ptrace.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:29k
- /*
- * Kernel support for the ptrace() and syscall tracing interfaces.
- *
- * Copyright (C) 1999-2001 Hewlett-Packard Co
- * David Mosberger-Tang <davidm@hpl.hp.com>
- *
- * Derived from the x86 and Alpha versions. Most of the code in here
- * could actually be factored into a common set of routines.
- */
- #include <linux/config.h>
- #include <linux/kernel.h>
- #include <linux/sched.h>
- #include <linux/mm.h>
- #include <linux/errno.h>
- #include <linux/ptrace.h>
- #include <linux/smp_lock.h>
- #include <linux/user.h>
- #include <asm/pgtable.h>
- #include <asm/processor.h>
- #include <asm/ptrace_offsets.h>
- #include <asm/rse.h>
- #include <asm/system.h>
- #include <asm/uaccess.h>
- #include <asm/unwind.h>
- /*
- * Bits in the PSR that we allow ptrace() to change:
- * be, up, ac, mfl, mfh (the user mask; five bits total)
- * db (debug breakpoint fault; one bit)
- * id (instruction debug fault disable; one bit)
- * dd (data debug fault disable; one bit)
- * ri (restart instruction; two bits)
- * is (instruction set; one bit)
- */
- #define IPSR_WRITE_MASK
- (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
- #define IPSR_READ_MASK IPSR_WRITE_MASK
- #define PTRACE_DEBUG 1
- #if PTRACE_DEBUG
- # define dprintk(format...) printk(format)
- # define inline
- #else
- # define dprintk(format...)
- #endif
- /*
- * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
- * bitset where bit i is set iff the NaT bit of register i is set.
- */
- unsigned long
- ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
- {
- # define GET_BITS(first, last, unat)
- ({
- unsigned long bit = ia64_unat_pos(&pt->r##first);
- unsigned long mask = ((1UL << (last - first + 1)) - 1) << first;
- (ia64_rotl(unat, first) >> bit) & mask;
- })
- unsigned long val;
- val = GET_BITS( 1, 3, scratch_unat);
- val |= GET_BITS(12, 15, scratch_unat);
- val |= GET_BITS( 8, 11, scratch_unat);
- val |= GET_BITS(16, 31, scratch_unat);
- return val;
- # undef GET_BITS
- }
- /*
- * Set the NaT bits for the scratch registers according to NAT and
- * return the resulting unat (assuming the scratch registers are
- * stored in PT).
- */
- unsigned long
- ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
- {
- unsigned long scratch_unat;
- # define PUT_BITS(first, last, nat)
- ({
- unsigned long bit = ia64_unat_pos(&pt->r##first);
- unsigned long mask = ((1UL << (last - first + 1)) - 1) << bit;
- (ia64_rotr(nat, first) << bit) & mask;
- })
- scratch_unat = PUT_BITS( 1, 3, nat);
- scratch_unat |= PUT_BITS(12, 15, nat);
- scratch_unat |= PUT_BITS( 8, 11, nat);
- scratch_unat |= PUT_BITS(16, 31, nat);
- return scratch_unat;
- # undef PUT_BITS
- }
- #define IA64_MLX_TEMPLATE 0x2
- #define IA64_MOVL_OPCODE 6
- void
- ia64_increment_ip (struct pt_regs *regs)
- {
- unsigned long w0, ri = ia64_psr(regs)->ri + 1;
- if (ri > 2) {
- ri = 0;
- regs->cr_iip += 16;
- } else if (ri == 2) {
- get_user(w0, (char *) regs->cr_iip + 0);
- if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
- /*
- * rfi'ing to slot 2 of an MLX bundle causes
- * an illegal operation fault. We don't want
- * that to happen...
- */
- ri = 0;
- regs->cr_iip += 16;
- }
- }
- ia64_psr(regs)->ri = ri;
- }
- void
- ia64_decrement_ip (struct pt_regs *regs)
- {
- unsigned long w0, ri = ia64_psr(regs)->ri - 1;
- if (ia64_psr(regs)->ri == 0) {
- regs->cr_iip -= 16;
- ri = 2;
- get_user(w0, (char *) regs->cr_iip + 0);
- if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
- /*
- * rfi'ing to slot 2 of an MLX bundle causes
- * an illegal operation fault. We don't want
- * that to happen...
