(nasid);
- PUTCHAR( BRL1_FLAG_CH );
- PUTCHAR( BRL1_EVENT | SC_CONS_SYSTEM );
- crc = crc16_calc( crc, (BRL1_EVENT | SC_CONS_SYSTEM) );
- while( len ) {
- if( (*str == BRL1_FLAG_CH) || (*str == BRL1_ESC_CH) ) {
- PUTCHAR( BRL1_ESC_CH );
- PUTCHAR( (*str) ^ BRL1_XOR_CH );
- }
- else {
- PUTCHAR( *str );
- }
-
- crc = crc16_calc( crc, *str );
- str++; len--;
- }
-
- crc ^= 0xffff;
- crc_char = crc & 0xff;
- if( (crc_char == BRL1_ESC_CH) || (crc_char == BRL1_FLAG_CH) ) {
- crc_char ^= BRL1_XOR_CH;
- PUTCHAR( BRL1_ESC_CH );
- }
- PUTCHAR( crc_char );
- crc_char = (crc >> 8) & 0xff;
- if( (crc_char == BRL1_ESC_CH) || (crc_char == BRL1_FLAG_CH) ) {
- crc_char ^= BRL1_XOR_CH;
- PUTCHAR( BRL1_ESC_CH );
- }
- PUTCHAR( crc_char );
- PUTCHAR( BRL1_FLAG_CH );
- unlock_console(nasid);
- return sent - len;
- }
- int
- l1_serial_in(void)
- {
- static int l1_cons_getc( l1sc_t *sc );
- return(l1_cons_getc(get_elsc()));
- }
- /*********************************************************************
- * l1_cons functions
- *
- * These allow the L1 to act as the system console. They're intended
- * to abstract away most of the br/l1 internal details from the
- * _L1_cons_* functions (in the prom-- see "l1_console.c") and
- * l1_* functions (in the kernel-- see "sio_l1.c") that they support.
- *
- */
- static int
- l1_cons_poll( l1sc_t *sc )
- {
- /* in case this gets called before the l1sc_t structure for the module_t
- * struct for this node is initialized (i.e., if we're called with a
- * zero l1sc_t pointer)...
- */
- if( !sc ) {
- return 0;
- }
- if( atomic_read(&sc->subch[SC_CONS_SYSTEM].packet_arrived) ) {
- return 1;
- }
- brl1_receive( sc );
- if( atomic_read(&sc->subch[SC_CONS_SYSTEM].packet_arrived) ) {
- return 1;
- }
- return 0;
- }
- /* pull a character off of the system console queue (if one is available)
- */
- static int
- l1_cons_getc( l1sc_t *sc )
- {
- int c;
- brl1_sch_t *subch = &(sc->subch[SC_CONS_SYSTEM]);
- sc_cq_t *q = subch->iqp;
- if( !l1_cons_poll( sc ) ) {
- return 0;
- }
- SUBCH_DATA_LOCK( subch );
- if( cq_empty( q ) ) {
- atomic_set(&subch->packet_arrived, 0);
- SUBCH_DATA_UNLOCK( subch );
- return 0;
- }
- cq_rem( q, c );
- if( cq_empty( q ) )
- atomic_set(&subch->packet_arrived, 0);
- SUBCH_DATA_UNLOCK( subch );
- return c;
- }
- /* initialize the system console subchannel
- */
- void
- l1_cons_init( l1sc_t *sc )
- {
- brl1_sch_t *subch = &(sc->subch[SC_CONS_SYSTEM]);
- SUBCH_DATA_LOCK( subch );
- atomic_set(&subch->packet_arrived, 0);
- cq_init( subch->iqp );
- SUBCH_DATA_UNLOCK( subch );
- }
- /*********************************************************************
- * The following functions and definitions implement the "message"-
- * style interface to the L1 system controller.
- *
- * Note that throughout this file, "sc" generally stands for "system
- * controller", while "subchannels" tend to be represented by
- * variables with names like subch or ch.
- *
- */
- #ifdef L1_DEBUG
- #define L1_DBG_PRF(x) printf x
- #else
- #define L1_DBG_PRF(x)
- #endif
- /* sc_data_ready is called to signal threads that are blocked on
- * l1 input.
- */
- void
- sc_data_ready( l1sc_t *sc, int ch )
- {
- brl1_sch_t *subch = &(sc->subch[ch]);
- SUBCH_DATA_LOCK( subch );
- sv_signal( &(subch->arrive_sv) );
- SUBCH_DATA_UNLOCK( subch );
- }
- /* sc_open reserves a subchannel to send a request to the L1 (the
- * L1's response will arrive on the same channel). The number
- * returned by sc_open is the system controller subchannel
- * acquired.
- */
- int
- sc_open( l1sc_t *sc, uint target )
- {
- /* The kernel version implements a locking scheme to arbitrate
- * subchannel assignment.
- */
- int ch;
- brl1_sch_t *subch;
- SUBCH_LOCK( sc );
- /* Look for a free subchannel. Subchannels 0-15 are reserved
- * for other purposes.
