smpboot.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:13k
- /*
- * SMP boot-related support
- *
- * Copyright (C) 2001 David Mosberger-Tang <davidm@hpl.hp.com>
- *
- * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
- * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
- */
- #define __KERNEL_SYSCALLS__
- #include <linux/config.h>
- #include <linux/bootmem.h>
- #include <linux/delay.h>
- #include <linux/init.h>
- #include <linux/interrupt.h>
- #include <linux/irq.h>
- #include <linux/kernel.h>
- #include <linux/kernel_stat.h>
- #include <linux/mm.h>
- #include <linux/smp.h>
- #include <linux/smp_lock.h>
- #include <linux/spinlock.h>
- #include <asm/atomic.h>
- #include <asm/bitops.h>
- #include <asm/cache.h>
- #include <asm/current.h>
- #include <asm/delay.h>
- #include <asm/efi.h>
- #include <asm/io.h>
- #include <asm/irq.h>
- #include <asm/machvec.h>
- #include <asm/mca.h>
- #include <asm/page.h>
- #include <asm/pgalloc.h>
- #include <asm/pgtable.h>
- #include <asm/processor.h>
- #include <asm/ptrace.h>
- #include <asm/sal.h>
- #include <asm/system.h>
- #include <asm/unistd.h>
- #define SMP_DEBUG 0
- #if SMP_DEBUG
- #define Dprintk(x...) printk(x)
- #else
- #define Dprintk(x...)
- #endif
- /*
- * ITC synchronization related stuff:
- */
- #define MASTER 0
- #define SLAVE (SMP_CACHE_BYTES/8)
- #define NUM_ROUNDS 64 /* magic value */
- #define NUM_ITERS 5 /* likewise */
- static spinlock_t itc_sync_lock = SPIN_LOCK_UNLOCKED;
- static volatile unsigned long go[SLAVE + 1];
- #define DEBUG_ITC_SYNC 0
- extern void __init calibrate_delay(void);
- extern void start_ap(void);
- int cpucount;
- /* Setup configured maximum number of CPUs to activate */
- static int max_cpus = -1;
- /* Total count of live CPUs */
- int smp_num_cpus = 1;
- /* Bitmask of currently online CPUs */
- volatile unsigned long cpu_online_map;
- /* which logical CPU number maps to which CPU (physical APIC ID) */
- volatile int ia64_cpu_to_sapicid[NR_CPUS];
- static volatile unsigned long cpu_callin_map;
- struct smp_boot_data smp_boot_data __initdata;
- /* Set when the idlers are all forked */
- volatile int smp_threads_ready;
- unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
- char __initdata no_int_routing;
- unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
- /*
- * Setup routine for controlling SMP activation
- *
- * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
- * activation entirely (the MPS table probe still happens, though).
- *
- * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
- * greater than 0, limits the maximum number of CPUs activated in
- * SMP mode to <NUM>.
- */
- static int __init
- nosmp (char *str)
- {
- max_cpus = 0;
- return 1;
- }
- __setup("nosmp", nosmp);
- static int __init
- maxcpus (char *str)
- {
- get_option(&str, &max_cpus);
- return 1;
- }
- __setup("maxcpus=", maxcpus);
- static int __init
- nointroute (char *str)
- {
- no_int_routing = 1;
- return 1;
- }
- __setup("nointroute", nointroute);
- void
- sync_master (void *arg)
- {
- unsigned long flags, i;
- go[MASTER] = 0;
- local_irq_save(flags);
- {
- for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
- while (!go[MASTER]);
- go[MASTER] = 0;
- go[SLAVE] = ia64_get_itc();
- }
- }
- local_irq_restore(flags);
- }
- /*
- * Return the number of cycles by which our itc differs from the itc on the master
- * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
- * negative that it is behind.