- */
- ri = 1;
- }
- }
- ia64_psr(regs)->ri = ri;
- }
- /*
- * This routine is used to read an rnat bits that are stored on the kernel backing store.
- * Since, in general, the alignment of the user and kernel are different, this is not
- * completely trivial. In essence, we need to construct the user RNAT based on up to two
- * kernel RNAT values and/or the RNAT value saved in the child's pt_regs.
- *
- * user rbs
- *
- * +--------+ <-- lowest address
- * | slot62 |
- * +--------+
- * | rnat | 0x....1f8
- * +--------+
- * | slot00 |
- * +--------+ |
- * | slot01 | > child_regs->ar_rnat
- * +--------+ |
- * | slot02 | / kernel rbs
- * +--------+ +--------+
- * <- child_regs->ar_bspstore | slot61 | <-- krbs
- * +- - - - + +--------+
- * | slot62 |
- * +- - - - + +--------+
- * | rnat |
- * +- - - - + +--------+
- * vrnat | slot00 |
- * +- - - - + +--------+
- * = =
- * +--------+
- * | slot00 |
- * +--------+ |
- * | slot01 | > child_stack->ar_rnat
- * +--------+ |
- * | slot02 | /
- * +--------+
- * <--- child_stack->ar_bspstore
- *
- * The way to think of this code is as follows: bit 0 in the user rnat corresponds to some
- * bit N (0 <= N <= 62) in one of the kernel rnat value. The kernel rnat value holding
- * this bit is stored in variable rnat0. rnat1 is loaded with the kernel rnat value that
- * form the upper bits of the user rnat value.
- *
- * Boundary cases:
- *
- * o when reading the rnat "below" the first rnat slot on the kernel backing store,
- * rnat0/rnat1 are set to 0 and the low order bits are merged in from pt->ar_rnat.
- *
- * o when reading the rnat "above" the last rnat slot on the kernel backing store,
- * rnat0/rnat1 gets its value from sw->ar_rnat.
- */
- static unsigned long
- get_rnat (struct pt_regs *pt, struct switch_stack *sw,
- unsigned long *krbs, unsigned long *urnat_addr)
- {
- unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr, kmask = ~0UL;
- unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
- long num_regs;
- kbsp = (unsigned long *) sw->ar_bspstore;
- ubspstore = (unsigned long *) pt->ar_bspstore;
- /*
- * First, figure out which bit number slot 0 in user-land maps
- * to in the kernel rnat. Do this by figuring out how many
- * register slots we're beyond the user's backingstore and
- * then computing the equivalent address in kernel space.
- */
- num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
- slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
- shift = ia64_rse_slot_num(slot0_kaddr);
- rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
- rnat0_kaddr = rnat1_kaddr - 64;
- if (ubspstore + 63 > urnat_addr) {
- /* some bits need to be merged in from pt->ar_rnat */
- kmask = ~((1UL << ia64_rse_slot_num(ubspstore)) - 1);
- urnat = (pt->ar_rnat & ~kmask);
- }
- if (rnat0_kaddr >= kbsp) {
- rnat0 = sw->ar_rnat;
- } else if (rnat0_kaddr > krbs) {
- rnat0 = *rnat0_kaddr;
- }
- if (rnat1_kaddr >= kbsp) {
- rnat1 = sw->ar_rnat;
- } else if (rnat1_kaddr > krbs) {
- rnat1 = *rnat1_kaddr;
- }
- urnat |= ((rnat1 << (63 - shift)) | (rnat0 >> shift)) & kmask;
- return urnat;
- }
- /*
- * The reverse of get_rnat.
- */
- static void
- put_rnat (struct pt_regs *pt, struct switch_stack *sw,
- unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat)
- {
- unsigned long rnat0 = 0, rnat1 = 0, rnat = 0, *slot0_kaddr, kmask = ~0UL, mask;
- unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
- long num_regs;
- kbsp = (unsigned long *) sw->ar_bspstore;
- ubspstore = (unsigned long *) pt->ar_bspstore;
- /*
- * First, figure out which bit number slot 0 in user-land maps
- * to in the kernel rnat. Do this by figuring out how many
- * register slots we're beyond the user's backingstore and
- * then computing the equivalent address in kernel space.
