sch_red.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:11k
- /*
- * net/sched/sch_red.c Random Early Detection queue.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- *
- * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
- *
- * Changes:
- * J Hadi Salim <hadi@nortel.com> 980914: computation fixes
- * Alexey Makarenko <makar@phoenix.kharkov.ua> 990814: qave on idle link was calculated incorrectly.
- * J Hadi Salim <hadi@nortelnetworks.com> 980816: ECN support
- */
- #include <linux/config.h>
- #include <linux/module.h>
- #include <asm/uaccess.h>
- #include <asm/system.h>
- #include <asm/bitops.h>
- #include <linux/types.h>
- #include <linux/kernel.h>
- #include <linux/sched.h>
- #include <linux/string.h>
- #include <linux/mm.h>
- #include <linux/socket.h>
- #include <linux/sockios.h>
- #include <linux/in.h>
- #include <linux/errno.h>
- #include <linux/interrupt.h>
- #include <linux/if_ether.h>
- #include <linux/inet.h>
- #include <linux/netdevice.h>
- #include <linux/etherdevice.h>
- #include <linux/notifier.h>
- #include <net/ip.h>
- #include <net/route.h>
- #include <linux/skbuff.h>
- #include <net/sock.h>
- #include <net/pkt_sched.h>
- #include <net/inet_ecn.h>
- #define RED_ECN_ECT 0x02
- #define RED_ECN_CE 0x01
- /* Random Early Detection (RED) algorithm.
- =======================================
- Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
- for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
- This file codes a "divisionless" version of RED algorithm
- as written down in Fig.17 of the paper.
- Short description.
- ------------------
- When a new packet arrives we calculate the average queue length:
- avg = (1-W)*avg + W*current_queue_len,
- W is the filter time constant (choosen as 2^(-Wlog)), it controls
- the inertia of the algorithm. To allow larger bursts, W should be
- decreased.
- if (avg > th_max) -> packet marked (dropped).
- if (avg < th_min) -> packet passes.
- if (th_min < avg < th_max) we calculate probability:
- Pb = max_P * (avg - th_min)/(th_max-th_min)
- and mark (drop) packet with this probability.
- Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
- max_P should be small (not 1), usually 0.01..0.02 is good value.
- max_P is chosen as a number, so that max_P/(th_max-th_min)
- is a negative power of two in order arithmetics to contain
- only shifts.
- Parameters, settable by user:
- -----------------------------
- limit - bytes (must be > qth_max + burst)
- Hard limit on queue length, should be chosen >qth_max
- to allow packet bursts. This parameter does not
- affect the algorithms behaviour and can be chosen
- arbitrarily high (well, less than ram size)
- Really, this limit will never be reached
- if RED works correctly.
- qth_min - bytes (should be < qth_max/2)
- qth_max - bytes (should be at least 2*qth_min and less limit)
- Wlog - bits (<32) log(1/W).
- Plog - bits (<32)
- Plog is related to max_P by formula:
- max_P = (qth_max-qth_min)/2^Plog;
- F.e. if qth_max=128K and qth_min=32K, then Plog=22
- corresponds to max_P=0.02
- Scell_log
- Stab
- Lookup table for log((1-W)^(t/t_ave).
- NOTES:
- Upper bound on W.
- -----------------
- If you want to allow bursts of L packets of size S,
- you should choose W:
- L + 1 - th_min/S < (1-(1-W)^L)/W
- th_min/S = 32 th_min/S = 4
-
- log(W) L
- -1 33
- -2 35
- -3 39
- -4 46
- -5 57
- -6 75
- -7 101
- -8 135
- -9 190
- etc.
- */
- struct red_sched_data
- {
- /* Parameters */
- u32 limit; /* HARD maximal queue length */
- u32 qth_min; /* Min average length threshold: A scaled */
- u32 qth_max; /* Max average length threshold: A scaled */
- u32 Rmask;
- u32 Scell_max;
- unsigned char flags;
- char Wlog; /* log(W) */
- char Plog; /* random number bits */
- char Scell_log;
- u8 Stab[256];
- /* Variables */
- unsigned long qave; /* Average queue length: A scaled */
- int qcount; /* Packets since last random number generation */
- u32 qR; /* Cached random number */
- psched_time_t qidlestart; /* Start of idle period */
- struct tc_red_xstats st;
- };
- static int red_ecn_mark(struct sk_buff *skb)
- {
- if (skb->nh.raw + 20 > skb->tail)
- return 0;
- switch (skb->protocol) {
- case __constant_htons(ETH_P_IP):
- {
- u8 tos = skb->nh.iph->tos;
- if (!(tos & RED_ECN_ECT))
- return 0;
- if (!(tos & RED_ECN_CE))
- IP_ECN_set_ce(skb->nh.iph);
- return 1;
- }
- case __constant_htons(ETH_P_IPV6):
- {
- u32 label = *(u32*)skb->nh.raw;
- if (!(label & __constant_htonl(RED_ECN_ECT<<20)))
- return 0;
- label |= __constant_htonl(RED_ECN_CE<<20);
- return 1;
- }
- default:
- return 0;
- }
- }
- static int
- red_enqueue(struct sk_buff *skb, struct Qdisc* sch)
- {
- struct red_sched_data *q = (struct red_sched_data *)sch->data;
- psched_time_t now;
- if (!PSCHED_IS_PASTPERFECT(q->qidlestart)) {
- long us_idle;
- int shift;
- PSCHED_GET_TIME(now);
- us_idle = PSCHED_TDIFF_SAFE(now, q->qidlestart, q->Scell_max, 0);
- PSCHED_SET_PASTPERFECT(q->qidlestart);
- /*
- The problem: ideally, average length queue recalcultion should
- be done over constant clock intervals. This is too expensive, so that
- the calculation is driven by outgoing packets.