- */
- for( subch = &(sc->subch[BRL1_CMD_SUBCH]), ch = BRL1_CMD_SUBCH;
- ch < BRL1_NUM_SUBCHANS; subch++, ch++ ) {
- if( subch->use == BRL1_SUBCH_FREE )
- break;
- }
- if( ch == BRL1_NUM_SUBCHANS ) {
- /* there were no subchannels available! */
- SUBCH_UNLOCK( sc );
- return SC_NSUBCH;
- }
- subch->use = BRL1_SUBCH_RSVD;
- SUBCH_UNLOCK( sc );
- atomic_set(&subch->packet_arrived, 0);
- subch->target = target;
- spin_lock_init( &(subch->data_lock) );
- sv_init( &(subch->arrive_sv), &(subch->data_lock), SV_MON_SPIN | SV_ORDER_FIFO /* | SV_INTS */);
- subch->tx_notify = NULL;
- subch->rx_notify = sc_data_ready;
- subch->iqp = kmem_zalloc_node( sizeof(sc_cq_t), KM_NOSLEEP,
- NASID_TO_COMPACT_NODEID(sc->nasid) );
- ASSERT( subch->iqp );
- cq_init( subch->iqp );
- return ch;
- }
- /* sc_close frees a Bedrock<->L1 subchannel.
- */
- int
- sc_close( l1sc_t *sc, int ch )
- {
- brl1_sch_t *subch;
- SUBCH_LOCK( sc );
- subch = &(sc->subch[ch]);
- if( subch->use != BRL1_SUBCH_RSVD ) {
- /* we're trying to close a subchannel that's not open */
- return SC_NOPEN;
- }
- atomic_set(&subch->packet_arrived, 0);
- subch->use = BRL1_SUBCH_FREE;
- SUBCH_DATA_LOCK( subch );
- sv_broadcast( &(subch->arrive_sv) );
- sv_destroy( &(subch->arrive_sv) );
- SUBCH_DATA_UNLOCK( subch );
- spin_lock_destroy( &(subch->data_lock) );
- ASSERT( subch->iqp && (subch->iqp != &sc->garbage_q) );
- kmem_free( subch->iqp, sizeof(sc_cq_t) );
- subch->iqp = &sc->garbage_q;
- SUBCH_UNLOCK( sc );
- return SC_SUCCESS;
- }
- /* sc_construct_msg builds a bedrock-to-L1 request in the supplied
- * buffer. Returns the length of the message. The
- * safest course when passing a buffer to be filled in is to use
- * BRL1_QSIZE as the buffer size.
- *
- * Command arguments are passed as type/argument pairs, i.e., to
- * pass the number 5 as an argument to an L1 command, call
- * sc_construct_msg as follows:
- *
- * char msg[BRL1_QSIZE];
- * msg_len = sc_construct_msg( msg,
- * BRL1_QSIZE,
- * target_component,
- * L1_ADDR_TASK_BOGUSTASK,
- * L1_BOGUSTASK_REQ_BOGUSREQ,
- * 2,
- * L1_ARG_INT, 5 );
- *
- * To pass an additional ASCII argument, you'd do the following:
- *
- * char *str;
- * ... str points to a null-terminated ascii string ...
- * msg_len = sc_construct_msg( msg,
- * BRL1_QSIZE,
- * target_component,
- * L1_ADDR_TASK_BOGUSTASK,
- * L1_BOGUSTASK_REQ_BOGUSREQ,
- * 4,
- * L1_ARG_INT, 5,
- * L1_ARG_ASCII, str );
- *
- * Finally, arbitrary data of unknown type is passed using the argtype
- * code L1_ARG_UNKNOWN, a data length, and a buffer pointer, e.g.
- *
- * msg_len = sc_construct_msg( msg,
- * BRL1_QSIZE,
- * target_component,
- * L1_ADDR_TASK_BOGUSTASK,
- * L1_BOGUSTASK_REQ_BOGUSREQ,
- * 3,
- * L1_ARG_UNKNOWN, 32, bufptr );
- *
- * ...passes 32 bytes of data starting at bufptr. Note that no string or
- * "unknown"-type argument should be long enough to overflow the message
- * buffer.
- *
- * To construct a message for an L1 command that requires no arguments,
- * you'd use the following:
- *
- * msg_len = sc_construct_msg( msg,
- * BRL1_QSIZE,
- * target_component,
- * L1_ADDR_TASK_BOGUSTASK,
- * L1_BOGUSTASK_REQ_BOGUSREQ,
- * 0 );
- *
- * The final 0 means "no varargs". Notice that this parameter is used to hold
- * the number of additional arguments to sc_construct_msg, _not_ the actual
- * number of arguments used by the L1 command (so 2 per L1_ARG_[INT,ASCII]
- * type argument, and 3 per L1_ARG_UNKOWN type argument). A call to construct
- * an L1 command which required three integer arguments and two arguments of
- * some arbitrary (unknown) type would pass 12 as the value for this parameter.
- *
- * ENDIANNESS WARNING: The following code does a lot of copying back-and-forth
- * between byte arrays and four-byte big-endian integers. Depending on the
- * system controller connection and endianness of future architectures, some
- * rewriting might be necessary.
