random.c
上传用户:lgb322
上传日期:2013-02-24
资源大小:30529k
文件大小:70k
- /*
- * random.c -- A strong random number generator
- *
- * Version 1.89, last modified 19-Sep-99
- *
- * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
- * rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, and the entire permission notice in its entirety,
- * including the disclaimer of warranties.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. The name of the author may not be used to endorse or promote
- * products derived from this software without specific prior
- * written permission.
- *
- * ALTERNATIVELY, this product may be distributed under the terms of
- * the GNU General Public License, in which case the provisions of the GPL are
- * required INSTEAD OF the above restrictions. (This clause is
- * necessary due to a potential bad interaction between the GPL and
- * the restrictions contained in a BSD-style copyright.)
- *
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
- * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
- * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
- * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
- * DAMAGE.
- */
- /*
- * (now, with legal B.S. out of the way.....)
- *
- * This routine gathers environmental noise from device drivers, etc.,
- * and returns good random numbers, suitable for cryptographic use.
- * Besides the obvious cryptographic uses, these numbers are also good
- * for seeding TCP sequence numbers, and other places where it is
- * desirable to have numbers which are not only random, but hard to
- * predict by an attacker.
- *
- * Theory of operation
- * ===================
- *
- * Computers are very predictable devices. Hence it is extremely hard
- * to produce truly random numbers on a computer --- as opposed to
- * pseudo-random numbers, which can easily generated by using a
- * algorithm. Unfortunately, it is very easy for attackers to guess
- * the sequence of pseudo-random number generators, and for some
- * applications this is not acceptable. So instead, we must try to
- * gather "environmental noise" from the computer's environment, which
- * must be hard for outside attackers to observe, and use that to
- * generate random numbers. In a Unix environment, this is best done
- * from inside the kernel.
- *
- * Sources of randomness from the environment include inter-keyboard
- * timings, inter-interrupt timings from some interrupts, and other
- * events which are both (a) non-deterministic and (b) hard for an
- * outside observer to measure. Randomness from these sources are
- * added to an "entropy pool", which is mixed using a CRC-like function.
- * This is not cryptographically strong, but it is adequate assuming
- * the randomness is not chosen maliciously, and it is fast enough that
- * the overhead of doing it on every interrupt is very reasonable.
- * As random bytes are mixed into the entropy pool, the routines keep
- * an *estimate* of how many bits of randomness have been stored into
- * the random number generator's internal state.
- *
- * When random bytes are desired, they are obtained by taking the SHA
- * hash of the contents of the "entropy pool". The SHA hash avoids
- * exposing the internal state of the entropy pool. It is believed to
- * be computationally infeasible to derive any useful information
- * about the input of SHA from its output. Even if it is possible to
- * analyze SHA in some clever way, as long as the amount of data
- * returned from the generator is less than the inherent entropy in
- * the pool, the output data is totally unpredictable. For this
- * reason, the routine decreases its internal estimate of how many
- * bits of "true randomness" are contained in the entropy pool as it
- * outputs random numbers.
- *
- * If this estimate goes to zero, the routine can still generate
- * random numbers; however, an attacker may (at least in theory) be
- * able to infer the future output of the generator from prior
- * outputs. This requires successful cryptanalysis of SHA, which is
- * not believed to be feasible, but there is a remote possibility.
- * Nonetheless, these numbers should be useful for the vast majority
- * of purposes.
- *
- * Exported interfaces ---- output
- * ===============================
- *
- * There are three exported interfaces; the first is one designed to
- * be used from within the kernel:
- *
- * void get_random_bytes(void *buf, int nbytes);
- *
- * This interface will return the requested number of random bytes,
- * and place it in the requested buffer.
- *
- * The two other interfaces are two character devices /dev/random and
- * /dev/urandom. /dev/random is suitable for use when very high
- * quality randomness is desired (for example, for key generation or
- * one-time pads), as it will only return a maximum of the number of
- * bits of randomness (as estimated by the random number generator)
- * contained in the entropy pool.
- *
- * The /dev/urandom device does not have this limit, and will return
- * as many bytes as are requested. As more and more random bytes are
- * requested without giving time for the entropy pool to recharge,
- * this will result in random numbers that are merely cryptographically
- * strong. For many applications, however, this is acceptable.