- When the queue is idle we have to model this clock by hand.
- SF+VJ proposed to "generate" m = idletime/(average_pkt_size/bandwidth)
- dummy packets as a burst after idle time, i.e.
- q->qave *= (1-W)^m
- This is an apparently overcomplicated solution (f.e. we have to precompute
- a table to make this calculation in reasonable time)
- I believe that a simpler model may be used here,
- but it is field for experiments.
- */
- shift = q->Stab[us_idle>>q->Scell_log];
- if (shift) {
- q->qave >>= shift;
- } else {
- /* Approximate initial part of exponent
- with linear function:
- (1-W)^m ~= 1-mW + ...
- Seems, it is the best solution to
- problem of too coarce exponent tabulation.
- */
- us_idle = (q->qave * us_idle)>>q->Scell_log;
- if (us_idle < q->qave/2)
- q->qave -= us_idle;
- else
- q->qave >>= 1;
- }
- } else {
- q->qave += sch->stats.backlog - (q->qave >> q->Wlog);
- /* NOTE:
- q->qave is fixed point number with point at Wlog.
- The formulae above is equvalent to floating point
- version:
- qave = qave*(1-W) + sch->stats.backlog*W;
- --ANK (980924)
- */
- }
- if (q->qave < q->qth_min) {
- q->qcount = -1;
- enqueue:
- if (sch->stats.backlog <= q->limit) {
- __skb_queue_tail(&sch->q, skb);
- sch->stats.backlog += skb->len;
- sch->stats.bytes += skb->len;
- sch->stats.packets++;
- return NET_XMIT_SUCCESS;
- } else {
- q->st.pdrop++;
- }
- kfree_skb(skb);
- sch->stats.drops++;
- return NET_XMIT_DROP;
- }
- if (q->qave >= q->qth_max) {
- q->qcount = -1;
- sch->stats.overlimits++;
- mark:
- if (!(q->flags&TC_RED_ECN) || !red_ecn_mark(skb)) {
- q->st.early++;
- goto drop;
- }
- q->st.marked++;
- goto enqueue;
- }
- if (++q->qcount) {
- /* The formula used below causes questions.
- OK. qR is random number in the interval 0..Rmask
- i.e. 0..(2^Plog). If we used floating point
- arithmetics, it would be: (2^Plog)*rnd_num,
- where rnd_num is less 1.
- Taking into account, that qave have fixed
- point at Wlog, and Plog is related to max_P by
- max_P = (qth_max-qth_min)/2^Plog; two lines
- below have the following floating point equivalent:
-
- max_P*(qave - qth_min)/(qth_max-qth_min) < rnd/qcount
- Any questions? --ANK (980924)
- */
- if (((q->qave - q->qth_min)>>q->Wlog)*q->qcount < q->qR)
- goto enqueue;
- q->qcount = 0;
- q->qR = net_random()&q->Rmask;
- sch->stats.overlimits++;
- goto mark;
- }
- q->qR = net_random()&q->Rmask;
- goto enqueue;
- drop:
- kfree_skb(skb);
- sch->stats.drops++;
- return NET_XMIT_CN;
- }
- static int
- red_requeue(struct sk_buff *skb, struct Qdisc* sch)
- {
- struct red_sched_data *q = (struct red_sched_data *)sch->data;
- PSCHED_SET_PASTPERFECT(q->qidlestart);
- __skb_queue_head(&sch->q, skb);
- sch->stats.backlog += skb->len;
- return 0;
- }
- static struct sk_buff *
- red_dequeue(struct Qdisc* sch)
- {
- struct sk_buff *skb;
- struct red_sched_data *q = (struct red_sched_data *)sch->data;
- skb = __skb_dequeue(&sch->q);
- if (skb) {
- sch->stats.backlog -= skb->len;
- return skb;
- }
- PSCHED_GET_TIME(q->qidlestart);
- return NULL;
- }
- static int
- red_drop(struct Qdisc* sch)
- {
- struct sk_buff *skb;
