slab.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:52k
- /*
- * linux/mm/slab.c
- * Written by Mark Hemment, 1996/97.
- * (markhe@nextd.demon.co.uk)
- *
- * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
- *
- * Major cleanup, different bufctl logic, per-cpu arrays
- * (c) 2000 Manfred Spraul
- *
- * An implementation of the Slab Allocator as described in outline in;
- * UNIX Internals: The New Frontiers by Uresh Vahalia
- * Pub: Prentice Hall ISBN 0-13-101908-2
- * or with a little more detail in;
- * The Slab Allocator: An Object-Caching Kernel Memory Allocator
- * Jeff Bonwick (Sun Microsystems).
- * Presented at: USENIX Summer 1994 Technical Conference
- *
- *
- * The memory is organized in caches, one cache for each object type.
- * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
- * Each cache consists out of many slabs (they are small (usually one
- * page long) and always contiguous), and each slab contains multiple
- * initialized objects.
- *
- * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
- * normal). If you need a special memory type, then must create a new
- * cache for that memory type.
- *
- * In order to reduce fragmentation, the slabs are sorted in 3 groups:
- * full slabs with 0 free objects
- * partial slabs
- * empty slabs with no allocated objects
- *
- * If partial slabs exist, then new allocations come from these slabs,
- * otherwise from empty slabs or new slabs are allocated.
- *
- * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
- * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
- *
- * On SMP systems, each cache has a short per-cpu head array, most allocs
- * and frees go into that array, and if that array overflows, then 1/2
- * of the entries in the array are given back into the global cache.
- * This reduces the number of spinlock operations.
- *
- * The c_cpuarray may not be read with enabled local interrupts.
- *
- * SMP synchronization:
- * constructors and destructors are called without any locking.
- * Several members in kmem_cache_t and slab_t never change, they
- * are accessed without any locking.
- * The per-cpu arrays are never accessed from the wrong cpu, no locking.
- * The non-constant members are protected with a per-cache irq spinlock.
- *
- * Further notes from the original documentation:
- *
- * 11 April '97. Started multi-threading - markhe
- * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
- * The sem is only needed when accessing/extending the cache-chain, which
- * can never happen inside an interrupt (kmem_cache_create(),
- * kmem_cache_shrink() and kmem_cache_reap()).
- *
- * To prevent kmem_cache_shrink() trying to shrink a 'growing' cache (which
- * maybe be sleeping and therefore not holding the semaphore/lock), the
- * growing field is used. This also prevents reaping from a cache.
- *
- * At present, each engine can be growing a cache. This should be blocked.
- *
- */
- #include <linux/config.h>
- #include <linux/slab.h>
- #include <linux/interrupt.h>
- #include <linux/init.h>
- #include <linux/compiler.h>
- #include <asm/uaccess.h>
- /*
- * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
- * SLAB_RED_ZONE & SLAB_POISON.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * STATS - 1 to collect stats for /proc/slabinfo.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
- */
- #ifdef CONFIG_DEBUG_SLAB
- #define DEBUG 1
- #define STATS 1
- #define FORCED_DEBUG 1
- #else
- #define DEBUG 0
- #define STATS 0
- #define FORCED_DEBUG 0
- #endif
- /*
- * Parameters for kmem_cache_reap
- */
- #define REAP_SCANLEN 10
- #define REAP_PERFECT 10
- /* Shouldn't this be in a header file somewhere? */
- #define BYTES_PER_WORD sizeof(void *)
- /* Legal flag mask for kmem_cache_create(). */
- #if DEBUG
- # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE |
- SLAB_POISON | SLAB_HWCACHE_ALIGN |
- SLAB_NO_REAP | SLAB_CACHE_DMA |
- SLAB_MUST_HWCACHE_ALIGN)
- #else
- # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP |
- SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN)
- #endif
- /*
- * kmem_bufctl_t:
- *
- * Bufctl's are used for linking objs within a slab
- * linked offsets.
- *
- * This implementaion relies on "struct page" for locating the cache &
- * slab an object belongs to.
- * This allows the bufctl structure to be small (one int), but limits
- * the number of objects a slab (not a cache) can contain when off-slab
- * bufctls are used. The limit is the size of the largest general cache
- * that does not use off-slab slabs.
- * For 32bit archs with 4 kB pages, is this 56.
- * This is not serious, as it is only for large objects, when it is unwise
- * to have too many per slab.
- * Note: This limit can be raised by introducing a general cache whose size
- * is less than 512 (PAGE_SIZE<<3), but greater than 256.
- */
- #define BUFCTL_END 0xffffFFFF
- #define SLAB_LIMIT 0xffffFFFE
- typedef unsigned int kmem_bufctl_t;
- /* Max number of objs-per-slab for caches which use off-slab slabs.
- * Needed to avoid a possible looping condition in kmem_cache_grow().
- */
- static unsigned long offslab_limit;
- /*
- * slab_t
- *
- * Manages the objs in a slab. Placed either at the beginning of mem allocated
- * for a slab, or allocated from an general cache.
- * Slabs are chained into three list: fully used, partial, fully free slabs.
- */
- typedef struct slab_s {
- struct list_head list;
- unsigned long colouroff;
- void *s_mem; /* including colour offset */
- unsigned int inuse; /* num of objs active in slab */
- kmem_bufctl_t free;
- } slab_t;
- #define slab_bufctl(slabp)
- ((kmem_bufctl_t *)(((slab_t*)slabp)+1))
- /*
- * cpucache_t
- *
- * Per cpu structures
- * The limit is stored in the per-cpu structure to reduce the data cache
- * footprint.
- */
- typedef struct cpucache_s {
- unsigned int avail;
- unsigned int limit;
- } cpucache_t;
- #define cc_entry(cpucache)
- ((void **)(((cpucache_t*)(cpucache))+1))
- #define cc_data(cachep)
- ((cachep)->cpudata[smp_processor_id()])
- /*
- * kmem_cache_t
- *
- * manages a cache.
- */
- #define CACHE_NAMELEN 20 /* max name length for a slab cache */
- struct kmem_cache_s {
- /* 1) each alloc & free */
- /* full, partial first, then free */
- struct list_head slabs_full;
- struct list_head slabs_partial;
- struct list_head slabs_free;
- unsigned int objsize;
- unsigned int flags; /* constant flags */
- unsigned int num; /* # of objs per slab */
- spinlock_t spinlock;
- #ifdef CONFIG_SMP
- unsigned int batchcount;
- #endif
- /* 2) slab additions /removals */
- /* order of pgs per slab (2^n) */
- unsigned int gfporder;
- /* force GFP flags, e.g. GFP_DMA */
- unsigned int gfpflags;
- size_t colour; /* cache colouring range */
- unsigned int colour_off; /* colour offset */
- unsigned int colour_next; /* cache colouring */
- kmem_cache_t *slabp_cache;
- unsigned int growing;
- unsigned int dflags; /* dynamic flags */
- /* constructor func */
- void (*ctor)(void *, kmem_cache_t *, unsigned long);
- /* de-constructor func */
- void (*dtor)(void *, kmem_cache_t *, unsigned long);
- unsigned long failures;
- /* 3) cache creation/removal */
- char name[CACHE_NAMELEN];
- struct list_head next;
- #ifdef CONFIG_SMP
- /* 4) per-cpu data */
- cpucache_t *cpudata[NR_CPUS];
- #endif
- #if STATS
- unsigned long num_active;
- unsigned long num_allocations;
- unsigned long high_mark;
- unsigned long grown;
- unsigned long reaped;
- unsigned long errors;
- #ifdef CONFIG_SMP
- atomic_t allochit;
- atomic_t allocmiss;
- atomic_t freehit;
- atomic_t freemiss;
- #endif
- #endif
- };
- /* internal c_flags */
- #define CFLGS_OFF_SLAB 0x010000UL /* slab management in own cache */
- #define CFLGS_OPTIMIZE 0x020000UL /* optimized slab lookup */
- /* c_dflags (dynamic flags). Need to hold the spinlock to access this member */
- #define DFLGS_GROWN 0x000001UL /* don't reap a recently grown */
- #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
- #define OPTIMIZE(x) ((x)->flags & CFLGS_OPTIMIZE)
- #define GROWN(x) ((x)->dlags & DFLGS_GROWN)
- #if STATS
- #define STATS_INC_ACTIVE(x) ((x)->num_active++)
- #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
- #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
- #define STATS_INC_GROWN(x) ((x)->grown++)
- #define STATS_INC_REAPED(x) ((x)->reaped++)
- #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark)
- (x)->high_mark = (x)->num_active;
- } while (0)
- #define STATS_INC_ERR(x) ((x)->errors++)
- #else
- #define STATS_INC_ACTIVE(x) do { } while (0)
- #define STATS_DEC_ACTIVE(x) do { } while (0)
- #define STATS_INC_ALLOCED(x) do { } while (0)
- #define STATS_INC_GROWN(x) do { } while (0)
- #define STATS_INC_REAPED(x) do { } while (0)
- #define STATS_SET_HIGH(x) do { } while (0)
- #define STATS_INC_ERR(x) do { } while (0)
- #endif
- #if STATS && defined(CONFIG_SMP)
- #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
- #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
- #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
- #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
- #else
- #define STATS_INC_ALLOCHIT(x) do { } while (0)
- #define STATS_INC_ALLOCMISS(x) do { } while (0)
- #define STATS_INC_FREEHIT(x) do { } while (0)
- #define STATS_INC_FREEMISS(x) do { } while (0)
- #endif
- #if DEBUG
- /* Magic nums for obj red zoning.