- *
- * Exported interfaces ---- input
- * ==============================
- *
- * The current exported interfaces for gathering environmental noise
- * from the devices are:
- *
- * void add_keyboard_randomness(unsigned char scancode);
- * void add_mouse_randomness(__u32 mouse_data);
- * void add_interrupt_randomness(int irq);
- * void add_blkdev_randomness(int irq);
- *
- * add_keyboard_randomness() uses the inter-keypress timing, as well as the
- * scancode as random inputs into the "entropy pool".
- *
- * add_mouse_randomness() uses the mouse interrupt timing, as well as
- * the reported position of the mouse from the hardware.
- *
- * add_interrupt_randomness() uses the inter-interrupt timing as random
- * inputs to the entropy pool. Note that not all interrupts are good
- * sources of randomness! For example, the timer interrupts is not a
- * good choice, because the periodicity of the interrupts is too
- * regular, and hence predictable to an attacker. Disk interrupts are
- * a better measure, since the timing of the disk interrupts are more
- * unpredictable.
- *
- * add_blkdev_randomness() times the finishing time of block requests.
- *
- * All of these routines try to estimate how many bits of randomness a
- * particular randomness source. They do this by keeping track of the
- * first and second order deltas of the event timings.
- *
- * Ensuring unpredictability at system startup
- * ============================================
- *
- * When any operating system starts up, it will go through a sequence
- * of actions that are fairly predictable by an adversary, especially
- * if the start-up does not involve interaction with a human operator.
- * This reduces the actual number of bits of unpredictability in the
- * entropy pool below the value in entropy_count. In order to
- * counteract this effect, it helps to carry information in the
- * entropy pool across shut-downs and start-ups. To do this, put the
- * following lines an appropriate script which is run during the boot
- * sequence:
- *
- * echo "Initializing random number generator..."
- * random_seed=/var/run/random-seed
- * # Carry a random seed from start-up to start-up
- * # Load and then save the whole entropy pool
- * if [ -f $random_seed ]; then
- * cat $random_seed >/dev/urandom
- * else
- * touch $random_seed
- * fi
- * chmod 600 $random_seed
- * poolfile=/proc/sys/kernel/random/poolsize
- * [ -r $poolfile ] && bytes=`cat $poolfile` || bytes=512
- * dd if=/dev/urandom of=$random_seed count=1 bs=bytes
- *
- * and the following lines in an appropriate script which is run as
- * the system is shutdown:
- *
- * # Carry a random seed from shut-down to start-up
- * # Save the whole entropy pool
- * echo "Saving random seed..."
- * random_seed=/var/run/random-seed
- * touch $random_seed
- * chmod 600 $random_seed
- * poolfile=/proc/sys/kernel/random/poolsize
- * [ -r $poolfile ] && bytes=`cat $poolfile` || bytes=512
- * dd if=/dev/urandom of=$random_seed count=1 bs=bytes
- *
- * For example, on most modern systems using the System V init
- * scripts, such code fragments would be found in
- * /etc/rc.d/init.d/random. On older Linux systems, the correct script
- * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
- *
- * Effectively, these commands cause the contents of the entropy pool
- * to be saved at shut-down time and reloaded into the entropy pool at
- * start-up. (The 'dd' in the addition to the bootup script is to
- * make sure that /etc/random-seed is different for every start-up,
- * even if the system crashes without executing rc.0.) Even with
- * complete knowledge of the start-up activities, predicting the state
- * of the entropy pool requires knowledge of the previous history of
- * the system.
- *
- * Configuring the /dev/random driver under Linux
- * ==============================================
- *
- * The /dev/random driver under Linux uses minor numbers 8 and 9 of
- * the /dev/mem major number (#1). So if your system does not have
- * /dev/random and /dev/urandom created already, they can be created
- * by using the commands:
- *
- * mknod /dev/random c 1 8
- * mknod /dev/urandom c 1 9
- *
- * Acknowledgements:
- * =================
- *
- * Ideas for constructing this random number generator were derived
- * from Pretty Good Privacy's random number generator, and from private
- * discussions with Phil Karn. Colin Plumb provided a faster random
- * number generator, which speed up the mixing function of the entropy
- * pool, taken from PGPfone. Dale Worley has also contributed many
- * useful ideas and suggestions to improve this driver.