- */
- num_regs = (long) ia64_rse_num_regs(ubspstore, urnat_addr + 1);
- slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
- shift = ia64_rse_slot_num(slot0_kaddr);
- rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
- rnat0_kaddr = rnat1_kaddr - 64;
- if (ubspstore + 63 > urnat_addr) {
- /* some bits need to be place in pt->ar_rnat: */
- kmask = ~((1UL << ia64_rse_slot_num(ubspstore)) - 1);
- pt->ar_rnat = (pt->ar_rnat & kmask) | (rnat & ~kmask);
- }
- /*
- * Note: Section 11.1 of the EAS guarantees that bit 63 of an
- * rnat slot is ignored. so we don't have to clear it here.
- */
- rnat0 = (urnat << shift);
- mask = ~0UL << shift;
- if (rnat0_kaddr >= kbsp) {
- sw->ar_rnat = (sw->ar_rnat & ~mask) | (rnat0 & mask);
- } else if (rnat0_kaddr > krbs) {
- *rnat0_kaddr = ((*rnat0_kaddr & ~mask) | (rnat0 & mask));
- }
- rnat1 = (urnat >> (63 - shift));
- mask = ~0UL >> (63 - shift);
- if (rnat1_kaddr >= kbsp) {
- sw->ar_rnat = (sw->ar_rnat & ~mask) | (rnat1 & mask);
- } else if (rnat1_kaddr > krbs) {
- *rnat1_kaddr = ((*rnat1_kaddr & ~mask) | (rnat1 & mask));
- }
- }
- /*
- * Read a word from the user-level backing store of task CHILD. ADDR is the user-level
- * address to read the word from, VAL a pointer to the return value, and USER_BSP gives
- * the end of the user-level backing store (i.e., it's the address that would be in ar.bsp
- * after the user executed a "cover" instruction).
- *
- * This routine takes care of accessing the kernel register backing store for those
- * registers that got spilled there. It also takes care of calculating the appropriate
- * RNaT collection words.
- */
- long
- ia64_peek (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end,
- unsigned long addr, long *val)
- {
- unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
- struct pt_regs *child_regs;
- size_t copied;
- long ret;
- urbs_end = (long *) user_rbs_end;
- laddr = (unsigned long *) addr;
- child_regs = ia64_task_regs(child);
- bspstore = (unsigned long *) child_regs->ar_bspstore;
- krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
- if (laddr >= bspstore && laddr <= ia64_rse_rnat_addr(urbs_end)) {
- /*
- * Attempt to read the RBS in an area that's actually on the kernel RBS =>
- * read the corresponding bits in the kernel RBS.
- */
- rnat_addr = ia64_rse_rnat_addr(laddr);
- ret = get_rnat(child_regs, child_stack, krbs, rnat_addr);
- if (laddr == rnat_addr) {
- /* return NaT collection word itself */
- *val = ret;
- return 0;
- }
- if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
- /*
- * It is implementation dependent whether the data portion of a
- * NaT value gets saved on a st8.spill or RSE spill (e.g., see
- * EAS 2.6, 4.4.4.6 Register Spill and Fill). To get consistent
- * behavior across all possible IA-64 implementations, we return
- * zero in this case.
- */
- *val = 0;
- return 0;
- }
- if (laddr < urbs_end) {
- /* the desired word is on the kernel RBS and is not a NaT */
- regnum = ia64_rse_num_regs(bspstore, laddr);
- *val = *ia64_rse_skip_regs(krbs, regnum);
- return 0;
- }
- }
- copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
- if (copied != sizeof(ret))
- return -EIO;
- *val = ret;
- return 0;
- }
- long
- ia64_poke (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end,
- unsigned long addr, long val)
- {
- unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end = (long *) user_rbs_end;
- struct pt_regs *child_regs;
- laddr = (unsigned long *) addr;
- child_regs = ia64_task_regs(child);
- bspstore = (unsigned long *) child_regs->ar_bspstore;
- krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
- if (laddr >= bspstore && laddr <= ia64_rse_rnat_addr(urbs_end)) {
- /*
- * Attempt to write the RBS in an area that's actually on the kernel RBS
- * => write the corresponding bits in the kernel RBS.