- * Placed in the first word before and the first word after an obj.
- */
- #define RED_MAGIC1 0x5A2CF071UL /* when obj is active */
- #define RED_MAGIC2 0x170FC2A5UL /* when obj is inactive */
- /* ...and for poisoning */
- #define POISON_BYTE 0x5a /* byte value for poisoning */
- #define POISON_END 0xa5 /* end-byte of poisoning */
- #endif
- /* maximum size of an obj (in 2^order pages) */
- #define MAX_OBJ_ORDER 5 /* 32 pages */
- /*
- * Do not go above this order unless 0 objects fit into the slab.
- */
- #define BREAK_GFP_ORDER_HI 2
- #define BREAK_GFP_ORDER_LO 1
- static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
- /*
- * Absolute limit for the gfp order
- */
- #define MAX_GFP_ORDER 5 /* 32 pages */
- /* Macros for storing/retrieving the cachep and or slab from the
- * global 'mem_map'. These are used to find the slab an obj belongs to.
- * With kfree(), these are used to find the cache which an obj belongs to.
- */
- #define SET_PAGE_CACHE(pg,x) ((pg)->list.next = (struct list_head *)(x))
- #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->list.next)
- #define SET_PAGE_SLAB(pg,x) ((pg)->list.prev = (struct list_head *)(x))
- #define GET_PAGE_SLAB(pg) ((slab_t *)(pg)->list.prev)
- /* Size description struct for general caches. */
- typedef struct cache_sizes {
- size_t cs_size;
- kmem_cache_t *cs_cachep;
- kmem_cache_t *cs_dmacachep;
- } cache_sizes_t;
- static cache_sizes_t cache_sizes[] = {
- #if PAGE_SIZE == 4096
- { 32, NULL, NULL},
- #endif
- { 64, NULL, NULL},
- { 128, NULL, NULL},
- { 256, NULL, NULL},
- { 512, NULL, NULL},
- { 1024, NULL, NULL},
- { 2048, NULL, NULL},
- { 4096, NULL, NULL},
- { 8192, NULL, NULL},
- { 16384, NULL, NULL},
- { 32768, NULL, NULL},
- { 65536, NULL, NULL},
- {131072, NULL, NULL},
- { 0, NULL, NULL}
- };
- /* internal cache of cache description objs */
- static kmem_cache_t cache_cache = {
- slabs_full: LIST_HEAD_INIT(cache_cache.slabs_full),
- slabs_partial: LIST_HEAD_INIT(cache_cache.slabs_partial),
- slabs_free: LIST_HEAD_INIT(cache_cache.slabs_free),
- objsize: sizeof(kmem_cache_t),
- flags: SLAB_NO_REAP,
- spinlock: SPIN_LOCK_UNLOCKED,
- colour_off: L1_CACHE_BYTES,
- name: "kmem_cache",
- };
- /* Guard access to the cache-chain. */
- static struct semaphore cache_chain_sem;
- /* Place maintainer for reaping. */
- static kmem_cache_t *clock_searchp = &cache_cache;
- #define cache_chain (cache_cache.next)
- #ifdef CONFIG_SMP
- /*
- * chicken and egg problem: delay the per-cpu array allocation
- * until the general caches are up.
- */
- static int g_cpucache_up;
- static void enable_cpucache (kmem_cache_t *cachep);
- static void enable_all_cpucaches (void);
- #endif
- /* Cal the num objs, wastage, and bytes left over for a given slab size. */
- static void kmem_cache_estimate (unsigned long gfporder, size_t size,
- int flags, size_t *left_over, unsigned int *num)
- {
- int i;
- size_t wastage = PAGE_SIZE<<gfporder;
- size_t extra = 0;
- size_t base = 0;
- if (!(flags & CFLGS_OFF_SLAB)) {
- base = sizeof(slab_t);
- extra = sizeof(kmem_bufctl_t);
- }
- i = 0;
- while (i*size + L1_CACHE_ALIGN(base+i*extra) <= wastage)
- i++;
- if (i > 0)
- i--;
- if (i > SLAB_LIMIT)
- i = SLAB_LIMIT;
- *num = i;
- wastage -= i*size;
- wastage -= L1_CACHE_ALIGN(base+i*extra);
- *left_over = wastage;
- }
- /* Initialisation - setup the `cache' cache. */
- void __init kmem_cache_init(void)
- {
- size_t left_over;
- init_MUTEX(&cache_chain_sem);
- INIT_LIST_HEAD(&cache_chain);
- kmem_cache_estimate(0, cache_cache.objsize, 0,
- &left_over, &cache_cache.num);
- if (!cache_cache.num)
- BUG();
- cache_cache.colour = left_over/cache_cache.colour_off;
- cache_cache.colour_next = 0;
- }
- /* Initialisation - setup remaining internal and general caches.
- * Called after the gfp() functions have been enabled, and before smp_init().
- */
- void __init kmem_cache_sizes_init(void)
- {
- cache_sizes_t *sizes = cache_sizes;
- char name[20];
- /*
- * Fragmentation resistance on low memory - only use bigger
- * page orders on machines with more than 32MB of memory.
- */
- if (num_physpages > (32 << 20) >> PAGE_SHIFT)
- slab_break_gfp_order = BREAK_GFP_ORDER_HI;
- do {
- /* For performance, all the general caches are L1 aligned.
- * This should be particularly beneficial on SMP boxes, as it
- * eliminates "false sharing".
- * Note for systems short on memory removing the alignment will
- * allow tighter packing of the smaller caches. */
- sprintf(name,"size-%Zd",sizes->cs_size);
- if (!(sizes->cs_cachep =
- kmem_cache_create(name, sizes->cs_size,
- 0, SLAB_HWCACHE_ALIGN, NULL, NULL))) {
- BUG();
- }
- /* Inc off-slab bufctl limit until the ceiling is hit. */
- if (!(OFF_SLAB(sizes->cs_cachep))) {
- offslab_limit = sizes->cs_size-sizeof(slab_t);
- offslab_limit /= 2;
- }
- sprintf(name, "size-%Zd(DMA)",sizes->cs_size);
- sizes->cs_dmacachep = kmem_cache_create(name, sizes->cs_size, 0,
- SLAB_CACHE_DMA|SLAB_HWCACHE_ALIGN, NULL, NULL);
- if (!sizes->cs_dmacachep)
- BUG();
- sizes++;
- } while (sizes->cs_size);
- }
- int __init kmem_cpucache_init(void)
- {
- #ifdef CONFIG_SMP
- g_cpucache_up = 1;
- enable_all_cpucaches();
- #endif
- return 0;
- }
- __initcall(kmem_cpucache_init);
- /* Interface to system's page allocator. No need to hold the cache-lock.