- *
- * Any flaws in the design are solely my responsibility, and should
- * not be attributed to the Phil, Colin, or any of authors of PGP.
- *
- * The code for SHA transform was taken from Peter Gutmann's
- * implementation, which has been placed in the public domain.
- * The code for MD5 transform was taken from Colin Plumb's
- * implementation, which has been placed in the public domain.
- * The MD5 cryptographic checksum was devised by Ronald Rivest, and is
- * documented in RFC 1321, "The MD5 Message Digest Algorithm".
- *
- * Further background information on this topic may be obtained from
- * RFC 1750, "Randomness Recommendations for Security", by Donald
- * Eastlake, Steve Crocker, and Jeff Schiller.
- */
- #include <linux/utsname.h>
- #include <linux/config.h>
- #include <linux/module.h>
- #include <linux/kernel.h>
- #include <linux/major.h>
- #include <linux/string.h>
- #include <linux/fcntl.h>
- #include <linux/slab.h>
- #include <linux/random.h>
- #include <linux/poll.h>
- #include <linux/init.h>
- #include <asm/processor.h>
- #include <asm/uaccess.h>
- #include <asm/irq.h>
- #include <asm/io.h>
- /*
- * Configuration information
- */
- #define DEFAULT_POOL_SIZE 512
- #define SECONDARY_POOL_SIZE 128
- #define BATCH_ENTROPY_SIZE 256
- #define USE_SHA
- /*
- * The minimum number of bits of entropy before we wake up a read on
- * /dev/random. Should always be at least 8, or at least 1 byte.
- */
- static int random_read_wakeup_thresh = 8;
- /*
- * If the entropy count falls under this number of bits, then we
- * should wake up processes which are selecting or polling on write
- * access to /dev/random.
- */
- static int random_write_wakeup_thresh = 128;
- /*
- * A pool of size .poolwords is stirred with a primitive polynomial
- * of degree .poolwords over GF(2). The taps for various sizes are
- * defined below. They are chosen to be evenly spaced (minimum RMS
- * distance from evenly spaced; the numbers in the comments are a
- * scaled squared error sum) except for the last tap, which is 1 to
- * get the twisting happening as fast as possible.
- */
- static struct poolinfo {
- int poolwords;
- int tap1, tap2, tap3, tap4, tap5;
- } poolinfo_table[] = {
- /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
- { 2048, 1638, 1231, 819, 411, 1 },
- /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
- { 1024, 817, 615, 412, 204, 1 },
- #if 0 /* Alternate polynomial */
- /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
- { 1024, 819, 616, 410, 207, 2 },
- #endif
- /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
- { 512, 411, 308, 208, 104, 1 },
- #if 0 /* Alternates */
- /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
- { 512, 409, 307, 206, 102, 2 },
- /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
- { 512, 409, 309, 205, 103, 2 },
- #endif
- /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
- { 256, 205, 155, 101, 52, 1 },
- /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
- { 128, 103, 76, 51, 25, 1 },
- #if 0 /* Alternate polynomial */
- /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
- { 128, 103, 78, 51, 27, 2 },
- #endif
- /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
- { 64, 52, 39, 26, 14, 1 },
- /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
- { 32, 26, 20, 14, 7, 1 },
- { 0, 0, 0, 0, 0, 0 },
- };
- #define POOLBITS poolwords*32
- #define POOLBYTES poolwords*4
- /*
- * For the purposes of better mixing, we use the CRC-32 polynomial as
- * well to make a twisted Generalized Feedback Shift Reigster
- *
- * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
- * Transactions on Modeling and Computer Simulation 2(3):179-194.
- * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
- * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
- *
- * Thanks to Colin Plumb for suggesting this.
- *
- * We have not analyzed the resultant polynomial to prove it primitive;
- * in fact it almost certainly isn't. Nonetheless, the irreducible factors
- * of a random large-degree polynomial over GF(2) are more than large enough
- * that periodicity is not a concern.
- *
- * The input hash is much less sensitive than the output hash. All
- * that we want of it is that it be a good non-cryptographic hash;
- * i.e. it not produce collisions when fed "random" data of the sort
- * we expect to see. As long as the pool state differs for different
- * inputs, we have preserved the input entropy and done a good job.