- */
- static inline long
- get_delta (long *rt, long *master)
- {
- unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
- unsigned long tcenter, t0, t1, tm;
- long i;
- for (i = 0; i < NUM_ITERS; ++i) {
- t0 = ia64_get_itc();
- go[MASTER] = 1;
- while (!(tm = go[SLAVE]));
- go[SLAVE] = 0;
- t1 = ia64_get_itc();
- if (t1 - t0 < best_t1 - best_t0)
- best_t0 = t0, best_t1 = t1, best_tm = tm;
- }
- *rt = best_t1 - best_t0;
- *master = best_tm - best_t0;
- /* average best_t0 and best_t1 without overflow: */
- tcenter = (best_t0/2 + best_t1/2);
- if (best_t0 % 2 + best_t1 % 2 == 2)
- ++tcenter;
- return tcenter - best_tm;
- }
- /*
- * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
- * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
- * unaccounted-for errors (such as getting a machine check in the middle of a calibration
- * step). The basic idea is for the slave to ask the master what itc value it has and to
- * read its own itc before and after the master responds. Each iteration gives us three
- * timestamps:
- *
- * slave master
- *
- * t0 ---
- * ---
- * --->
- * tm
- * /---
- * /---
- * t1 <---
- *
- *
- * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
- * and t1. If we achieve this, the clocks are synchronized provided the interconnect
- * between the slave and the master is symmetric. Even if the interconnect were
- * asymmetric, we would still know that the synchronization error is smaller than the
- * roundtrip latency (t0 - t1).
- *
- * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
- * within one or two cycles. However, we can only *guarantee* that the synchronization is
- * accurate to within a round-trip time, which is typically in the range of several
- * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
- * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
- * than half a micro second or so.
- */
- void
- ia64_sync_itc (unsigned int master)
- {
- long i, delta, adj, adjust_latency = 0, done = 0;
- unsigned long flags, rt, master_time_stamp, bound;
- #if DEBUG_ITC_SYNC
- struct {
- long rt; /* roundtrip time */
- long master; /* master's timestamp */
- long diff; /* difference between midpoint and master's timestamp */
- long lat; /* estimate of itc adjustment latency */
- } t[NUM_ROUNDS];
- #endif
- go[MASTER] = 1;
- if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
- printk("sync_itc: failed to get attention of CPU %u!n", master);
- return;
- }
- while (go[MASTER]); /* wait for master to be ready */
- spin_lock_irqsave(&itc_sync_lock, flags);
- {
- for (i = 0; i < NUM_ROUNDS; ++i) {
- delta = get_delta(&rt, &master_time_stamp);
- if (delta == 0) {
- done = 1; /* let's lock on to this... */
- bound = rt;
- }
- if (!done) {
- if (i > 0) {
- adjust_latency += -delta;
- adj = -delta + adjust_latency/4;
- } else
- adj = -delta;
- ia64_set_itc(ia64_get_itc() + adj);
- }
- #if DEBUG_ITC_SYNC
- t[i].rt = rt;
- t[i].master = master_time_stamp;
- t[i].diff = delta;
- t[i].lat = adjust_latency/4;
- #endif
- }
- }
- spin_unlock_irqrestore(&itc_sync_lock, flags);
- #if DEBUG_ITC_SYNC
- for (i = 0; i < NUM_ROUNDS; ++i)
- printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ldn",
- t[i].rt, t[i].master, t[i].diff, t[i].lat);
- #endif
- printk("CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, maxerr %lu cycles)n",
- smp_processor_id(), master, delta, rt);
- }
- /*
- * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
- */
- static inline void __init
- smp_setup_percpu_timer (void)
- {
- local_cpu_data->prof_counter = 1;
- local_cpu_data->prof_multiplier = 1;
- }
- /*
- * Architecture specific routine called by the kernel just before init is
- * fired off. This allows the BP to have everything in order [we hope].
- * At the end of this all the APs will hit the system scheduling and off
- * we go. Each AP will jump through the kernel
- * init into idle(). At this point the scheduler will one day take over
- * and give them jobs to do. smp_callin is a standard routine
- * we use to track CPUs as they power up.