- */
- if (ia64_rse_is_rnat_slot(laddr))
- put_rnat(child_regs, child_stack, krbs, laddr, val);
- else {
- if (laddr < urbs_end) {
- regnum = ia64_rse_num_regs(bspstore, laddr);
- *ia64_rse_skip_regs(krbs, regnum) = val;
- }
- }
- } else if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val)) {
- return -EIO;
- }
- return 0;
- }
- /*
- * Calculate the address of the end of the user-level register backing store. This is the
- * address that would have been stored in ar.bsp if the user had executed a "cover"
- * instruction right before entering the kernel. If CFMP is not NULL, it is used to
- * return the "current frame mask" that was active at the time the kernel was entered.
- */
- unsigned long
- ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, unsigned long *cfmp)
- {
- unsigned long *krbs, *bspstore, cfm;
- struct unw_frame_info info;
- long ndirty;
- krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
- bspstore = (unsigned long *) pt->ar_bspstore;
- ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
- cfm = pt->cr_ifs & ~(1UL << 63);
- if ((long) pt->cr_ifs >= 0) {
- /*
- * If bit 63 of cr.ifs is cleared, the kernel was entered via a system
- * call and we need to recover the CFM that existed on entry to the
- * kernel by unwinding the kernel stack.
- */
- unw_init_from_blocked_task(&info, child);
- if (unw_unwind_to_user(&info) == 0) {
- unw_get_cfm(&info, &cfm);
- ndirty += (cfm & 0x7f);
- }
- }
- if (cfmp)
- *cfmp = cfm;
- return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
- }
- /*
- * Synchronize (i.e, write) the RSE backing store living in kernel space to the VM of the
- * CHILD task. SW and PT are the pointers to the switch_stack and pt_regs structures,
- * respectively. USER_RBS_END is the user-level address at which the backing store ends.
- */
- long
- ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
- unsigned long user_rbs_start, unsigned long user_rbs_end)
- {
- unsigned long addr, val;
- long ret;
- /* now copy word for word from kernel rbs to user rbs: */
- for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
- ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
- if (ret < 0)
- return ret;
- if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val))
- return -EIO;
- }
- return 0;
- }
- /*
- * Simulate user-level "flushrs". Note: we can't just add pt->loadrs>>16 to
- * pt->ar_bspstore because the kernel backing store and the user-level backing store may
- * have different alignments (and therefore a different number of intervening rnat slots).
- */
- static void
- user_flushrs (struct task_struct *task, struct pt_regs *pt)
- {
- unsigned long *krbs;
- long ndirty;
- krbs = (unsigned long *) task + IA64_RBS_OFFSET/8;
- ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
- pt->ar_bspstore = (unsigned long) ia64_rse_skip_regs((unsigned long *) pt->ar_bspstore,
- ndirty);
- pt->loadrs = 0;
- }
- /*
- * Synchronize the RSE backing store of CHILD and all tasks that share the address space
- * with it. CHILD_URBS_END is the address of the end of the register backing store of
- * CHILD. If MAKE_WRITABLE is set, a user-level "flushrs" is simulated such that the VM
- * can be written via ptrace() and the tasks will pick up the newly written values. It
- * would be OK to unconditionally simulate a "flushrs", but this would be more intrusive
- * than strictly necessary (e.g., it would make it impossible to obtain the original value
- * of ar.bspstore).
- */
- static void
- threads_sync_user_rbs (struct task_struct *child, unsigned long child_urbs_end, int make_writable)
- {
- struct switch_stack *sw;
- unsigned long urbs_end;
- struct task_struct *p;
- struct mm_struct *mm;
- struct pt_regs *pt;
- long multi_threaded;
- task_lock(child);
- {
- mm = child->mm;
- multi_threaded = mm && (atomic_read(&mm->mm_users) > 1);
- }
- task_unlock(child);
- if (!multi_threaded) {
- sw = (struct switch_stack *) (child->thread.ksp + 16);
- pt = ia64_task_regs(child);
- ia64_sync_user_rbs(child, sw, pt->ar_bspstore, child_urbs_end);
- if (make_writable)
- user_flushrs(child, pt);
- } else {
- read_lock(&tasklist_lock);
- {
- for_each_task(p) {
- if (p->mm == mm && p->state != TASK_RUNNING) {
- sw = (struct switch_stack *) (p->thread.ksp + 16);
- pt = ia64_task_regs(p);
- urbs_end = ia64_get_user_rbs_end(p, pt, NULL);
- ia64_sync_user_rbs(p, sw, pt->ar_bspstore, urbs_end);
- if (make_writable)
- user_flushrs(p, pt);
- }
- }
- }
- read_unlock(&tasklist_lock);
- }
- child->thread.flags |= IA64_THREAD_KRBS_SYNCED; /* set the flag in the child thread only */
- }
- /*
- * Write f32-f127 back to task->thread.fph if it has been modified.