- */
- int
- sc_construct_msg( l1sc_t *sc, /* system controller struct */
- int ch, /* subchannel for this message */
- char *msg, /* message buffer */
- int msg_len, /* size of message buffer */
- l1addr_t addr_task, /* target system controller task */
- short req_code, /* 16-bit request code */
- int req_nargs, /* # of arguments (varargs) passed */
- ... ) /* any additional parameters */
- {
- uint32_t buf32; /* 32-bit buffer used to bounce things around */
- void *bufptr; /* used to hold command argument addresses */
- va_list al; /* variable argument list */
- int index; /* current index into msg buffer */
- int argno; /* current position in varargs list */
- int l1_argno; /* running total of arguments to l1 */
- int l1_arg_t; /* argument type/length */
- int l1_argno_byte; /* offset of argument count byte */
- index = argno = 0;
- /* set up destination address */
- if( (msg_len -= sizeof( buf32 )) < 0 )
- return -1;
- L1_ADDRESS_TO_TASK( &buf32, sc->subch[ch].target, addr_task );
- COPY_INT_TO_BUFFER(msg, index, buf32);
- /* copy request code */
- if( (msg_len -= 2) < 0 )
- return( -1 );
- msg[index++] = ((req_code >> 8) & 0xff);
- msg[index++] = (req_code & 0xff);
- if( !req_nargs ) {
- return index;
- }
- /* reserve a byte for the argument count */
- if( (msg_len -= 1) < 0 )
- return( -1 );
- l1_argno_byte = index++;
- l1_argno = 0;
- /* copy additional arguments */
- va_start( al, req_nargs );
- while( argno < req_nargs ) {
- l1_argno++;
- l1_arg_t = va_arg( al, int ); argno++;
- switch( l1_arg_t )
- {
- case L1_ARG_INT:
- if( (msg_len -= (sizeof( buf32 ) + 1)) < 0 )
- return( -1 );
- msg[index++] = L1_ARG_INT;
- buf32 = (unsigned)va_arg( al, int ); argno++;
- COPY_INT_TO_BUFFER(msg, index, buf32);
- break;
- case L1_ARG_ASCII:
- bufptr = va_arg( al, char* ); argno++;
- if( (msg_len -= (strlen( bufptr ) + 2)) < 0 )
- return( -1 );
- msg[index++] = L1_ARG_ASCII;
- strcpy( (char *)&(msg[index]), (char *)bufptr );
- index += (strlen( bufptr ) + 1); /* include terminating null */
- break;
- case L1_ARG_UNKNOWN:
- {
- int arglen;
-
- arglen = va_arg( al, int ); argno++;
- bufptr = va_arg( al, void* ); argno++;
- if( (msg_len -= (arglen + 1)) < 0 )
- return( -1 );
- msg[index++] = L1_ARG_UNKNOWN | arglen;
- BCOPY( bufptr, &(msg[index]), arglen );
- index += arglen;
- break;
- }
-
- default: /* unhandled argument type */
- return -1;
- }
- }
- va_end( al );
- msg[l1_argno_byte] = l1_argno;
- return index;
- }
- /* sc_interpret_resp verifies an L1 response to a bedrock request, and
- * breaks the response data up into the constituent parts. If the
- * response message indicates error, or if a mismatch is found in the
- * expected number and type of arguments, an error is returned. The
- * arguments to this function work very much like the arguments to
- * sc_construct_msg, above, except that L1_ARG_INTs must be followed
- * by a _pointer_ to an integer that can be filled in by this function.
- */
- int
- sc_interpret_resp( char *resp, /* buffer received from L1 */
- int resp_nargs, /* number of _varargs_ passed in */
- ... )
- {
- uint32_t buf32; /* 32-bit buffer used to bounce things around */
- void *bufptr; /* used to hold response field addresses */
- va_list al; /* variable argument list */
- int index; /* current index into response buffer */
- int argno; /* current position in varargs list */
- int l1_fldno; /* number of resp fields received from l1 */
- int l1_fld_t; /* field type/length */
- index = argno = 0;
- #if defined(L1_DEBUG)
- #define DUMP_RESP
- {
- int ix;
- char outbuf[512];
- sprintf( outbuf, "sc_interpret_resp error line %d: ", __LINE__ );
- for( ix = 0; ix < 16; ix++ ) {
- sprintf( &outbuf[strlen(outbuf)], "%x ", resp[ix] );
- }
- printk( "%sn", outbuf );
- }
- #else
- #define DUMP_RESP
- #endif /* L1_DEBUG */
- /* check response code */
- COPY_BUFFER_TO_INT(resp, index, buf32);
- if( buf32 != L1_RESP_OK ) {
- DUMP_RESP;
- return buf32;
- }
- /* get number of response fields */
- l1_fldno = resp[index++];
- va_start( al, resp_nargs );
- /* copy out response fields */
- while( argno < resp_nargs ) {
- l1_fldno--;
- l1_fld_t = va_arg( al, int ); argno++;
- switch( l1_fld_t )
- {
- case L1_ARG_INT:
- if( resp[index++] != L1_ARG_INT ) {
- /* type mismatch */
- va_end( al );
- DUMP_RESP;
- return -1;
- }
- bufptr = va_arg( al, int* ); argno++;
- COPY_BUFFER_TO_BUFFER(resp, index, bufptr);
- break;
- case L1_ARG_ASCII:
- if( resp[index++] != L1_ARG_ASCII ) {
- /* type mismatch */
- va_end( al );
- DUMP_RESP;
- return -1;
- }
- bufptr = va_arg( al, char* ); argno++;
- strcpy( (char *)bufptr, (char *)&(resp[index]) );
- /* include terminating null */
- index += (strlen( &(resp[index]) ) + 1);
- break;
- default:
- if( (l1_fld_t & L1_ARG_UNKNOWN) == L1_ARG_UNKNOWN )
- {
- int *arglen;
-
- arglen = va_arg( al, int* ); argno++;
- bufptr = va_arg( al, void* ); argno++;
- *arglen = ((resp[index++] & ~L1_ARG_UNKNOWN) & 0xff);
- BCOPY( &(resp[index]), bufptr, *arglen );
- index += (*arglen);
- }
-
- else {
- /* unhandled type */
- va_end( al );
- DUMP_RESP;
- return -1;
- }
- }
- }
- va_end( al );
-
- if( (l1_fldno != 0) || (argno != resp_nargs) ) {
- /* wrong number of arguments */
- DUMP_RESP;
- return -1;
- }
- return 0;
- }
- /* sc_send takes as arguments a system controller struct, a
- * buffer which contains a Bedrock<->L1 "request" message,
- * the message length, and the subchannel (presumably obtained
- * from an earlier invocation of sc_open) over which the
- * message is to be sent. The final argument ("wait") indicates
- * whether the send is to be performed synchronously or not.
- *
- * sc_send returns either zero or an error value. Synchronous sends
- * (wait != 0) will not return until the data has actually been sent
- * to the UART. Synchronous sends generally receive privileged
- * treatment. The intent is that they be used sparingly, for such
- * purposes as kernel printf's (the "ducons" routines). Run-of-the-mill
- * console output and L1 requests should NOT use a non-zero value
- * for wait.
- */
- int
- sc_send( l1sc_t *sc, int ch, char *msg, int len, int wait )
- {
- char type_and_subch;
- int result;
- if( (ch < 0) || ( ch >= BRL1_NUM_SUBCHANS) ) {
- return SC_BADSUBCH;
- }
- /* Verify that this is an open subchannel
- */
- if( sc->subch[ch].use == BRL1_SUBCH_FREE )
- {
- return SC_NOPEN;
- }
-
- type_and_subch = (BRL1_REQUEST | ((u_char)ch));
- result = brl1_send( sc, msg, len, type_and_subch, wait );
- /* If we sent as much as we asked to, return "ok". */
- if( result == len )
- return( SC_SUCCESS );
- /* Or, if we sent less, than either the UART is busy or
- * we're trying to send too large a packet anyway.
- */
- else if( result >= 0 && result < len )
- return( SC_BUSY );
- /* Or, if something else went wrong (result < 0), then
- * return that error value.
- */
- else
- return( result );
- }
- /* subch_pull_msg pulls a message off the receive queue for subch
- * and places it the buffer pointed to by msg. This routine should only
- * be called when the caller already knows a message is available on the
- * receive queue (and, in the kernel, only when the subchannel data lock
- * is held by the caller).
- */
- static void
- subch_pull_msg( brl1_sch_t *subch, char *msg, int *len )
- {
- sc_cq_t *q; /* receive queue */
- int before_wrap, /* packet may be split into two different */
- after_wrap; /* pieces to acommodate queue wraparound */
- /* pull message off the receive queue */
- q = subch->iqp;
- cq_rem( q, *len ); /* remove length byte and store */
- cq_discard( q ); /* remove type/subch byte and discard */
- if ( *len > 0 )
- (*len)--; /* don't count type/subch byte in length returned */
- if( (q->opos + (*len)) > BRL1_QSIZE ) {
- before_wrap = BRL1_QSIZE - q->opos;
- after_wrap = (*len) - before_wrap;
- }
- else {
- before_wrap = (*len);
- after_wrap = 0;
- }
- BCOPY( q->buf + q->opos, msg, before_wrap );
- if( after_wrap ) {
- BCOPY( q->buf, msg + before_wrap, after_wrap );
- q->opos = after_wrap;
- }
- else {
- q->opos = ((q->opos + before_wrap) & (BRL1_QSIZE - 1));
- }
- atomic_dec(&(subch->packet_arrived));
- }
- /* sc_recv_poll can be called as a blocking or non-blocking function;
- * it attempts to pull a message off of the subchannel specified
- * in the argument list (ch).
- *
- * The "block" argument, if non-zero, is interpreted as a timeout
- * delay (to avoid permanent waiting).