- */
- static inline void * kmem_getpages (kmem_cache_t *cachep, unsigned long flags)
- {
- void *addr;
- /*
- * If we requested dmaable memory, we will get it. Even if we
- * did not request dmaable memory, we might get it, but that
- * would be relatively rare and ignorable.
- */
- flags |= cachep->gfpflags;
- addr = (void*) __get_free_pages(flags, cachep->gfporder);
- /* Assume that now we have the pages no one else can legally
- * messes with the 'struct page's.
- * However vm_scan() might try to test the structure to see if
- * it is a named-page or buffer-page. The members it tests are
- * of no interest here.....
- */
- return addr;
- }
- /* Interface to system's page release. */
- static inline void kmem_freepages (kmem_cache_t *cachep, void *addr)
- {
- unsigned long i = (1<<cachep->gfporder);
- struct page *page = virt_to_page(addr);
- /* free_pages() does not clear the type bit - we do that.
- * The pages have been unlinked from their cache-slab,
- * but their 'struct page's might be accessed in
- * vm_scan(). Shouldn't be a worry.
- */
- while (i--) {
- PageClearSlab(page);
- page++;
- }
- free_pages((unsigned long)addr, cachep->gfporder);
- }
- #if DEBUG
- static inline void kmem_poison_obj (kmem_cache_t *cachep, void *addr)
- {
- int size = cachep->objsize;
- if (cachep->flags & SLAB_RED_ZONE) {
- addr += BYTES_PER_WORD;
- size -= 2*BYTES_PER_WORD;
- }
- memset(addr, POISON_BYTE, size);
- *(unsigned char *)(addr+size-1) = POISON_END;
- }
- static inline int kmem_check_poison_obj (kmem_cache_t *cachep, void *addr)
- {
- int size = cachep->objsize;
- void *end;
- if (cachep->flags & SLAB_RED_ZONE) {
- addr += BYTES_PER_WORD;
- size -= 2*BYTES_PER_WORD;
- }
- end = memchr(addr, POISON_END, size);
- if (end != (addr+size-1))
- return 1;
- return 0;
- }
- #endif
- /* Destroy all the objs in a slab, and release the mem back to the system.
- * Before calling the slab must have been unlinked from the cache.
- * The cache-lock is not held/needed.
- */
- static void kmem_slab_destroy (kmem_cache_t *cachep, slab_t *slabp)
- {
- if (cachep->dtor
- #if DEBUG
- || cachep->flags & (SLAB_POISON | SLAB_RED_ZONE)
- #endif
- ) {
- int i;
- for (i = 0; i < cachep->num; i++) {
- void* objp = slabp->s_mem+cachep->objsize*i;
- #if DEBUG
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*((unsigned long*)(objp)) != RED_MAGIC1)
- BUG();
- if (*((unsigned long*)(objp + cachep->objsize
- -BYTES_PER_WORD)) != RED_MAGIC1)
- BUG();
- objp += BYTES_PER_WORD;
- }
- #endif
- if (cachep->dtor)
- (cachep->dtor)(objp, cachep, 0);
- #if DEBUG
- if (cachep->flags & SLAB_RED_ZONE) {
- objp -= BYTES_PER_WORD;
- }
- if ((cachep->flags & SLAB_POISON) &&
- kmem_check_poison_obj(cachep, objp))
- BUG();
- #endif
- }
- }
- kmem_freepages(cachep, slabp->s_mem-slabp->colouroff);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slabp);
- }
- /**
- * kmem_cache_create - Create a cache.
- * @name: A string which is used in /proc/slabinfo to identify this cache.
- * @size: The size of objects to be created in this cache.
- * @offset: The offset to use within the page.
- * @flags: SLAB flags
- * @ctor: A constructor for the objects.
- * @dtor: A destructor for the objects.
- *
- * Returns a ptr to the cache on success, NULL on failure.
- * Cannot be called within a int, but can be interrupted.
- * The @ctor is run when new pages are allocated by the cache
- * and the @dtor is run before the pages are handed back.
- * The flags are
- *
- * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
- * to catch references to uninitialised memory.
- *
- * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
- * for buffer overruns.
- *
- * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
- * memory pressure.
- *
- * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
- * cacheline. This can be beneficial if you're counting cycles as closely
- * as davem.
- */
- kmem_cache_t *
- kmem_cache_create (const char *name, size_t size, size_t offset,
- unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
- void (*dtor)(void*, kmem_cache_t *, unsigned long))
- {
- const char *func_nm = KERN_ERR "kmem_create: ";
- size_t left_over, align, slab_size;
- kmem_cache_t *cachep = NULL;
- /*
- * Sanity checks... these are all serious usage bugs.
- */
- if ((!name) ||
- ((strlen(name) >= CACHE_NAMELEN - 1)) ||
- in_interrupt() ||
- (size < BYTES_PER_WORD) ||
- (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
- (dtor && !ctor) ||
- (offset < 0 || offset > size))
- BUG();
- #if DEBUG
- if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
- /* No constructor, but inital state check requested */
- printk("%sNo con, but init state check requested - %sn", func_nm, name);
- flags &= ~SLAB_DEBUG_INITIAL;
- }
- if ((flags & SLAB_POISON) && ctor) {
- /* request for poisoning, but we can't do that with a constructor */
- printk("%sPoisoning requested, but con given - %sn", func_nm, name);
- flags &= ~SLAB_POISON;
- }
- #if FORCED_DEBUG
- if ((size < (PAGE_SIZE>>3)) && !(flags & SLAB_MUST_HWCACHE_ALIGN))
- /*
- * do not red zone large object, causes severe
- * fragmentation.
- */
- flags |= SLAB_RED_ZONE;
- if (!ctor)
- flags |= SLAB_POISON;
- #endif
- #endif
- /*
- * Always checks flags, a caller might be expecting debug
- * support which isn't available.
- */
- if (flags & ~CREATE_MASK)
- BUG();
- /* Get cache's description obj. */
- cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
- if (!cachep)
- goto opps;
- memset(cachep, 0, sizeof(kmem_cache_t));
- /* Check that size is in terms of words. This is needed to avoid
- * unaligned accesses for some archs when redzoning is used, and makes
- * sure any on-slab bufctl's are also correctly aligned.
- */
- if (size & (BYTES_PER_WORD-1)) {
- size += (BYTES_PER_WORD-1);
- size &= ~(BYTES_PER_WORD-1);
- printk("%sForcing size word alignment - %sn", func_nm, name);
- }
-
- #if DEBUG
- if (flags & SLAB_RED_ZONE) {
- /*
- * There is no point trying to honour cache alignment
- * when redzoning.
- */
- flags &= ~SLAB_HWCACHE_ALIGN;
- size += 2*BYTES_PER_WORD; /* words for redzone */
- }
- #endif
- align = BYTES_PER_WORD;
- if (flags & SLAB_HWCACHE_ALIGN)
- align = L1_CACHE_BYTES;
- /* Determine if the slab management is 'on' or 'off' slab. */
- if (size >= (PAGE_SIZE>>3))
- /*
- * Size is large, assume best to place the slab management obj
- * off-slab (should allow better packing of objs).