- * The fact that an intelligent attacker can construct inputs that
- * will produce controlled alterations to the pool's state is not
- * important because we don't consider such inputs to contribute any
- * randomness. The only property we need with respect to them is that
- * the attacker can't increase his/her knowledge of the pool's state.
- * Since all additions are reversible (knowing the final state and the
- * input, you can reconstruct the initial state), if an attacker has
- * any uncertainty about the initial state, he/she can only shuffle
- * that uncertainty about, but never cause any collisions (which would
- * decrease the uncertainty).
- *
- * The chosen system lets the state of the pool be (essentially) the input
- * modulo the generator polymnomial. Now, for random primitive polynomials,
- * this is a universal class of hash functions, meaning that the chance
- * of a collision is limited by the attacker's knowledge of the generator
- * polynomail, so if it is chosen at random, an attacker can never force
- * a collision. Here, we use a fixed polynomial, but we *can* assume that
- * ###--> it is unknown to the processes generating the input entropy. <-###
- * Because of this important property, this is a good, collision-resistant
- * hash; hash collisions will occur no more often than chance.
- */
- /*
- * Linux 2.2 compatibility
- */
- #ifndef DECLARE_WAITQUEUE
- #define DECLARE_WAITQUEUE(WAIT, PTR) struct wait_queue WAIT = { PTR, NULL }
- #endif
- #ifndef DECLARE_WAIT_QUEUE_HEAD
- #define DECLARE_WAIT_QUEUE_HEAD(WAIT) struct wait_queue *WAIT
- #endif
- /*
- * Static global variables
- */
- static struct entropy_store *random_state; /* The default global store */
- static struct entropy_store *sec_random_state; /* secondary store */
- static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
- static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
- /*
- * Forward procedure declarations
- */
- #ifdef CONFIG_SYSCTL
- static void sysctl_init_random(struct entropy_store *random_state);
- #endif
- /*****************************************************************
- *
- * Utility functions, with some ASM defined functions for speed
- * purposes
- *
- *****************************************************************/
- /*
- * Unfortunately, while the GCC optimizer for the i386 understands how
- * to optimize a static rotate left of x bits, it doesn't know how to
- * deal with a variable rotate of x bits. So we use a bit of asm magic.
- */
- #if (!defined (__i386__))
- extern inline __u32 rotate_left(int i, __u32 word)
- {
- return (word << i) | (word >> (32 - i));
-
- }
- #else
- extern inline __u32 rotate_left(int i, __u32 word)
- {
- __asm__("roll %%cl,%0"
- :"=r" (word)
- :"0" (word),"c" (i));
- return word;
- }
- #endif
- /*
- * More asm magic....
- *
- * For entropy estimation, we need to do an integral base 2
- * logarithm.
- *
- * Note the "12bits" suffix - this is used for numbers between
- * 0 and 4095 only. This allows a few shortcuts.
- */
- #if 0 /* Slow but clear version */
- static inline __u32 int_ln_12bits(__u32 word)
- {
- __u32 nbits = 0;
-
- while (word >>= 1)
- nbits++;
- return nbits;
- }
- #else /* Faster (more clever) version, courtesy Colin Plumb */
- static inline __u32 int_ln_12bits(__u32 word)
- {
- /* Smear msbit right to make an n-bit mask */
- word |= word >> 8;
- word |= word >> 4;
- word |= word >> 2;
- word |= word >> 1;
- /* Remove one bit to make this a logarithm */
- word >>= 1;
- /* Count the bits set in the word */
- word -= (word >> 1) & 0x555;
- word = (word & 0x333) + ((word >> 2) & 0x333);
- word += (word >> 4);
- word += (word >> 8);
- return word & 15;
- }
- #endif
- #if 0
- #define DEBUG_ENT(fmt, arg...) printk(KERN_DEBUG "random: " fmt, ## arg)
- #else
- #define DEBUG_ENT(fmt, arg...) do {} while (0)
- #endif
- /**********************************************************************
- *
- * OS independent entropy store. Here are the functions which handle
- * storing entropy in an entropy pool.