- */
- int
- sc_recv_poll( l1sc_t *sc, int ch, char *msg, int *len, uint64_t block )
- {
- int is_msg = 0;
- brl1_sch_t *subch = &(sc->subch[ch]);
- rtc_time_t exp_time = rtc_time() + block;
- /* sanity check-- make sure this is an open subchannel */
- if( subch->use == BRL1_SUBCH_FREE )
- return( SC_NOPEN );
- do {
- /* kick the next lower layer and see if it pulls anything in
- */
- brl1_receive( sc );
- is_msg = atomic_read(&subch->packet_arrived);
- } while( block && !is_msg && (rtc_time() < exp_time) );
- if( !is_msg ) {
- /* no message and we didn't care to wait for one */
- return( SC_NMSG );
- }
- SUBCH_DATA_LOCK( subch );
- subch_pull_msg( subch, msg, len );
- SUBCH_DATA_UNLOCK( subch );
- return( SC_SUCCESS );
- }
-
- /* Like sc_recv_poll, sc_recv_intr can be called in either a blocking
- * or non-blocking mode. Rather than polling until an appointed timeout,
- * however, sc_recv_intr sleeps on a syncrhonization variable until a
- * signal from the lower layer tells us that a packet has arrived.
- *
- * sc_recv_intr can't be used with remote (router) L1s.
- */
- int
- sc_recv_intr( l1sc_t *sc, int ch, char *msg, int *len, uint64_t block )
- {
- int is_msg = 0;
- brl1_sch_t *subch = &(sc->subch[ch]);
- do {
- SUBCH_DATA_LOCK(subch);
- is_msg = atomic_read(&subch->packet_arrived);
- if( !is_msg && block ) {
- /* wake me when you've got something */
- subch->rx_notify = sc_data_ready;
- sv_wait( &(subch->arrive_sv), 0, 0);
- if( subch->use == BRL1_SUBCH_FREE ) {
- /* oops-- somebody closed our subchannel while we were
- * sleeping!
- */
- /* no need to unlock since the channel's closed anyhow */
- return( SC_NOPEN );
- }
- }
- } while( !is_msg && block );
- if( !is_msg ) {
- /* no message and we didn't care to wait for one */
- SUBCH_DATA_UNLOCK( subch );
- return( SC_NMSG );
- }
- subch_pull_msg( subch, msg, len );
- SUBCH_DATA_UNLOCK( subch );
- return( SC_SUCCESS );
- }
- /* sc_command implements a (blocking) combination of sc_send and sc_recv.
- * It is intended to be the SN1 equivalent of SN0's "elsc_command", which
- * issued a system controller command and then waited for a response from
- * the system controller before returning.
- *
- * cmd points to the outgoing command; resp points to the buffer in
- * which the response is to be stored. Both buffers are assumed to
- * be the same length; if there is any doubt as to whether the
- * response buffer is long enough to hold the L1's response, then
- * make it BRL1_QSIZE bytes-- no Bedrock<->L1 message can be any
- * bigger.
- *
- * Be careful using the same buffer for both cmd and resp; it could get
- * hairy if there were ever an L1 command reqeuest that spanned multiple
- * packets. (On the other hand, that would require some additional
- * rewriting of the L1 command interface anyway.)
- */
- #define __RETRIES 50
- #define __WAIT_SEND ( sc->uart != BRL1_LOCALUART )
- #define __WAIT_RECV 10000000
- int
- sc_command( l1sc_t *sc, int ch, char *cmd, char *resp, int *len )
- {
- #ifndef CONFIG_SERIAL_SGI_L1_PROTOCOL
- return SC_NMSG;
- #else
- int result;
- int retries;
- if ( IS_RUNNING_ON_SIMULATOR() )
- return SC_NMSG;
- retries = __RETRIES;
- while( (result = sc_send( sc, ch, cmd, *len, __WAIT_SEND )) < 0 ) {
- if( result == SC_BUSY ) {
- retries--;
- if( retries <= 0 )
- return result;
- uart_delay(500);
- }
- else {
- return result;
- }
- }
-
- /* block on sc_recv_* */
- #ifdef LATER
- if( sc->uart == BRL1_LOCALUART ) {
- return( sc_recv_intr( sc, ch, resp, len, __WAIT_RECV ) );
- }
- else
- #endif /* LATER */
- {
- return( sc_recv_poll( sc, ch, resp, len, __WAIT_RECV ) );
- }
- #endif /* CONFIG_SERIAL_SGI_L1_PROTOCOL */
- }
- /* sc_command_kern is a knuckle-dragging, no-patience version of sc_command
- * used in situations where the kernel has a command that shouldn't be
- * delayed until the send buffer clears. sc_command should be used instead
- * under most circumstances.
- */
- int
- sc_command_kern( l1sc_t *sc, int ch, char *cmd, char *resp, int *len )
- {
- #ifndef CONFIG_SERIAL_SGI_L1_PROTOCOL
- return SC_NMSG;
- #else
- int result;
- if ( IS_RUNNING_ON_SIMULATOR() )
- return SC_NMSG;
- if( (result = sc_send( sc, ch, cmd, *len, 1 )) < 0 ) {
- return result;
- }
- return( sc_recv_poll( sc, ch, resp, len, __WAIT_RECV ) );
- #endif /* CONFIG_SERIAL_SGI_L1_PROTOCOL */
- }
- /* sc_poll checks the queue corresponding to the given
- * subchannel to see if there's anything available. If
- * not, it kicks the brl1 layer and then checks again.