- */
- static volatile atomic_t smp_commenced = ATOMIC_INIT(0);
- void __init
- smp_commence (void)
- {
- /*
- * Lets the callins below out of their loop.
- */
- Dprintk("Setting commenced=1, go go gon");
- wmb();
- atomic_set(&smp_commenced,1);
- }
- static void __init
- smp_callin (void)
- {
- int cpuid, phys_id;
- extern void ia64_init_itm(void);
- #ifdef CONFIG_PERFMON
- extern void perfmon_init_percpu(void);
- #endif
- cpuid = smp_processor_id();
- phys_id = hard_smp_processor_id();
- if (test_and_set_bit(cpuid, &cpu_online_map)) {
- printk("huh, phys CPU#0x%x, CPU#0x%x already present??n", phys_id, cpuid);
- BUG();
- }
- smp_setup_percpu_timer();
- /*
- * Synchronize the ITC with the BP
- */
- Dprintk("Going to syncup ITC with BP.n");
- ia64_sync_itc(0);
- /*
- * Get our bogomips.
- */
- ia64_init_itm();
- #ifdef CONFIG_IA64_MCA
- ia64_mca_cmc_vector_setup(); /* Setup vector on AP & enable */
- ia64_mca_check_errors(); /* For post-failure MCA error logging */
- #endif
- #ifdef CONFIG_PERFMON
- perfmon_init_percpu();
- #endif
- local_irq_enable();
- calibrate_delay();
- local_cpu_data->loops_per_jiffy = loops_per_jiffy;
- /*
- * Allow the master to continue.
- */
- set_bit(cpuid, &cpu_callin_map);
- Dprintk("Stack on CPU %d at about %pn",cpuid, &cpuid);
- }
- /*
- * Activate a secondary processor. head.S calls this.
- */
- int __init
- start_secondary (void *unused)
- {
- extern int cpu_idle (void);
- Dprintk("start_secondary: starting CPU 0x%xn", hard_smp_processor_id());
- efi_map_pal_code();
- cpu_init();
- smp_callin();
- Dprintk("CPU %d is set to go.n", smp_processor_id());
- while (!atomic_read(&smp_commenced))
- ;
- Dprintk("CPU %d is starting idle.n", smp_processor_id());
- return cpu_idle();
- }
- static int __init
- fork_by_hand (void)
- {
- /*
- * don't care about the eip and regs settings since
- * we'll never reschedule the forked task.
- */
- return do_fork(CLONE_VM|CLONE_PID, 0, 0, 0);
- }
- static void __init
- do_boot_cpu (int sapicid)
- {
- struct task_struct *idle;
- int timeout, cpu;
- cpu = ++cpucount;
- /*
- * We can't use kernel_thread since we must avoid to
- * reschedule the child.
- */
- if (fork_by_hand() < 0)
- panic("failed fork for CPU %d", cpu);
- /*
- * We remove it from the pidhash and the runqueue
- * once we got the process:
- */
- idle = init_task.prev_task;
- if (!idle)
- panic("No idle process for CPU %d", cpu);
- idle->processor = cpu;
- ia64_cpu_to_sapicid[cpu] = sapicid;
- idle->cpus_runnable = 1 << cpu; /* we schedule the first task manually */
- del_from_runqueue(idle);
- unhash_process(idle);
- init_tasks[cpu] = idle;
- Dprintk("Sending wakeup vector %u to AP 0x%x/0x%x.n", ap_wakeup_vector, cpu, sapicid);
- platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
- /*
- * Wait 10s total for the AP to start
- */
- Dprintk("Waiting on callin_map ...");
- for (timeout = 0; timeout < 100000; timeout++) {
- if (test_bit(cpu, &cpu_callin_map))
- break; /* It has booted */
- udelay(100);
- }
- Dprintk("n");
- if (test_bit(cpu, &cpu_callin_map)) {
- /* number CPUs logically, starting from 1 (BSP is 0) */
- printk("CPU%d: ", cpu);
- /*print_cpu_info(&cpu_data[cpu]); */
- printk("CPU has booted.n");
- } else {
- printk(KERN_ERR "Processor 0x%x/0x%x is stuck.n", cpu, sapicid);
- ia64_cpu_to_sapicid[cpu] = -1;
- cpucount--;
- }
- }
- /*
- * Cycle through the APs sending Wakeup IPIs to boot each.