- */
- flags |= CFLGS_OFF_SLAB;
- if (flags & SLAB_HWCACHE_ALIGN) {
- /* Need to adjust size so that objs are cache aligned. */
- /* Small obj size, can get at least two per cache line. */
- /* FIXME: only power of 2 supported, was better */
- while (size < align/2)
- align /= 2;
- size = (size+align-1)&(~(align-1));
- }
- /* Cal size (in pages) of slabs, and the num of objs per slab.
- * This could be made much more intelligent. For now, try to avoid
- * using high page-orders for slabs. When the gfp() funcs are more
- * friendly towards high-order requests, this should be changed.
- */
- do {
- unsigned int break_flag = 0;
- cal_wastage:
- kmem_cache_estimate(cachep->gfporder, size, flags,
- &left_over, &cachep->num);
- if (break_flag)
- break;
- if (cachep->gfporder >= MAX_GFP_ORDER)
- break;
- if (!cachep->num)
- goto next;
- if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit) {
- /* Oops, this num of objs will cause problems. */
- cachep->gfporder--;
- break_flag++;
- goto cal_wastage;
- }
- /*
- * Large num of objs is good, but v. large slabs are currently
- * bad for the gfp()s.
- */
- if (cachep->gfporder >= slab_break_gfp_order)
- break;
- if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
- break; /* Acceptable internal fragmentation. */
- next:
- cachep->gfporder++;
- } while (1);
- if (!cachep->num) {
- printk("kmem_cache_create: couldn't create cache %s.n", name);
- kmem_cache_free(&cache_cache, cachep);
- cachep = NULL;
- goto opps;
- }
- slab_size = L1_CACHE_ALIGN(cachep->num*sizeof(kmem_bufctl_t)+sizeof(slab_t));
- /*
- * If the slab has been placed off-slab, and we have enough space then
- * move it on-slab. This is at the expense of any extra colouring.
- */
- if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
- flags &= ~CFLGS_OFF_SLAB;
- left_over -= slab_size;
- }
- /* Offset must be a multiple of the alignment. */
- offset += (align-1);
- offset &= ~(align-1);
- if (!offset)
- offset = L1_CACHE_BYTES;
- cachep->colour_off = offset;
- cachep->colour = left_over/offset;
- /* init remaining fields */
- if (!cachep->gfporder && !(flags & CFLGS_OFF_SLAB))
- flags |= CFLGS_OPTIMIZE;
- cachep->flags = flags;
- cachep->gfpflags = 0;
- if (flags & SLAB_CACHE_DMA)
- cachep->gfpflags |= GFP_DMA;
- spin_lock_init(&cachep->spinlock);
- cachep->objsize = size;
- INIT_LIST_HEAD(&cachep->slabs_full);
- INIT_LIST_HEAD(&cachep->slabs_partial);
- INIT_LIST_HEAD(&cachep->slabs_free);
- if (flags & CFLGS_OFF_SLAB)
- cachep->slabp_cache = kmem_find_general_cachep(slab_size,0);
- cachep->ctor = ctor;
- cachep->dtor = dtor;
- /* Copy name over so we don't have problems with unloaded modules */
- strcpy(cachep->name, name);
- #ifdef CONFIG_SMP
- if (g_cpucache_up)
- enable_cpucache(cachep);
- #endif
- /* Need the semaphore to access the chain. */
- down(&cache_chain_sem);
- {
- struct list_head *p;
- list_for_each(p, &cache_chain) {
- kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
- /* The name field is constant - no lock needed. */
- if (!strcmp(pc->name, name))
- BUG();
- }
- }
- /* There is no reason to lock our new cache before we
- * link it in - no one knows about it yet...
- */
- list_add(&cachep->next, &cache_chain);
- up(&cache_chain_sem);
- opps:
- return cachep;
- }
- #if DEBUG
- /*
- * This check if the kmem_cache_t pointer is chained in the cache_cache
- * list. -arca
- */
- static int is_chained_kmem_cache(kmem_cache_t * cachep)
- {
- struct list_head *p;
- int ret = 0;
- /* Find the cache in the chain of caches. */
- down(&cache_chain_sem);
- list_for_each(p, &cache_chain) {
- if (p == &cachep->next) {
- ret = 1;
- break;
- }
- }
- up(&cache_chain_sem);
- return ret;
- }
- #else
- #define is_chained_kmem_cache(x) 1
- #endif
- #ifdef CONFIG_SMP
- /*
- * Waits for all CPUs to execute func().
- */
- static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
- {
- local_irq_disable();
- func(arg);
- local_irq_enable();
- if (smp_call_function(func, arg, 1, 1))
- BUG();
- }
- typedef struct ccupdate_struct_s
- {
- kmem_cache_t *cachep;
- cpucache_t *new[NR_CPUS];
- } ccupdate_struct_t;
- static void do_ccupdate_local(void *info)
- {
- ccupdate_struct_t *new = (ccupdate_struct_t *)info;
- cpucache_t *old = cc_data(new->cachep);
-
- cc_data(new->cachep) = new->new[smp_processor_id()];
- new->new[smp_processor_id()] = old;
- }
- static void free_block (kmem_cache_t* cachep, void** objpp, int len);
- static void drain_cpu_caches(kmem_cache_t *cachep)
- {
- ccupdate_struct_t new;
- int i;
- memset(&new.new,0,sizeof(new.new));
- new.cachep = cachep;
- down(&cache_chain_sem);
- smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
- for (i = 0; i < smp_num_cpus; i++) {
- cpucache_t* ccold = new.new[cpu_logical_map(i)];
- if (!ccold || (ccold->avail == 0))
- continue;
- local_irq_disable();
- free_block(cachep, cc_entry(ccold), ccold->avail);
- local_irq_enable();
- ccold->avail = 0;
- }
- smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
- up(&cache_chain_sem);
- }
- #else
- #define drain_cpu_caches(cachep) do { } while (0)
- #endif
- static int __kmem_cache_shrink(kmem_cache_t *cachep)
- {
- slab_t *slabp;
- int ret;
- drain_cpu_caches(cachep);
- spin_lock_irq(&cachep->spinlock);
- /* If the cache is growing, stop shrinking. */
- while (!cachep->growing) {
- struct list_head *p;
- p = cachep->slabs_free.prev;
- if (p == &cachep->slabs_free)
- break;
- slabp = list_entry(cachep->slabs_free.prev, slab_t, list);
- #if DEBUG
- if (slabp->inuse)
- BUG();
- #endif
- list_del(&slabp->list);
- spin_unlock_irq(&cachep->spinlock);
- kmem_slab_destroy(cachep, slabp);
- spin_lock_irq(&cachep->spinlock);
- }
- ret = !list_empty(&cachep->slabs_full) || !list_empty(&cachep->slabs_partial);
- spin_unlock_irq(&cachep->spinlock);
- return ret;
- }
- /**
- * kmem_cache_shrink - Shrink a cache.
- * @cachep: The cache to shrink.
- *
- * Releases as many slabs as possible for a cache.
- * To help debugging, a zero exit status indicates all slabs were released.
- */
- int kmem_cache_shrink(kmem_cache_t *cachep)
- {
- if (!cachep || in_interrupt() || !is_chained_kmem_cache(cachep))
- BUG();
- return __kmem_cache_shrink(cachep);
- }
- /**
- * kmem_cache_destroy - delete a cache
- * @cachep: the cache to destroy
- *
- * Remove a kmem_cache_t object from the slab cache.
- * Returns 0 on success.
- *
- * It is expected this function will be called by a module when it is
- * unloaded. This will remove the cache completely, and avoid a duplicate
- * cache being allocated each time a module is loaded and unloaded, if the
- * module doesn't have persistent in-kernel storage across loads and unloads.
- *
- * The caller must guarantee that noone will allocate memory from the cache
- * during the kmem_cache_destroy().