- *
- * Returns 1 if input is available on the given queue,
- * 0 otherwise.
- */
- int
- sc_poll( l1sc_t *sc, int ch )
- {
- brl1_sch_t *subch = &(sc->subch[ch]);
- if( atomic_read(&subch->packet_arrived) )
- return 1;
- brl1_receive( sc );
- if( atomic_read(&subch->packet_arrived) )
- return 1;
- return 0;
- }
- /* for now, sc_init just calls brl1_init
- */
- void
- sc_init( l1sc_t *sc, nasid_t nasid, net_vec_t uart )
- {
- if ( !IS_RUNNING_ON_SIMULATOR() )
- brl1_init( sc, nasid, uart );
- }
- /* sc_dispatch_env_event handles events sent from the system control
- * network's environmental monitor tasks.
- */
- #ifdef LINUX_KERNEL_THREADS
- static void
- sc_dispatch_env_event( uint code, int argc, char *args, int maxlen )
- {
- int j, i = 0;
- uint32_t ESPcode;
- switch( code ) {
- /* for now, all codes do the same thing: grab two arguments
- * and print a cmn_err_tag message */
- default:
- /* check number of arguments */
- if( argc != 2 ) {
- L1_DBG_PRF(( "sc_dispatch_env_event: "
- "expected 2 arguments, got %dn", argc ));
- return;
- }
-
- /* get ESP code (integer argument) */
- if( args[i++] != L1_ARG_INT ) {
- L1_DBG_PRF(( "sc_dispatch_env_event: "
- "expected integer argumentn" ));
- return;
- }
- /* WARNING: highly endian */
- COPY_BUFFER_TO_INT(args, i, ESPcode);
- /* verify string argument */
- if( args[i++] != L1_ARG_ASCII ) {
- L1_DBG_PRF(( "sc_dispatch_env_event: "
- "expected an ASCII stringn" ));
- return;
- }
- for( j = i; j < maxlen; j++ ) {
- if( args[j] == ' ' ) break; /* found string termination */
- }
- if( j == maxlen ) {
- j--;
- L1_DBG_PRF(( "sc_dispatch_env_event: "
- "message too long-- truncatingn" ));
- }
- /* strip out trailing cr/lf */
- for( ;
- j > 1 && ((args[j-1] == 0xd) || (args[j-1] == 0xa));
- j-- );
- args[j] = ' ';
-
- /* strip out leading cr/lf */
- for( ;
- i < j && ((args[i] == 0xd) || (args[i] == 0xa));
- i++ );
- }
- }
- #endif /* LINUX_KERNEL_THREADS */
- /* sc_event waits for events to arrive from the system controller, and
- * prints appropriate messages to the syslog.
- */
- #ifdef LINUX_KERNEL_THREADS
- static void
- sc_event( l1sc_t *sc, int ch )
- {
- char event[BRL1_QSIZE];
- int i;
- int result;
- int event_len;
- uint32_t ev_src;
- uint32_t ev_code;
- int ev_argc;
- while(1) {
-
- bzero( event, BRL1_QSIZE );
- /*
- * wait for an event
- */
- result = sc_recv_intr( sc, ch, event, &event_len, 1 );
- if( result != SC_SUCCESS ) {
- PRINT_WARNING("Error receiving sysctl event on nasid %dn",
- sc->nasid );
- }
- else {
- /*
- * an event arrived; break it down into useful pieces
- */
- #if defined(L1_DEBUG) && 0
- int ix;
- printf( "Event packet received:n" );
- for (ix = 0; ix < 64; ix++) {
- printf( "%x%x ", ((event[ix] >> 4) & ((uint64_t)0xf)),
- (event[ix] & ((uint64_t)0xf)) );
- if( (ix % 16) == 0xf ) printf( "n" );
- }
- #endif /* L1_DEBUG */
- i = 0;
- /* get event source */
- COPY_BUFFER_TO_INT(event, i, ev_src);
- COPY_BUFFER_TO_INT(event, i, ev_code);
- /* get arg count */
- ev_argc = (event[i++] & 0xffUL);
-
- /* dispatch events by task */
- switch( (ev_src & L1_ADDR_TASK_MASK) >> L1_ADDR_TASK_SHFT )
- {
- case L1_ADDR_TASK_ENV: /* environmental monitor event */
- sc_dispatch_env_event( ev_code, ev_argc, &(event[i]),
- BRL1_QSIZE - i );
- break;
- default: /* unhandled task type */
- L1_DBG_PRF(( "Unhandled event type received from system "
- "controllers: source task %xn",
- (ev_src & L1_ADDR_TASK_MASK) >> L1_ADDR_TASK_SHFT
- ));
- }
- }
-
- }
- }
- #endif /* LINUX_KERNEL_THREADS */
- /* sc_listen sets up a service thread to listen for incoming events.