- *
- **********************************************************************/
- struct entropy_store {
- unsigned add_ptr;
- int entropy_count;
- int input_rotate;
- int extract_count;
- struct poolinfo poolinfo;
- __u32 *pool;
- };
- /*
- * Initialize the entropy store. The input argument is the size of
- * the random pool.
- *
- * Returns an negative error if there is a problem.
- */
- static int create_entropy_store(int size, struct entropy_store **ret_bucket)
- {
- struct entropy_store *r;
- struct poolinfo *p;
- int poolwords;
- poolwords = (size + 3) / 4; /* Convert bytes->words */
- /* The pool size must be a multiple of 16 32-bit words */
- poolwords = ((poolwords + 15) / 16) * 16;
- for (p = poolinfo_table; p->poolwords; p++) {
- if (poolwords == p->poolwords)
- break;
- }
- if (p->poolwords == 0)
- return -EINVAL;
- r = kmalloc(sizeof(struct entropy_store), GFP_KERNEL);
- if (!r)
- return -ENOMEM;
- memset (r, 0, sizeof(struct entropy_store));
- r->poolinfo = *p;
- r->pool = kmalloc(POOLBYTES, GFP_KERNEL);
- if (!r->pool) {
- kfree(r);
- return -ENOMEM;
- }
- memset(r->pool, 0, POOLBYTES);
- *ret_bucket = r;
- return 0;
- }
- /* Clear the entropy pool and associated counters. */
- static void clear_entropy_store(struct entropy_store *r)
- {
- r->add_ptr = 0;
- r->entropy_count = 0;
- r->input_rotate = 0;
- r->extract_count = 0;
- memset(r->pool, 0, r->poolinfo.POOLBYTES);
- }
- static void free_entropy_store(struct entropy_store *r)
- {
- if (r->pool)
- kfree(r->pool);
- kfree(r);
- }
- /*
- * This function adds a byte into the entropy "pool". It does not
- * update the entropy estimate. The caller should call
- * credit_entropy_store if this is appropriate.
- *
- * The pool is stirred with a primitive polynomial of the appropriate
- * degree, and then twisted. We twist by three bits at a time because
- * it's cheap to do so and helps slightly in the expected case where
- * the entropy is concentrated in the low-order bits.
- */
- static void add_entropy_words(struct entropy_store *r, const __u32 *in,
- int nwords)
- {
- static __u32 const twist_table[8] = {
- 0, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
- 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
- unsigned i;
- int new_rotate;
- int wordmask = r->poolinfo.poolwords - 1;
- __u32 w;
- while (nwords--) {
- w = rotate_left(r->input_rotate, *in++);
- i = r->add_ptr = (r->add_ptr - 1) & wordmask;
- /*
- * Normally, we add 7 bits of rotation to the pool.
- * At the beginning of the pool, add an extra 7 bits
- * rotation, so that successive passes spread the
- * input bits across the pool evenly.
- */
- new_rotate = r->input_rotate + 14;
- if (i)
- new_rotate = r->input_rotate + 7;
- r->input_rotate = new_rotate & 31;
- /* XOR in the various taps */
- w ^= r->pool[(i + r->poolinfo.tap1) & wordmask];
- w ^= r->pool[(i + r->poolinfo.tap2) & wordmask];
- w ^= r->pool[(i + r->poolinfo.tap3) & wordmask];
- w ^= r->pool[(i + r->poolinfo.tap4) & wordmask];
- w ^= r->pool[(i + r->poolinfo.tap5) & wordmask];
- w ^= r->pool[i];
- r->pool[i] = (w >> 3) ^ twist_table[w & 7];
- }
- }
- /*
- * Credit (or debit) the entropy store with n bits of entropy
- */
- static void credit_entropy_store(struct entropy_store *r, int nbits)
- {
- if (r->entropy_count + nbits < 0) {
- DEBUG_ENT("negative entropy/overflow (%d+%d)n",
- r->entropy_count, nbits);
- r->entropy_count = 0;
- } else if (r->entropy_count + nbits > r->poolinfo.POOLBITS) {
- r->entropy_count = r->poolinfo.POOLBITS;
- } else {
- r->entropy_count += nbits;
- if (nbits)
- DEBUG_ENT("%s added %d bits, now %dn",
- r == sec_random_state ? "secondary" :
- r == random_state ? "primary" : "unknown",
- nbits, r->entropy_count);
- }
- }