- */
- int kmem_cache_destroy (kmem_cache_t * cachep)
- {
- if (!cachep || in_interrupt() || cachep->growing)
- BUG();
- /* Find the cache in the chain of caches. */
- down(&cache_chain_sem);
- /* the chain is never empty, cache_cache is never destroyed */
- if (clock_searchp == cachep)
- clock_searchp = list_entry(cachep->next.next,
- kmem_cache_t, next);
- list_del(&cachep->next);
- up(&cache_chain_sem);
- if (__kmem_cache_shrink(cachep)) {
- printk(KERN_ERR "kmem_cache_destroy: Can't free all objects %pn",
- cachep);
- down(&cache_chain_sem);
- list_add(&cachep->next,&cache_chain);
- up(&cache_chain_sem);
- return 1;
- }
- #ifdef CONFIG_SMP
- {
- int i;
- for (i = 0; i < NR_CPUS; i++)
- kfree(cachep->cpudata[i]);
- }
- #endif
- kmem_cache_free(&cache_cache, cachep);
- return 0;
- }
- /* Get the memory for a slab management obj. */
- static inline slab_t * kmem_cache_slabmgmt (kmem_cache_t *cachep,
- void *objp, int colour_off, int local_flags)
- {
- slab_t *slabp;
-
- if (OFF_SLAB(cachep)) {
- /* Slab management obj is off-slab. */
- slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
- if (!slabp)
- return NULL;
- } else {
- /* FIXME: change to
- slabp = objp
- * if you enable OPTIMIZE
- */
- slabp = objp+colour_off;
- colour_off += L1_CACHE_ALIGN(cachep->num *
- sizeof(kmem_bufctl_t) + sizeof(slab_t));
- }
- slabp->inuse = 0;
- slabp->colouroff = colour_off;
- slabp->s_mem = objp+colour_off;
- return slabp;
- }
- static inline void kmem_cache_init_objs (kmem_cache_t * cachep,
- slab_t * slabp, unsigned long ctor_flags)
- {
- int i;
- for (i = 0; i < cachep->num; i++) {
- void* objp = slabp->s_mem+cachep->objsize*i;
- #if DEBUG
- if (cachep->flags & SLAB_RED_ZONE) {
- *((unsigned long*)(objp)) = RED_MAGIC1;
- *((unsigned long*)(objp + cachep->objsize -
- BYTES_PER_WORD)) = RED_MAGIC1;
- objp += BYTES_PER_WORD;
- }
- #endif
- /*
- * Constructors are not allowed to allocate memory from
- * the same cache which they are a constructor for.
- * Otherwise, deadlock. They must also be threaded.
- */
- if (cachep->ctor)
- cachep->ctor(objp, cachep, ctor_flags);
- #if DEBUG
- if (cachep->flags & SLAB_RED_ZONE)
- objp -= BYTES_PER_WORD;
- if (cachep->flags & SLAB_POISON)
- /* need to poison the objs */
- kmem_poison_obj(cachep, objp);
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*((unsigned long*)(objp)) != RED_MAGIC1)
- BUG();
- if (*((unsigned long*)(objp + cachep->objsize -
- BYTES_PER_WORD)) != RED_MAGIC1)
- BUG();
- }
- #endif
- slab_bufctl(slabp)[i] = i+1;
- }
- slab_bufctl(slabp)[i-1] = BUFCTL_END;
- slabp->free = 0;
- }
- /*
- * Grow (by 1) the number of slabs within a cache. This is called by
- * kmem_cache_alloc() when there are no active objs left in a cache.
- */
- static int kmem_cache_grow (kmem_cache_t * cachep, int flags)
- {
- slab_t *slabp;
- struct page *page;
- void *objp;
- size_t offset;
- unsigned int i, local_flags;
- unsigned long ctor_flags;
- unsigned long save_flags;
- /* Be lazy and only check for valid flags here,
- * keeping it out of the critical path in kmem_cache_alloc().
- */
- if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
- BUG();
- if (flags & SLAB_NO_GROW)
- return 0;
- /*
- * The test for missing atomic flag is performed here, rather than
- * the more obvious place, simply to reduce the critical path length
- * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
- * will eventually be caught here (where it matters).
- */
- if (in_interrupt() && (flags & SLAB_LEVEL_MASK) != SLAB_ATOMIC)
- BUG();
- ctor_flags = SLAB_CTOR_CONSTRUCTOR;
- local_flags = (flags & SLAB_LEVEL_MASK);
- if (local_flags == SLAB_ATOMIC)
- /*
- * Not allowed to sleep. Need to tell a constructor about
- * this - it might need to know...
- */
- ctor_flags |= SLAB_CTOR_ATOMIC;
- /* About to mess with non-constant members - lock. */
- spin_lock_irqsave(&cachep->spinlock, save_flags);
- /* Get colour for the slab, and cal the next value. */
- offset = cachep->colour_next;
- cachep->colour_next++;
- if (cachep->colour_next >= cachep->colour)
- cachep->colour_next = 0;
- offset *= cachep->colour_off;
- cachep->dflags |= DFLGS_GROWN;
- cachep->growing++;
- spin_unlock_irqrestore(&cachep->spinlock, save_flags);
- /* A series of memory allocations for a new slab.
- * Neither the cache-chain semaphore, or cache-lock, are
- * held, but the incrementing c_growing prevents this
- * cache from being reaped or shrunk.
- * Note: The cache could be selected in for reaping in
- * kmem_cache_reap(), but when the final test is made the
- * growing value will be seen.
- */
- /* Get mem for the objs. */
- if (!(objp = kmem_getpages(cachep, flags)))
- goto failed;
- /* Get slab management. */
- if (!(slabp = kmem_cache_slabmgmt(cachep, objp, offset, local_flags)))
- goto opps1;
- /* Nasty!!!!!! I hope this is OK. */
- i = 1 << cachep->gfporder;
- page = virt_to_page(objp);
- do {
- SET_PAGE_CACHE(page, cachep);
- SET_PAGE_SLAB(page, slabp);
- PageSetSlab(page);
- page++;
- } while (--i);
- kmem_cache_init_objs(cachep, slabp, ctor_flags);
- spin_lock_irqsave(&cachep->spinlock, save_flags);
- cachep->growing--;
- /* Make slab active. */
- list_add_tail(&slabp->list, &cachep->slabs_free);
- STATS_INC_GROWN(cachep);
- cachep->failures = 0;
- spin_unlock_irqrestore(&cachep->spinlock, save_flags);
- return 1;
- opps1:
- kmem_freepages(cachep, objp);
- failed:
- spin_lock_irqsave(&cachep->spinlock, save_flags);
- cachep->growing--;
- spin_unlock_irqrestore(&cachep->spinlock, save_flags);
- return 0;
- }
- /*
- * Perform extra freeing checks:
- * - detect double free
- * - detect bad pointers.
- * Called with the cache-lock held.
- */
- #if DEBUG
- static int kmem_extra_free_checks (kmem_cache_t * cachep,
- slab_t *slabp, void * objp)
- {
- int i;
- unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;
- if (objnr >= cachep->num)
- BUG();
- if (objp != slabp->s_mem + objnr*cachep->objsize)
- BUG();
- /* Check slab's freelist to see if this obj is there. */
- for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
- if (i == objnr)
- BUG();
- }
- return 0;
- }
- #endif
- static inline void kmem_cache_alloc_head(kmem_cache_t *cachep, int flags)
- {
- if (flags & SLAB_DMA) {
- if (!(cachep->gfpflags & GFP_DMA))
- BUG();
- } else {
- if (cachep->gfpflags & GFP_DMA)
- BUG();
- }
- }
- static inline void * kmem_cache_alloc_one_tail (kmem_cache_t *cachep,
- slab_t *slabp)
- {
- void *objp;
- STATS_INC_ALLOCED(cachep);
- STATS_INC_ACTIVE(cachep);
- STATS_SET_HIGH(cachep);
- /* get obj pointer */
- slabp->inuse++;
- objp = slabp->s_mem + slabp->free*cachep->objsize;
- slabp->free=slab_bufctl(slabp)[slabp->free];
- if (unlikely(slabp->free == BUFCTL_END)) {
- list_del(&slabp->list);
- list_add(&slabp->list, &cachep->slabs_full);
- }
- #if DEBUG
- if (cachep->flags & SLAB_POISON)
- if (kmem_check_poison_obj(cachep, objp))
- BUG();
- if (cachep->flags & SLAB_RED_ZONE) {
- /* Set alloc red-zone, and check old one. */
- if (xchg((unsigned long *)objp, RED_MAGIC2) !=
- RED_MAGIC1)
- BUG();
- if (xchg((unsigned long *)(objp+cachep->objsize -
- BYTES_PER_WORD), RED_MAGIC2) != RED_MAGIC1)
- BUG();
- objp += BYTES_PER_WORD;
- }
- #endif
- return objp;
- }
- /*
- * Returns a ptr to an obj in the given cache.