- */
- void
- sc_listen( l1sc_t *sc )
- {
- int result;
- brl1_sch_t *subch;
- char msg[BRL1_QSIZE];
- int len; /* length of message being sent */
- int ch; /* system controller subchannel used */
- #ifdef LINUX_KERNEL_THREADS
- extern int msc_shutdown_pri;
- #endif
- /* grab the designated "event subchannel" */
- SUBCH_LOCK( sc );
- subch = &(sc->subch[BRL1_EVENT_SUBCH]);
- if( subch->use != BRL1_SUBCH_FREE ) {
- SUBCH_UNLOCK( sc );
- PRINT_WARNING("sysctl event subchannel in use! "
- "Not monitoring sysctl events.n" );
- return;
- }
- subch->use = BRL1_SUBCH_RSVD;
- SUBCH_UNLOCK( sc );
- atomic_set(&subch->packet_arrived, 0);
- subch->target = BRL1_LOCALUART;
- spin_lock_init( &(subch->data_lock) );
- sv_init( &(subch->arrive_sv), &(subch->data_lock), SV_MON_SPIN | SV_ORDER_FIFO /* | SV_INTS */);
- subch->tx_notify = NULL;
- subch->rx_notify = sc_data_ready;
- subch->iqp = kmem_zalloc_node( sizeof(sc_cq_t), KM_NOSLEEP,
- NASID_TO_COMPACT_NODEID(sc->nasid) );
- ASSERT( subch->iqp );
- cq_init( subch->iqp );
- #ifdef LINUX_KERNEL_THREADS
- /* set up a thread to listen for events */
- sthread_create( "sysctl event handler", 0, 0, 0, msc_shutdown_pri,
- KT_PS, (st_func_t *) sc_event,
- (void *)sc, (void *)(uint64_t)BRL1_EVENT_SUBCH, 0, 0 );
- #endif
- /* signal the L1 to begin sending events */
- bzero( msg, BRL1_QSIZE );
- ch = sc_open( sc, L1_ADDR_LOCAL );
- if( (len = sc_construct_msg( sc, ch, msg, BRL1_QSIZE,
- L1_ADDR_TASK_GENERAL,
- L1_REQ_EVENT_SUBCH, 2,
- L1_ARG_INT, BRL1_EVENT_SUBCH )) < 0 )
- {
- sc_close( sc, ch );
- L1_DBG_PRF(( "Failure in sc_construct_msg (%d)n", len ));
- goto err_return;
- }
- result = sc_command_kern( sc, ch, msg, msg, &len );
- if( result < 0 )
- {
- sc_close( sc, ch );
- L1_DBG_PRF(( "Failure in sc_command_kern (%d)n", result ));
- goto err_return;
- }
- sc_close( sc, ch );
- result = sc_interpret_resp( msg, 0 );
- if( result < 0 )
- {
- L1_DBG_PRF(( "Failure in sc_interpret_resp (%d)n", result ));
- goto err_return;
- }
- /* everything went fine; just return */
- return;
-
- err_return:
- /* there was a problem; complain */
- PRINT_WARNING("failed to set sysctl event-monitoring subchannel. "
- "Sysctl events will not be monitored.n" );
- }
- /*********************************************************************
- * elscuart functions. These provide a uart-like interface to the
- * bedrock/l1 protocol console channels. They are similar in form
- * and intent to the elscuart_* functions defined for SN0 in elsc.c.
- *
- */
- int _elscuart_flush( l1sc_t *sc );
- /* Leave room in queue for CR/LF */
- #define ELSCUART_LINE_MAX (BRL1_QSIZE - 2)
- /*
- * _elscuart_putc provides an entry point to the L1 interface driver;
- * writes a single character to the output queue. Flushes at the
- * end of each line, and translates newlines into CR/LF.
- *
- * The kernel should generally use l1_cons_write instead, since it assumes
- * buffering, translation, prefixing, etc. are done at a higher
- * level.
- *
- */
- int
- _elscuart_putc( l1sc_t *sc, int c )
- {
- sc_cq_t *q;
-
- q = &(sc->oq[ MAP_OQ(L1_ELSCUART_SUBCH(get_myid())) ]);
- if( c != 'n' && c != 'r' && cq_used(q) >= ELSCUART_LINE_MAX ) {
- cq_add( q, 'r' );
- cq_add( q, 'n' );
- _elscuart_flush( sc );
- sc->sol = 1;
- }
- if( sc->sol && c != 'r' ) {
- char prefix[16], *s;
- if( cq_room( q ) < 8 && _elscuart_flush(sc) < 0 )
- {
- return -1;
- }
-
- if( sc->verbose )
- {
- #ifdef SUPPORT_PRINTING_M_FORMAT
- sprintf( prefix,
- "%c %d%d%d %M:",
- 'A' + get_myid(),
- sc->nasid / 100,
- (sc->nasid / 10) % 10,
- sc->nasid / 10,
- sc->modid );
- #else
- sprintf( prefix,
- "%c %d%d%d 0x%x:",
- 'A' + get_myid(),
- sc->nasid / 100,
- (sc->nasid / 10) % 10,
- sc->nasid / 10,
- sc->modid );
- #endif
-
- for( s = prefix; *s; s++ )
- cq_add( q, *s );
- }
- sc->sol = 0;
- }
- if( cq_room( q ) < 2 && _elscuart_flush(sc) < 0 )
- {
- return -1;
- }
- if( c == 'n' ) {
- cq_add( q, 'r' );
- sc->sol = 1;
- }
- cq_add( q, (u_char) c );
- if( c == 'n' ) {
- /* flush buffered line */
- if( _elscuart_flush( sc ) < 0 )
- {
- return -1;
- }
- }
- if( c== 'r' )
- {
- sc->sol = 1;
- }
- return 0;
- }
- /*
- * _elscuart_getc reads a character from the input queue. This
- * routine blocks.