- */
- void __init
- smp_boot_cpus (void)
- {
- int sapicid, cpu;
- int boot_cpu_id = hard_smp_processor_id();
- /*
- * Initialize the logical to physical CPU number mapping
- * and the per-CPU profiling counter/multiplier
- */
- for (cpu = 0; cpu < NR_CPUS; cpu++)
- ia64_cpu_to_sapicid[cpu] = -1;
- smp_setup_percpu_timer();
- /*
- * We have the boot CPU online for sure.
- */
- set_bit(0, &cpu_online_map);
- set_bit(0, &cpu_callin_map);
- local_cpu_data->loops_per_jiffy = loops_per_jiffy;
- ia64_cpu_to_sapicid[0] = boot_cpu_id;
- printk("Boot processor id 0x%x/0x%xn", 0, boot_cpu_id);
- global_irq_holder = 0;
- current->processor = 0;
- init_idle();
- /*
- * If SMP should be disabled, then really disable it!
- */
- if (!max_cpus || (max_cpus < -1)) {
- printk(KERN_INFO "SMP mode deactivated.n");
- cpu_online_map = 1;
- smp_num_cpus = 1;
- goto smp_done;
- }
- if (max_cpus != -1)
- printk (KERN_INFO "Limiting CPUs to %dn", max_cpus);
- if (smp_boot_data.cpu_count > 1) {
- printk(KERN_INFO "SMP: starting up secondaries.n");
- for (cpu = 0; cpu < smp_boot_data.cpu_count; cpu++) {
- /*
- * Don't even attempt to start the boot CPU!
- */
- sapicid = smp_boot_data.cpu_phys_id[cpu];
- if ((sapicid == -1) || (sapicid == hard_smp_processor_id()))
- continue;
- if ((max_cpus > 0) && (cpucount + 1 >= max_cpus))
- break;
- do_boot_cpu(sapicid);
- /*
- * Make sure we unmap all failed CPUs
- */
- if (ia64_cpu_to_sapicid[cpu] == -1)
- printk("phys CPU#%d not responding - cannot use it.n", cpu);
- }
- smp_num_cpus = cpucount + 1;
- /*
- * Allow the user to impress friends.
- */
- printk("Before bogomips.n");
- if (!cpucount) {
- printk(KERN_ERR "Error: only one processor found.n");
- } else {
- unsigned long bogosum = 0;
- for (cpu = 0; cpu < NR_CPUS; cpu++)
- if (cpu_online_map & (1<<cpu))
- bogosum += cpu_data(cpu)->loops_per_jiffy;
- printk(KERN_INFO"Total of %d processors activated (%lu.%02lu BogoMIPS).n",
- cpucount + 1, bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
- }
- }
- smp_done:
- ;
- }
- /*
- * Assume that CPU's have been discovered by some platform-dependant interface. For
- * SoftSDV/Lion, that would be ACPI.
- *
- * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
- */
- void __init
- init_smp_config(void)
- {
- struct fptr {
- unsigned long fp;
- unsigned long gp;
- } *ap_startup;
- long sal_ret;
- /* Tell SAL where to drop the AP's. */
- ap_startup = (struct fptr *) start_ap;
- sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
- __pa(ap_startup->fp), __pa(ap_startup->gp), 0, 0, 0, 0);
- if (sal_ret < 0) {
- printk("SMP: Can't set SAL AP Boot Rendezvous: %sn Forcing UP moden",
- ia64_sal_strerror(sal_ret));
- max_cpus = 0;
- smp_num_cpus = 1;
- }
- }