- * caller must guarantee synchronization
- * #define for the goto optimization 8-)
- */
- #define kmem_cache_alloc_one(cachep)
- ({
- struct list_head * slabs_partial, * entry;
- slab_t *slabp;
-
- slabs_partial = &(cachep)->slabs_partial;
- entry = slabs_partial->next;
- if (unlikely(entry == slabs_partial)) {
- struct list_head * slabs_free;
- slabs_free = &(cachep)->slabs_free;
- entry = slabs_free->next;
- if (unlikely(entry == slabs_free))
- goto alloc_new_slab;
- list_del(entry);
- list_add(entry, slabs_partial);
- }
-
- slabp = list_entry(entry, slab_t, list);
- kmem_cache_alloc_one_tail(cachep, slabp);
- })
- #ifdef CONFIG_SMP
- void* kmem_cache_alloc_batch(kmem_cache_t* cachep, cpucache_t* cc, int flags)
- {
- int batchcount = cachep->batchcount;
- spin_lock(&cachep->spinlock);
- while (batchcount--) {
- struct list_head * slabs_partial, * entry;
- slab_t *slabp;
- /* Get slab alloc is to come from. */
- slabs_partial = &(cachep)->slabs_partial;
- entry = slabs_partial->next;
- if (unlikely(entry == slabs_partial)) {
- struct list_head * slabs_free;
- slabs_free = &(cachep)->slabs_free;
- entry = slabs_free->next;
- if (unlikely(entry == slabs_free))
- break;
- list_del(entry);
- list_add(entry, slabs_partial);
- }
- slabp = list_entry(entry, slab_t, list);
- cc_entry(cc)[cc->avail++] =
- kmem_cache_alloc_one_tail(cachep, slabp);
- }
- spin_unlock(&cachep->spinlock);
- if (cc->avail)
- return cc_entry(cc)[--cc->avail];
- return NULL;
- }
- #endif
- static inline void * __kmem_cache_alloc (kmem_cache_t *cachep, int flags)
- {
- unsigned long save_flags;
- void* objp;
- kmem_cache_alloc_head(cachep, flags);
- try_again:
- local_irq_save(save_flags);
- #ifdef CONFIG_SMP
- {
- cpucache_t *cc = cc_data(cachep);
- if (cc) {
- if (cc->avail) {
- STATS_INC_ALLOCHIT(cachep);
- objp = cc_entry(cc)[--cc->avail];
- } else {
- STATS_INC_ALLOCMISS(cachep);
- objp = kmem_cache_alloc_batch(cachep,cc,flags);
- if (!objp)
- goto alloc_new_slab_nolock;
- }
- } else {
- spin_lock(&cachep->spinlock);
- objp = kmem_cache_alloc_one(cachep);
- spin_unlock(&cachep->spinlock);
- }
- }
- #else
- objp = kmem_cache_alloc_one(cachep);
- #endif
- local_irq_restore(save_flags);
- return objp;
- alloc_new_slab:
- #ifdef CONFIG_SMP
- spin_unlock(&cachep->spinlock);
- alloc_new_slab_nolock:
- #endif
- local_irq_restore(save_flags);
- if (kmem_cache_grow(cachep, flags))
- /* Someone may have stolen our objs. Doesn't matter, we'll
- * just come back here again.
- */
- goto try_again;
- return NULL;
- }
- /*
- * Release an obj back to its cache. If the obj has a constructed
- * state, it should be in this state _before_ it is released.
- * - caller is responsible for the synchronization
- */
- #if DEBUG
- # define CHECK_NR(pg)
- do {
- if (!VALID_PAGE(pg)) {
- printk(KERN_ERR "kfree: out of range ptr %lxh.n",
- (unsigned long)objp);
- BUG();
- }
- } while (0)
- # define CHECK_PAGE(page)
- do {
- CHECK_NR(page);
- if (!PageSlab(page)) {
- printk(KERN_ERR "kfree: bad ptr %lxh.n",
- (unsigned long)objp);
- BUG();
- }
- } while (0)
- #else
- # define CHECK_PAGE(pg) do { } while (0)
- #endif
- static inline void kmem_cache_free_one(kmem_cache_t *cachep, void *objp)
- {
- slab_t* slabp;
- CHECK_PAGE(virt_to_page(objp));
- /* reduces memory footprint
- *
- if (OPTIMIZE(cachep))
- slabp = (void*)((unsigned long)objp&(~(PAGE_SIZE-1)));
- else
- */
- slabp = GET_PAGE_SLAB(virt_to_page(objp));
- #if DEBUG
- if (cachep->flags & SLAB_DEBUG_INITIAL)
- /* Need to call the slab's constructor so the
- * caller can perform a verify of its state (debugging).
- * Called without the cache-lock held.
- */
- cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
- if (cachep->flags & SLAB_RED_ZONE) {
- objp -= BYTES_PER_WORD;
- if (xchg((unsigned long *)objp, RED_MAGIC1) != RED_MAGIC2)
- /* Either write before start, or a double free. */
- BUG();
- if (xchg((unsigned long *)(objp+cachep->objsize -
- BYTES_PER_WORD), RED_MAGIC1) != RED_MAGIC2)
- /* Either write past end, or a double free. */
- BUG();
- }
- if (cachep->flags & SLAB_POISON)
- kmem_poison_obj(cachep, objp);
- if (kmem_extra_free_checks(cachep, slabp, objp))
- return;
- #endif
- {
- unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;
- slab_bufctl(slabp)[objnr] = slabp->free;
- slabp->free = objnr;
- }
- STATS_DEC_ACTIVE(cachep);
-
- /* fixup slab chains */
- {
- int inuse = slabp->inuse;
- if (unlikely(!--slabp->inuse)) {
- /* Was partial or full, now empty. */
- list_del(&slabp->list);
- list_add(&slabp->list, &cachep->slabs_free);
- } else if (unlikely(inuse == cachep->num)) {
- /* Was full. */
- list_del(&slabp->list);
- list_add(&slabp->list, &cachep->slabs_partial);
- }
- }
- }
- #ifdef CONFIG_SMP
- static inline void __free_block (kmem_cache_t* cachep,
- void** objpp, int len)
- {
- for ( ; len > 0; len--, objpp++)
- kmem_cache_free_one(cachep, *objpp);
- }
- static void free_block (kmem_cache_t* cachep, void** objpp, int len)
- {
- spin_lock(&cachep->spinlock);
- __free_block(cachep, objpp, len);
- spin_unlock(&cachep->spinlock);
- }
- #endif
- /*
- * __kmem_cache_free
- * called with disabled ints
- */
- static inline void __kmem_cache_free (kmem_cache_t *cachep, void* objp)
- {
- #ifdef CONFIG_SMP
- cpucache_t *cc = cc_data(cachep);
- CHECK_PAGE(virt_to_page(objp));
- if (cc) {
- int batchcount;
- if (cc->avail < cc->limit) {
- STATS_INC_FREEHIT(cachep);
- cc_entry(cc)[cc->avail++] = objp;
- return;
- }
- STATS_INC_FREEMISS(cachep);
- batchcount = cachep->batchcount;
- cc->avail -= batchcount;
- free_block(cachep,
- &cc_entry(cc)[cc->avail],batchcount);
- cc_entry(cc)[cc->avail++] = objp;
- return;
- } else {
- free_block(cachep, &objp, 1);
- }
- #else
- kmem_cache_free_one(cachep, objp);
- #endif
- }
- /**
- * kmem_cache_alloc - Allocate an object
- * @cachep: The cache to allocate from.