- */
- int
- _elscuart_getc( l1sc_t *sc )
- {
- int r;
- while( (r = _elscuart_poll( sc )) == 0 );
- if( r < 0 ) {
- /* some error occurred */
- return r;
- }
- return _elscuart_readc( sc );
- }
- /*
- * _elscuart_poll returns 1 if characters are ready for the
- * calling processor, 0 if they are not
- */
- int
- _elscuart_poll( l1sc_t *sc )
- {
- int result;
- if( sc->cons_listen ) {
- result = l1_cons_poll( sc );
- if( result )
- return result;
- }
- return sc_poll( sc, L1_ELSCUART_SUBCH(get_myid()) );
- }
- /* _elscuart_readc is to be used only when _elscuart_poll has
- * indicated that a character is waiting. Pulls a character
- * of this processor's console queue and returns it.
- *
- */
- int
- _elscuart_readc( l1sc_t *sc )
- {
- int c;
- sc_cq_t *q;
- brl1_sch_t *subch;
- if( sc->cons_listen ) {
- subch = &(sc->subch[ SC_CONS_SYSTEM ]);
- q = subch->iqp;
-
- SUBCH_DATA_LOCK( subch );
- if( !cq_empty( q ) ) {
- cq_rem( q, c );
- if( cq_empty( q ) ) {
- atomic_set(&subch->packet_arrived, 0);
- }
- SUBCH_DATA_UNLOCK( subch );
- return c;
- }
- SUBCH_DATA_UNLOCK( subch );
- }
- subch = &(sc->subch[ L1_ELSCUART_SUBCH(get_myid()) ]);
- q = subch->iqp;
- SUBCH_DATA_LOCK( subch );
- if( cq_empty( q ) ) {
- SUBCH_DATA_UNLOCK( subch );
- return -1;
- }
- cq_rem( q, c );
- if( cq_empty ( q ) ) {
- atomic_set(&subch->packet_arrived, 0);
- }
- SUBCH_DATA_UNLOCK( subch );
- return c;
- }
- /*
- * _elscuart_flush flushes queued output to the L1.
- * This routine blocks until the queue is flushed.
- */
- int
- _elscuart_flush( l1sc_t *sc )
- {
- int r, n;
- char buf[BRL1_QSIZE];
- sc_cq_t *q = &(sc->oq[ MAP_OQ(L1_ELSCUART_SUBCH(get_myid())) ]);
- while( (n = cq_used(q)) ) {
- /* buffer queue contents */
- r = BRL1_QSIZE - q->opos;
- if( n > r ) {
- BCOPY( q->buf + q->opos, buf, r );
- BCOPY( q->buf, buf + r, n - r );
- } else {
- BCOPY( q->buf + q->opos, buf, n );
- }
- /* attempt to send buffer contents */
- r = brl1_send( sc, buf, cq_used( q ),
- (BRL1_EVENT | L1_ELSCUART_SUBCH(get_myid())), 1 );
- /* if no error, dequeue the sent characters; otherwise,
- * return the error
- */
- if( r >= SC_SUCCESS ) {
- q->opos = (q->opos + r) % BRL1_QSIZE;
- }
- else {
- return r;
- }
- }
- return 0;
- }
- /* _elscuart_probe returns non-zero if the L1 (and
- * consequently the elscuart) can be accessed
- */
- int
- _elscuart_probe( l1sc_t *sc )
- {
- #ifndef CONFIG_SERIAL_SGI_L1_PROTOCOL
- return 0;
- #else
- char ver[BRL1_QSIZE];
- extern int elsc_version( l1sc_t *, char * );
- if ( IS_RUNNING_ON_SIMULATOR() )
- return 0;
- return( elsc_version(sc, ver) >= 0 );
- #endif /* CONFIG_SERIAL_SGI_L1_PROTOCOL */
- }
- /* _elscuart_init zeroes out the l1sc_t console
- * queues for this processor's console subchannel.
- */
- void
- _elscuart_init( l1sc_t *sc )
- {
- brl1_sch_t *subch = &sc->subch[L1_ELSCUART_SUBCH(get_myid())];
- SUBCH_DATA_LOCK(subch);
- atomic_set(&subch->packet_arrived, 0);
- cq_init( subch->iqp );
- cq_init( &sc->oq[MAP_OQ(L1_ELSCUART_SUBCH(get_myid()))] );
- SUBCH_DATA_UNLOCK(subch);
- }