- struct red_sched_data *q = (struct red_sched_data *)sch->data;
- skb = __skb_dequeue_tail(&sch->q);
- if (skb) {
- sch->stats.backlog -= skb->len;
- sch->stats.drops++;
- q->st.other++;
- kfree_skb(skb);
- return 1;
- }
- PSCHED_GET_TIME(q->qidlestart);
- return 0;
- }
- static void red_reset(struct Qdisc* sch)
- {
- struct red_sched_data *q = (struct red_sched_data *)sch->data;
- __skb_queue_purge(&sch->q);
- sch->stats.backlog = 0;
- PSCHED_SET_PASTPERFECT(q->qidlestart);
- q->qave = 0;
- q->qcount = -1;
- }
- static int red_change(struct Qdisc *sch, struct rtattr *opt)
- {
- struct red_sched_data *q = (struct red_sched_data *)sch->data;
- struct rtattr *tb[TCA_RED_STAB];
- struct tc_red_qopt *ctl;
- if (opt == NULL ||
- rtattr_parse(tb, TCA_RED_STAB, RTA_DATA(opt), RTA_PAYLOAD(opt)) ||
- tb[TCA_RED_PARMS-1] == 0 || tb[TCA_RED_STAB-1] == 0 ||
- RTA_PAYLOAD(tb[TCA_RED_PARMS-1]) < sizeof(*ctl) ||
- RTA_PAYLOAD(tb[TCA_RED_STAB-1]) < 256)
- return -EINVAL;
- ctl = RTA_DATA(tb[TCA_RED_PARMS-1]);
- sch_tree_lock(sch);
- q->flags = ctl->flags;
- q->Wlog = ctl->Wlog;
- q->Plog = ctl->Plog;
- q->Rmask = ctl->Plog < 32 ? ((1<<ctl->Plog) - 1) : ~0UL;
- q->Scell_log = ctl->Scell_log;
- q->Scell_max = (255<<q->Scell_log);
- q->qth_min = ctl->qth_min<<ctl->Wlog;
- q->qth_max = ctl->qth_max<<ctl->Wlog;
- q->limit = ctl->limit;
- memcpy(q->Stab, RTA_DATA(tb[TCA_RED_STAB-1]), 256);
- q->qcount = -1;
- if (skb_queue_len(&sch->q) == 0)
- PSCHED_SET_PASTPERFECT(q->qidlestart);
- sch_tree_unlock(sch);
- return 0;
- }
- static int red_init(struct Qdisc* sch, struct rtattr *opt)
- {
- int err;
- MOD_INC_USE_COUNT;
- if ((err = red_change(sch, opt)) != 0) {
- MOD_DEC_USE_COUNT;
- }
- return err;
- }
- int red_copy_xstats(struct sk_buff *skb, struct tc_red_xstats *st)
- {
- RTA_PUT(skb, TCA_XSTATS, sizeof(*st), st);
- return 0;
- rtattr_failure:
- return 1;
- }
- static int red_dump(struct Qdisc *sch, struct sk_buff *skb)
- {
- struct red_sched_data *q = (struct red_sched_data *)sch->data;
- unsigned char *b = skb->tail;
- struct rtattr *rta;
- struct tc_red_qopt opt;
- rta = (struct rtattr*)b;
- RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
- opt.limit = q->limit;
- opt.qth_min = q->qth_min>>q->Wlog;
- opt.qth_max = q->qth_max>>q->Wlog;
- opt.Wlog = q->Wlog;
- opt.Plog = q->Plog;
- opt.Scell_log = q->Scell_log;
- opt.flags = q->flags;
- RTA_PUT(skb, TCA_RED_PARMS, sizeof(opt), &opt);
- rta->rta_len = skb->tail - b;
- if (red_copy_xstats(skb, &q->st))
- goto rtattr_failure;
- return skb->len;
- rtattr_failure:
- skb_trim(skb, b - skb->data);
- return -1;
- }
- static void red_destroy(struct Qdisc *sch)
- {
- MOD_DEC_USE_COUNT;
- }
- struct Qdisc_ops red_qdisc_ops =
- {
- NULL,
- NULL,
- "red",
- sizeof(struct red_sched_data),
- red_enqueue,
- red_dequeue,
- red_requeue,
- red_drop,
- red_init,
- red_reset,
- red_destroy,
- red_change,
- red_dump,
- };
- #ifdef MODULE
- int init_module(void)
- {
- return register_qdisc(&red_qdisc_ops);
- }
- void cleanup_module(void)
- {
- unregister_qdisc(&red_qdisc_ops);
- }
- #endif
- MODULE_LICENSE("GPL");