- */
- inline void
- ia64_flush_fph (struct task_struct *task)
- {
- struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
- #ifdef CONFIG_SMP
- struct task_struct *fpu_owner = current;
- #else
- struct task_struct *fpu_owner = ia64_get_fpu_owner();
- #endif
- if (task == fpu_owner && psr->mfh) {
- psr->mfh = 0;
- ia64_save_fpu(&task->thread.fph[0]);
- task->thread.flags |= IA64_THREAD_FPH_VALID;
- }
- }
- /*
- * Sync the fph state of the task so that it can be manipulated
- * through thread.fph. If necessary, f32-f127 are written back to
- * thread.fph or, if the fph state hasn't been used before, thread.fph
- * is cleared to zeroes. Also, access to f32-f127 is disabled to
- * ensure that the task picks up the state from thread.fph when it
- * executes again.
- */
- void
- ia64_sync_fph (struct task_struct *task)
- {
- struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
- ia64_flush_fph(task);
- if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
- task->thread.flags |= IA64_THREAD_FPH_VALID;
- memset(&task->thread.fph, 0, sizeof(task->thread.fph));
- }
- #ifndef CONFIG_SMP
- if (ia64_get_fpu_owner() == task)
- ia64_set_fpu_owner(0);
- #endif
- psr->dfh = 1;
- }
- static int
- access_fr (struct unw_frame_info *info, int regnum, int hi, unsigned long *data, int write_access)
- {
- struct ia64_fpreg fpval;
- int ret;
- ret = unw_get_fr(info, regnum, &fpval);
- if (ret < 0)
- return ret;
- if (write_access) {
- fpval.u.bits[hi] = *data;
- ret = unw_set_fr(info, regnum, fpval);
- } else
- *data = fpval.u.bits[hi];
- return ret;
- }
- static int
- access_uarea (struct task_struct *child, unsigned long addr, unsigned long *data, int write_access)
- {
- unsigned long *ptr, regnum, urbs_end, rnat_addr;
- struct switch_stack *sw;
- struct unw_frame_info info;
- struct pt_regs *pt;
- pt = ia64_task_regs(child);
- sw = (struct switch_stack *) (child->thread.ksp + 16);
- if ((addr & 0x7) != 0) {
- dprintk("ptrace: unaligned register address 0x%lxn", addr);
- return -1;
- }
- if (addr < PT_F127 + 16) {
- /* accessing fph */
- if (write_access)
- ia64_sync_fph(child);
- else
- ia64_flush_fph(child);
- ptr = (unsigned long *) ((unsigned long) &child->thread.fph + addr);
- } else if (addr >= PT_F10 && addr < PT_F15 + 16) {
- /* scratch registers untouched by kernel (saved in switch_stack) */
- ptr = (unsigned long *) ((long) sw + addr - PT_NAT_BITS);
- } else if (addr < PT_AR_LC + 8) {
- /* preserved state: */
- unsigned long nat_bits, scratch_unat, dummy = 0;
- struct unw_frame_info info;
- char nat = 0;
- int ret;
- unw_init_from_blocked_task(&info, child);
- if (unw_unwind_to_user(&info) < 0)
- return -1;
- switch (addr) {
- case PT_NAT_BITS:
- if (write_access) {
- nat_bits = *data;
- scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
- if (unw_set_ar(&info, UNW_AR_UNAT, scratch_unat) < 0) {
- dprintk("ptrace: failed to set ar.unatn");
- return -1;
- }
- for (regnum = 4; regnum <= 7; ++regnum) {
- unw_get_gr(&info, regnum, &dummy, &nat);
- unw_set_gr(&info, regnum, dummy, (nat_bits >> regnum) & 1);
- }
- } else {
- if (unw_get_ar(&info, UNW_AR_UNAT, &scratch_unat) < 0) {
- dprintk("ptrace: failed to read ar.unatn");
- return -1;
- }
- nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
- for (regnum = 4; regnum <= 7; ++regnum) {
- unw_get_gr(&info, regnum, &dummy, &nat);