- /**********************************************************************
- *
- * Entropy batch input management
- *
- * We batch entropy to be added to avoid increasing interrupt latency
- *
- **********************************************************************/
- static __u32 *batch_entropy_pool;
- static int *batch_entropy_credit;
- static int batch_max;
- static int batch_head, batch_tail;
- static struct tq_struct batch_tqueue;
- static void batch_entropy_process(void *private_);
- /* note: the size must be a power of 2 */
- static int __init batch_entropy_init(int size, struct entropy_store *r)
- {
- batch_entropy_pool = kmalloc(2*size*sizeof(__u32), GFP_KERNEL);
- if (!batch_entropy_pool)
- return -1;
- batch_entropy_credit =kmalloc(size*sizeof(int), GFP_KERNEL);
- if (!batch_entropy_credit) {
- kfree(batch_entropy_pool);
- return -1;
- }
- batch_head = batch_tail = 0;
- batch_max = size;
- batch_tqueue.routine = batch_entropy_process;
- batch_tqueue.data = r;
- return 0;
- }
- /*
- * Changes to the entropy data is put into a queue rather than being added to
- * the entropy counts directly. This is presumably to avoid doing heavy
- * hashing calculations during an interrupt in add_timer_randomness().
- * Instead, the entropy is only added to the pool once per timer tick.
- */
- void batch_entropy_store(u32 a, u32 b, int num)
- {
- int new;
- if (!batch_max)
- return;
-
- batch_entropy_pool[2*batch_head] = a;
- batch_entropy_pool[(2*batch_head) + 1] = b;
- batch_entropy_credit[batch_head] = num;
- new = (batch_head+1) & (batch_max-1);
- if (new != batch_tail) {
- queue_task(&batch_tqueue, &tq_timer);
- batch_head = new;
- } else {
- DEBUG_ENT("batch entropy buffer fulln");
- }
- }
- /*
- * Flush out the accumulated entropy operations, adding entropy to the passed
- * store (normally random_state). If that store has enough entropy, alternate
- * between randomizing the data of the primary and secondary stores.
- */
- static void batch_entropy_process(void *private_)
- {
- struct entropy_store *r = (struct entropy_store *) private_, *p;
- int max_entropy = r->poolinfo.POOLBITS;
- if (!batch_max)
- return;
- p = r;
- while (batch_head != batch_tail) {
- if (r->entropy_count >= max_entropy) {
- r = (r == sec_random_state) ? random_state :
- sec_random_state;
- max_entropy = r->poolinfo.POOLBITS;
- }
- add_entropy_words(r, batch_entropy_pool + 2*batch_tail, 2);
- credit_entropy_store(r, batch_entropy_credit[batch_tail]);
- batch_tail = (batch_tail+1) & (batch_max-1);
- }
- if (p->entropy_count >= random_read_wakeup_thresh)
- wake_up_interruptible(&random_read_wait);
- }
- /*********************************************************************
- *
- * Entropy input management
- *
- *********************************************************************/
- /* There is one of these per entropy source */
- struct timer_rand_state {
- __u32 last_time;
- __s32 last_delta,last_delta2;
- int dont_count_entropy:1;
- };
- static struct timer_rand_state keyboard_timer_state;
- static struct timer_rand_state mouse_timer_state;
- static struct timer_rand_state extract_timer_state;
- static struct timer_rand_state *irq_timer_state[NR_IRQS];
- static struct timer_rand_state *blkdev_timer_state[MAX_BLKDEV];
- /*
- * This function adds entropy to the entropy "pool" by using timing
- * delays. It uses the timer_rand_state structure to make an estimate
- * of how many bits of entropy this call has added to the pool.
- *
- * The number "num" is also added to the pool - it should somehow describe
- * the type of event which just happened. This is currently 0-255 for
- * keyboard scan codes, and 256 upwards for interrupts.
- * On the i386, this is assumed to be at most 16 bits, and the high bits
- * are used for a high-resolution timer.