- * @flags: See kmalloc().
- *
- * Allocate an object from this cache. The flags are only relevant
- * if the cache has no available objects.
- */
- void * kmem_cache_alloc (kmem_cache_t *cachep, int flags)
- {
- return __kmem_cache_alloc(cachep, flags);
- }
- /**
- * kmalloc - allocate memory
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate.
- *
- * kmalloc is the normal method of allocating memory
- * in the kernel.
- *
- * The @flags argument may be one of:
- *
- * %GFP_USER - Allocate memory on behalf of user. May sleep.
- *
- * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
- *
- * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
- *
- * Additionally, the %GFP_DMA flag may be set to indicate the memory
- * must be suitable for DMA. This can mean different things on different
- * platforms. For example, on i386, it means that the memory must come
- * from the first 16MB.
- */
- void * kmalloc (size_t size, int flags)
- {
- cache_sizes_t *csizep = cache_sizes;
- for (; csizep->cs_size; csizep++) {
- if (size > csizep->cs_size)
- continue;
- return __kmem_cache_alloc(flags & GFP_DMA ?
- csizep->cs_dmacachep : csizep->cs_cachep, flags);
- }
- return NULL;
- }
- /**
- * kmem_cache_free - Deallocate an object
- * @cachep: The cache the allocation was from.
- * @objp: The previously allocated object.
- *
- * Free an object which was previously allocated from this
- * cache.
- */
- void kmem_cache_free (kmem_cache_t *cachep, void *objp)
- {
- unsigned long flags;
- #if DEBUG
- CHECK_PAGE(virt_to_page(objp));
- if (cachep != GET_PAGE_CACHE(virt_to_page(objp)))
- BUG();
- #endif
- local_irq_save(flags);
- __kmem_cache_free(cachep, objp);
- local_irq_restore(flags);
- }
- /**
- * kfree - free previously allocated memory
- * @objp: pointer returned by kmalloc.
- *
- * Don't free memory not originally allocated by kmalloc()
- * or you will run into trouble.
- */
- void kfree (const void *objp)
- {
- kmem_cache_t *c;
- unsigned long flags;
- if (!objp)
- return;
- local_irq_save(flags);
- CHECK_PAGE(virt_to_page(objp));
- c = GET_PAGE_CACHE(virt_to_page(objp));
- __kmem_cache_free(c, (void*)objp);
- local_irq_restore(flags);
- }
- kmem_cache_t * kmem_find_general_cachep (size_t size, int gfpflags)
- {
- cache_sizes_t *csizep = cache_sizes;
- /* This function could be moved to the header file, and
- * made inline so consumers can quickly determine what
- * cache pointer they require.
- */
- for ( ; csizep->cs_size; csizep++) {
- if (size > csizep->cs_size)
- continue;
- break;
- }
- return (gfpflags & GFP_DMA) ? csizep->cs_dmacachep : csizep->cs_cachep;
- }
- #ifdef CONFIG_SMP
- /* called with cache_chain_sem acquired. */
- static int kmem_tune_cpucache (kmem_cache_t* cachep, int limit, int batchcount)
- {
- ccupdate_struct_t new;
- int i;
- /*
- * These are admin-provided, so we are more graceful.
- */
- if (limit < 0)
- return -EINVAL;
- if (batchcount < 0)
- return -EINVAL;
- if (batchcount > limit)
- return -EINVAL;
- if (limit != 0 && !batchcount)
- return -EINVAL;
- memset(&new.new,0,sizeof(new.new));
- if (limit) {
- for (i = 0; i< smp_num_cpus; i++) {
- cpucache_t* ccnew;
- ccnew = kmalloc(sizeof(void*)*limit+
- sizeof(cpucache_t), GFP_KERNEL);
- if (!ccnew)
- goto oom;
- ccnew->limit = limit;
- ccnew->avail = 0;
- new.new[cpu_logical_map(i)] = ccnew;
- }
- }
- new.cachep = cachep;
- spin_lock_irq(&cachep->spinlock);
- cachep->batchcount = batchcount;
- spin_unlock_irq(&cachep->spinlock);
- smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
- for (i = 0; i < smp_num_cpus; i++) {
- cpucache_t* ccold = new.new[cpu_logical_map(i)];
- if (!ccold)
- continue;
- local_irq_disable();
- free_block(cachep, cc_entry(ccold), ccold->avail);
- local_irq_enable();
- kfree(ccold);
- }
- return 0;
- oom:
- for (i--; i >= 0; i--)
- kfree(new.new[cpu_logical_map(i)]);
- return -ENOMEM;
- }
- static void enable_cpucache (kmem_cache_t *cachep)
- {
- int err;
- int limit;
- /* FIXME: optimize */
- if (cachep->objsize > PAGE_SIZE)
- return;
- if (cachep->objsize > 1024)
- limit = 60;
- else if (cachep->objsize > 256)
- limit = 124;
- else
- limit = 252;
- err = kmem_tune_cpucache(cachep, limit, limit/2);
- if (err)
- printk(KERN_ERR "enable_cpucache failed for %s, error %d.n",
- cachep->name, -err);
- }
- static void enable_all_cpucaches (void)
- {
- struct list_head* p;
- down(&cache_chain_sem);
- p = &cache_cache.next;
- do {
- kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);
- enable_cpucache(cachep);
- p = cachep->next.next;
- } while (p != &cache_cache.next);
- up(&cache_chain_sem);
- }
- #endif
- /**
- * kmem_cache_reap - Reclaim memory from caches.
- * @gfp_mask: the type of memory required.
- *
- * Called from do_try_to_free_pages() and __alloc_pages()
- */
- int kmem_cache_reap (int gfp_mask)
- {
- slab_t *slabp;
- kmem_cache_t *searchp;
- kmem_cache_t *best_cachep;
- unsigned int best_pages;
- unsigned int best_len;
- unsigned int scan;
- int ret = 0;
- if (gfp_mask & __GFP_WAIT)
- down(&cache_chain_sem);
- else
- if (down_trylock(&cache_chain_sem))
- return 0;
- scan = REAP_SCANLEN;
- best_len = 0;
- best_pages = 0;
- best_cachep = NULL;
- searchp = clock_searchp;
- do {
- unsigned int pages;
- struct list_head* p;
- unsigned int full_free;
- /* It's safe to test this without holding the cache-lock. */
- if (searchp->flags & SLAB_NO_REAP)
- goto next;
- spin_lock_irq(&searchp->spinlock);
- if (searchp->growing)
- goto next_unlock;
- if (searchp->dflags & DFLGS_GROWN) {
- searchp->dflags &= ~DFLGS_GROWN;
- goto next_unlock;
- }
- #ifdef CONFIG_SMP
- {
- cpucache_t *cc = cc_data(searchp);
- if (cc && cc->avail) {
- __free_block(searchp, cc_entry(cc), cc->avail);
- cc->avail = 0;
- }
- }
- #endif
- full_free = 0;
- p = searchp->slabs_free.next;
- while (p != &searchp->slabs_free) {
- slabp = list_entry(p, slab_t, list);
- #if DEBUG
- if (slabp->inuse)
- BUG();
- #endif
- full_free++;
- p = p->next;
- }
- /*
- * Try to avoid slabs with constructors and/or
- * more than one page per slab (as it can be difficult
- * to get high orders from gfp()).