- nat_bits |= (nat != 0) << regnum;
- }
- *data = nat_bits;
- }
- return 0;
- case PT_R4: case PT_R5: case PT_R6: case PT_R7:
- if (write_access) {
- /* read NaT bit first: */
- ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4, data, &nat);
- if (ret < 0)
- return ret;
- }
- return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data, &nat,
- write_access);
- case PT_B1: case PT_B2: case PT_B3: case PT_B4: case PT_B5:
- return unw_access_br(&info, (addr - PT_B1)/8 + 1, data, write_access);
- case PT_AR_EC:
- return unw_access_ar(&info, UNW_AR_EC, data, write_access);
- case PT_AR_LC:
- return unw_access_ar(&info, UNW_AR_LC, data, write_access);
- default:
- if (addr >= PT_F2 && addr < PT_F5 + 16)
- return access_fr(&info, (addr - PT_F2)/16 + 2, (addr & 8) != 0,
- data, write_access);
- else if (addr >= PT_F16 && addr < PT_F31 + 16)
- return access_fr(&info, (addr - PT_F16)/16 + 16, (addr & 8) != 0,
- data, write_access);
- else {
- dprintk("ptrace: rejecting access to register address 0x%lxn",
- addr);
- return -1;
- }
- }
- } else if (addr < PT_F9+16) {
- /* scratch state */
- switch (addr) {
- case PT_AR_BSP:
- /*
- * By convention, we use PT_AR_BSP to refer to the end of the user-level
- * backing store. Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof) to get
- * the real value of ar.bsp at the time the kernel was entered.
- */
- urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
- if (write_access) {
- if (*data != urbs_end) {
- if (ia64_sync_user_rbs(child, sw,
- pt->ar_bspstore, urbs_end) < 0)
- return -1;
- /* simulate user-level write of ar.bsp: */
- pt->loadrs = 0;
- pt->ar_bspstore = *data;
- }
- } else
- *data = urbs_end;
- return 0;
- case PT_CFM:
- if ((long) pt->cr_ifs < 0) {
- if (write_access)
- pt->cr_ifs = ((pt->cr_ifs & ~0x3fffffffffUL)
- | (*data & 0x3fffffffffUL));
- else
- *data = pt->cr_ifs & 0x3fffffffffUL;
- } else {
- /* kernel was entered through a system call */
- unsigned long cfm;
- unw_init_from_blocked_task(&info, child);
- if (unw_unwind_to_user(&info) < 0)
- return -1;
- unw_get_cfm(&info, &cfm);
- if (write_access)
- unw_set_cfm(&info, ((cfm & ~0x3fffffffffU)
- | (*data & 0x3fffffffffUL)));
- else
- *data = cfm;
- }
- return 0;
- case PT_CR_IPSR:
- if (write_access)
- pt->cr_ipsr = ((*data & IPSR_WRITE_MASK)
- | (pt->cr_ipsr & ~IPSR_WRITE_MASK));
- else
- *data = (pt->cr_ipsr & IPSR_READ_MASK);
- return 0;
- case PT_AR_RNAT:
- urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
- rnat_addr = (long) ia64_rse_rnat_addr((long *) urbs_end);
- if (write_access)
- return ia64_poke(child, sw, urbs_end, rnat_addr, *data);
- else
- return ia64_peek(child, sw, urbs_end, rnat_addr, data);
- case PT_R1: case PT_R2: case PT_R3:
- case PT_R8: case PT_R9: case PT_R10: case PT_R11:
- case PT_R12: case PT_R13: case PT_R14: case PT_R15:
- case PT_R16: case PT_R17: case PT_R18: case PT_R19:
- case PT_R20: case PT_R21: case PT_R22: case PT_R23:
- case PT_R24: case PT_R25: case PT_R26: case PT_R27:
- case PT_R28: case PT_R29: case PT_R30: case PT_R31:
- case PT_B0: case PT_B6: case PT_B7:
- case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8:
- case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8:
- case PT_AR_BSPSTORE:
- case PT_AR_RSC: case PT_AR_UNAT: case PT_AR_PFS:
- case PT_AR_CCV: case PT_AR_FPSR: case PT_CR_IIP: case PT_PR:
- /* scratch register */
- ptr = (unsigned long *) ((long) pt + addr - PT_CR_IPSR);
- break;
- default:
- /* disallow accessing anything else... */
- dprintk("ptrace: rejecting access to register address 0x%lxn",
- addr);
- return -1;
- }
- } else {
- /* access debug registers */
- if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
- child->thread.flags |= IA64_THREAD_DBG_VALID;
- memset(child->thread.dbr, 0, sizeof(child->thread.dbr));
- memset(child->thread.ibr, 0, sizeof(child->thread.ibr));
- }
- if (addr >= PT_IBR) {
- regnum = (addr - PT_IBR) >> 3;
- ptr = &child->thread.ibr[0];
- } else {
- regnum = (addr - PT_DBR) >> 3;
- ptr = &child->thread.dbr[0];
- }
- if (regnum >= 8) {
- dprintk("ptrace: rejecting access to register address 0x%lxn", addr);
- return -1;
- }
- ptr += regnum;
- if (write_access)
- /* don't let the user set kernel-level breakpoints... */
- *ptr = *data & ~(7UL << 56);
- else
- *data = *ptr;
- return 0;
- }
- if (write_access)
- *ptr = *data;
- else
- *data = *ptr;
- return 0;
- }
- /*
- * Called by kernel/ptrace.c when detaching..
- *
- * Make sure the single step bit is not set.
- */
- void
- ptrace_disable (struct task_struct *child)
- {
- struct ia64_psr *child_psr = ia64_psr(ia64_task_regs(child));
- /* make sure the single step/take-branch tra bits are not set: */
- child_psr->ss = 0;
- child_psr->tb = 0;
- /* Turn off flag indicating that the KRBS is sync'd with child's VM: */
- child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED;
- }
- asmlinkage long
- sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data,
- long arg4, long arg5, long arg6, long arg7, long stack)
- {
- struct pt_regs *pt, *regs = (struct pt_regs *) &stack;
- unsigned long urbs_end;
- struct task_struct *child;
- struct switch_stack *sw;
- long ret;
- lock_kernel();
- ret = -EPERM;
- if (request == PTRACE_TRACEME) {
- /* are we already being traced? */
- if (current->ptrace & PT_PTRACED)
- goto out;
- current->ptrace |= PT_PTRACED;
- ret = 0;
- goto out;
- }
- ret = -ESRCH;
- read_lock(&tasklist_lock);
- {
- child = find_task_by_pid(pid);
- if (child)
- get_task_struct(child);
- }
- read_unlock(&tasklist_lock);
- if (!child)
- goto out;
- ret = -EPERM;
- if (pid == 1) /* no messing around with init! */
- goto out_tsk;
- if (request == PTRACE_ATTACH) {
- ret = ptrace_attach(child);
- goto out_tsk;
- }
- ret = ptrace_check_attach(child, request == PTRACE_KILL);
- if (ret < 0)
- goto out_tsk;
- pt = ia64_task_regs(child);
- sw = (struct switch_stack *) (child->thread.ksp + 16);
- switch (request) {
- case PTRACE_PEEKTEXT:
- case PTRACE_PEEKDATA: /* read word at location addr */
- urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
- if (!(child->thread.flags & IA64_THREAD_KRBS_SYNCED))
- threads_sync_user_rbs(child, urbs_end, 0);
- ret = ia64_peek(child, sw, urbs_end, addr, &data);
- if (ret == 0) {
- ret = data;
- regs->r8 = 0; /* ensure "ret" is not mistaken as an error code */
- }
- goto out_tsk;
- case PTRACE_POKETEXT:
- case PTRACE_POKEDATA: /* write the word at location addr */
- urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
- if (!(child->thread.flags & IA64_THREAD_KRBS_SYNCED))
- threads_sync_user_rbs(child, urbs_end, 1);
- ret = ia64_poke(child, sw, urbs_end, addr, data);
- goto out_tsk;
- case PTRACE_PEEKUSR: /* read the word at addr in the USER area */
- if (access_uarea(child, addr, &data, 0) < 0) {
- ret = -EIO;
- goto out_tsk;
- }
- ret = data;
- regs->r8 = 0; /* ensure "ret" is not mistaken as an error code */
- goto out_tsk;
- case PTRACE_POKEUSR: /* write the word at addr in the USER area */
- if (access_uarea(child, addr, &data, 1) < 0) {
- ret = -EIO;
- goto out_tsk;
- }
- ret = 0;
- goto out_tsk;
- case PTRACE_GETSIGINFO:
- ret = -EIO;
- if (!access_ok(VERIFY_WRITE, data, sizeof (siginfo_t)) || !child->thread.siginfo)
- goto out_tsk;
- ret = copy_siginfo_to_user((siginfo_t *) data, child->thread.siginfo);
- goto out_tsk;
- case PTRACE_SETSIGINFO:
- ret = -EIO;
- if (!access_ok(VERIFY_READ, data, sizeof (siginfo_t))
- || child->thread.siginfo == 0)
- goto out_tsk;
- ret = copy_siginfo_from_user(child->thread.siginfo, (siginfo_t *) data);
- goto out_tsk;
- case PTRACE_SYSCALL: /* continue and stop at next (return from) syscall */
- case PTRACE_CONT: /* restart after signal. */
- ret = -EIO;
- if (data > _NSIG)
- goto out_tsk;
- if (request == PTRACE_SYSCALL)
- child->ptrace |= PT_TRACESYS;
- else
- child->ptrace &= ~PT_TRACESYS;
- child->exit_code = data;
- /* make sure the single step/taken-branch trap bits are not set: */
- ia64_psr(pt)->ss = 0;
- ia64_psr(pt)->tb = 0;
- /* Turn off flag indicating that the KRBS is sync'd with child's VM: */
- child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED;
- wake_up_process(child);
- ret = 0;
- goto out_tsk;
- case PTRACE_KILL:
- /*
- * Make the child exit. Best I can do is send it a
- * sigkill. Perhaps it should be put in the status
- * that it wants to exit.
- */
- if (child->state == TASK_ZOMBIE) /* already dead */
- goto out_tsk;
- child->exit_code = SIGKILL;
- /* make sure the single step/take-branch tra bits are not set: */
- ia64_psr(pt)->ss = 0;
- ia64_psr(pt)->tb = 0;
- /* Turn off flag indicating that the KRBS is sync'd with child's VM: */
- child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED;
- wake_up_process(child);
- ret = 0;
- goto out_tsk;
- case PTRACE_SINGLESTEP: /* let child execute for one instruction */
- case PTRACE_SINGLEBLOCK:
- ret = -EIO;
- if (data > _NSIG)
- goto out_tsk;
- child->ptrace &= ~PT_TRACESYS;
- if (request == PTRACE_SINGLESTEP) {
- ia64_psr(pt)->ss = 1;
- } else {
- ia64_psr(pt)->tb = 1;
- }
- child->exit_code = data;
- /* Turn off flag indicating that the KRBS is sync'd with child's VM: */
- child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED;
- /* give it a chance to run. */
- wake_up_process(child);
- ret = 0;
- goto out_tsk;
- case PTRACE_DETACH: /* detach a process that was attached. */
- ret = ptrace_detach(child, data);
- goto out_tsk;
- default:
- ret = -EIO;
- goto out_tsk;
- }
- out_tsk:
- free_task_struct(child);
- out:
- unlock_kernel();
- return ret;
- }
- void
- syscall_trace (void)
- {
- if ((current->ptrace & (PT_PTRACED|PT_TRACESYS)) != (PT_PTRACED|PT_TRACESYS))
- return;
- current->exit_code = SIGTRAP;
- set_current_state(TASK_STOPPED);
- notify_parent(current, SIGCHLD);
- schedule();
- /*
- * This isn't the same as continuing with a signal, but it
- * will do for normal use. strace only continues with a
- * signal if the stopping signal is not SIGTRAP. -brl
- */
- if (current->exit_code) {
- send_sig(current->exit_code, current, 1);
- current->exit_code = 0;
- }
- }