- */
- pages = full_free * (1<<searchp->gfporder);
- if (searchp->ctor)
- pages = (pages*4+1)/5;
- if (searchp->gfporder)
- pages = (pages*4+1)/5;
- if (pages > best_pages) {
- best_cachep = searchp;
- best_len = full_free;
- best_pages = pages;
- if (pages >= REAP_PERFECT) {
- clock_searchp = list_entry(searchp->next.next,
- kmem_cache_t,next);
- goto perfect;
- }
- }
- next_unlock:
- spin_unlock_irq(&searchp->spinlock);
- next:
- searchp = list_entry(searchp->next.next,kmem_cache_t,next);
- } while (--scan && searchp != clock_searchp);
- clock_searchp = searchp;
- if (!best_cachep)
- /* couldn't find anything to reap */
- goto out;
- spin_lock_irq(&best_cachep->spinlock);
- perfect:
- /* free only 50% of the free slabs */
- best_len = (best_len + 1)/2;
- for (scan = 0; scan < best_len; scan++) {
- struct list_head *p;
- if (best_cachep->growing)
- break;
- p = best_cachep->slabs_free.prev;
- if (p == &best_cachep->slabs_free)
- break;
- slabp = list_entry(p,slab_t,list);
- #if DEBUG
- if (slabp->inuse)
- BUG();
- #endif
- list_del(&slabp->list);
- STATS_INC_REAPED(best_cachep);
- /* Safe to drop the lock. The slab is no longer linked to the
- * cache.
- */
- spin_unlock_irq(&best_cachep->spinlock);
- kmem_slab_destroy(best_cachep, slabp);
- spin_lock_irq(&best_cachep->spinlock);
- }
- spin_unlock_irq(&best_cachep->spinlock);
- ret = scan * (1 << best_cachep->gfporder);
- out:
- up(&cache_chain_sem);
- return ret;
- }
- #ifdef CONFIG_PROC_FS
- /* /proc/slabinfo
- * cache-name num-active-objs total-objs
- * obj-size num-active-slabs total-slabs
- * num-pages-per-slab
- */
- #define FIXUP(t)
- do {
- if (len <= off) {
- off -= len;
- len = 0;
- } else {
- if (len-off > count)
- goto t;
- }
- } while (0)
- static int proc_getdata (char*page, char**start, off_t off, int count)
- {
- struct list_head *p;
- int len = 0;
- /* Output format version, so at least we can change it without _too_
- * many complaints.
- */
- len += sprintf(page+len, "slabinfo - version: 1.1"
- #if STATS
- " (statistics)"
- #endif
- #ifdef CONFIG_SMP
- " (SMP)"
- #endif
- "n");
- FIXUP(got_data);
- down(&cache_chain_sem);
- p = &cache_cache.next;
- do {
- kmem_cache_t *cachep;
- struct list_head *q;
- slab_t *slabp;
- unsigned long active_objs;
- unsigned long num_objs;
- unsigned long active_slabs = 0;
- unsigned long num_slabs;
- cachep = list_entry(p, kmem_cache_t, next);
- spin_lock_irq(&cachep->spinlock);
- active_objs = 0;
- num_slabs = 0;
- list_for_each(q,&cachep->slabs_full) {
- slabp = list_entry(q, slab_t, list);
- if (slabp->inuse != cachep->num)
- BUG();
- active_objs += cachep->num;
- active_slabs++;
- }
- list_for_each(q,&cachep->slabs_partial) {
- slabp = list_entry(q, slab_t, list);
- if (slabp->inuse == cachep->num || !slabp->inuse)
- BUG();
- active_objs += slabp->inuse;
- active_slabs++;
- }
- list_for_each(q,&cachep->slabs_free) {
- slabp = list_entry(q, slab_t, list);
- if (slabp->inuse)
- BUG();
- num_slabs++;
- }
- num_slabs+=active_slabs;
- num_objs = num_slabs*cachep->num;
- len += sprintf(page+len, "%-17s %6lu %6lu %6u %4lu %4lu %4u",
- cachep->name, active_objs, num_objs, cachep->objsize,
- active_slabs, num_slabs, (1<<cachep->gfporder));
- #if STATS
- {
- unsigned long errors = cachep->errors;
- unsigned long high = cachep->high_mark;
- unsigned long grown = cachep->grown;
- unsigned long reaped = cachep->reaped;
- unsigned long allocs = cachep->num_allocations;
- len += sprintf(page+len, " : %6lu %7lu %5lu %4lu %4lu",
- high, allocs, grown, reaped, errors);
- }
- #endif
- #ifdef CONFIG_SMP
- {
- cpucache_t *cc = cc_data(cachep);
- unsigned int batchcount = cachep->batchcount;
- unsigned int limit;
- if (cc)
- limit = cc->limit;
- else
- limit = 0;
- len += sprintf(page+len, " : %4u %4u",
- limit, batchcount);
- }
- #endif
- #if STATS && defined(CONFIG_SMP)
- {
- unsigned long allochit = atomic_read(&cachep->allochit);
- unsigned long allocmiss = atomic_read(&cachep->allocmiss);
- unsigned long freehit = atomic_read(&cachep->freehit);
- unsigned long freemiss = atomic_read(&cachep->freemiss);
- len += sprintf(page+len, " : %6lu %6lu %6lu %6lu",
- allochit, allocmiss, freehit, freemiss);
- }
- #endif
- len += sprintf(page+len,"n");
- spin_unlock_irq(&cachep->spinlock);
- FIXUP(got_data_up);
- p = cachep->next.next;
- } while (p != &cache_cache.next);
- got_data_up:
- up(&cache_chain_sem);
- got_data:
- *start = page+off;
- return len;
- }
- /**
- * slabinfo_read_proc - generates /proc/slabinfo
- * @page: scratch area, one page long
- * @start: pointer to the pointer to the output buffer
- * @off: offset within /proc/slabinfo the caller is interested in
- * @count: requested len in bytes
- * @eof: eof marker
- * @data: unused
- *
- * The contents of the buffer are
- * cache-name
- * num-active-objs
- * total-objs
- * object size
- * num-active-slabs
- * total-slabs
- * num-pages-per-slab
- * + further values on SMP and with statistics enabled
- */
- int slabinfo_read_proc (char *page, char **start, off_t off,
- int count, int *eof, void *data)
- {
- int len = proc_getdata(page, start, off, count);
- len -= (*start-page);
- if (len <= count)
- *eof = 1;
- if (len>count) len = count;
- if (len<0) len = 0;
- return len;
- }
- #define MAX_SLABINFO_WRITE 128
- /**
- * slabinfo_write_proc - SMP tuning for the slab allocator
- * @file: unused
- * @buffer: user buffer
- * @count: data len
- * @data: unused
- */
- int slabinfo_write_proc (struct file *file, const char *buffer,
- unsigned long count, void *data)
- {
- #ifdef CONFIG_SMP
- char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
- int limit, batchcount, res;
- struct list_head *p;
-
- if (count > MAX_SLABINFO_WRITE)
- return -EINVAL;
- if (copy_from_user(&kbuf, buffer, count))
- return -EFAULT;
- kbuf[MAX_SLABINFO_WRITE] = ' ';
- tmp = strchr(kbuf, ' ');
- if (!tmp)
- return -EINVAL;
- *tmp = ' ';
- tmp++;
- limit = simple_strtol(tmp, &tmp, 10);
- while (*tmp == ' ')
- tmp++;
- batchcount = simple_strtol(tmp, &tmp, 10);
- /* Find the cache in the chain of caches. */
- down(&cache_chain_sem);
- res = -EINVAL;
- list_for_each(p,&cache_chain) {
- kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
- if (!strcmp(cachep->name, kbuf)) {
- res = kmem_tune_cpucache(cachep, limit, batchcount);
- break;
- }
- }
- up(&cache_chain_sem);
- if (res >= 0)
- res = count;
- return res;
- #else
- return -EINVAL;
- #endif
- }
- #endif