- *
- */
- static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
- {
- __u32 time;
- __s32 delta, delta2, delta3;
- int entropy = 0;
- #if defined (__i386__)
- if ( test_bit(X86_FEATURE_TSC, &boot_cpu_data.x86_capability) ) {
- __u32 high;
- rdtsc(time, high);
- num ^= high;
- } else {
- time = jiffies;
- }
- #elif defined (__x86_64__)
- __u32 high;
- rdtsc(time, high);
- num ^= high;
- #else
- time = jiffies;
- #endif
- /*
- * Calculate number of bits of randomness we probably added.
- * We take into account the first, second and third-order deltas
- * in order to make our estimate.
- */
- if (!state->dont_count_entropy) {
- delta = time - state->last_time;
- state->last_time = time;
- delta2 = delta - state->last_delta;
- state->last_delta = delta;
- delta3 = delta2 - state->last_delta2;
- state->last_delta2 = delta2;
- if (delta < 0)
- delta = -delta;
- if (delta2 < 0)
- delta2 = -delta2;
- if (delta3 < 0)
- delta3 = -delta3;
- if (delta > delta2)
- delta = delta2;
- if (delta > delta3)
- delta = delta3;
- /*
- * delta is now minimum absolute delta.
- * Round down by 1 bit on general principles,
- * and limit entropy entimate to 12 bits.
- */
- delta >>= 1;
- delta &= (1 << 12) - 1;
- entropy = int_ln_12bits(delta);
- }
- batch_entropy_store(num, time, entropy);
- }
- void add_keyboard_randomness(unsigned char scancode)
- {
- static unsigned char last_scancode;
- /* ignore autorepeat (multiple key down w/o key up) */
- if (scancode != last_scancode) {
- last_scancode = scancode;
- add_timer_randomness(&keyboard_timer_state, scancode);
- }
- }
- void add_mouse_randomness(__u32 mouse_data)
- {
- add_timer_randomness(&mouse_timer_state, mouse_data);
- }
- void add_interrupt_randomness(int irq)
- {
- if (irq >= NR_IRQS || irq_timer_state[irq] == 0)
- return;
- add_timer_randomness(irq_timer_state[irq], 0x100+irq);
- }
- void add_blkdev_randomness(int major)
- {
- if (major >= MAX_BLKDEV)
- return;
- if (blkdev_timer_state[major] == 0) {
- rand_initialize_blkdev(major, GFP_ATOMIC);
- if (blkdev_timer_state[major] == 0)
- return;
- }
-
- add_timer_randomness(blkdev_timer_state[major], 0x200+major);
- }
- /******************************************************************
- *
- * Hash function definition
- *
- *******************************************************************/
- /*
- * This chunk of code defines a function
- * void HASH_TRANSFORM(__u32 digest[HASH_BUFFER_SIZE + HASH_EXTRA_SIZE],
- * __u32 const data[16])
- *
- * The function hashes the input data to produce a digest in the first
- * HASH_BUFFER_SIZE words of the digest[] array, and uses HASH_EXTRA_SIZE
- * more words for internal purposes. (This buffer is exported so the
- * caller can wipe it once rather than this code doing it each call,
- * and tacking it onto the end of the digest[] array is the quick and
- * dirty way of doing it.)
- *
- * It so happens that MD5 and SHA share most of the initial vector
- * used to initialize the digest[] array before the first call:
- * 1) 0x67452301
- * 2) 0xefcdab89
- * 3) 0x98badcfe
- * 4) 0x10325476
- * 5) 0xc3d2e1f0 (SHA only)
- *
- * For /dev/random purposes, the length of the data being hashed is
- * fixed in length, so appending a bit count in the usual way is not
- * cryptographically necessary.
- */
- #ifdef USE_SHA
- #define HASH_BUFFER_SIZE 5
- #define HASH_EXTRA_SIZE 80
- #define HASH_TRANSFORM SHATransform
- /* Various size/speed tradeoffs are available. Choose 0..3. */
- #define SHA_CODE_SIZE 0
- /*
- * SHA transform algorithm, taken from code written by Peter Gutmann,
- * and placed in the public domain.
- */
- /* The SHA f()-functions. */
- #define f1(x,y,z) ( z ^ (x & (y^z)) ) /* Rounds 0-19: x ? y : z */
- #define f2(x,y,z) (x ^ y ^ z) /* Rounds 20-39: XOR */
- #define f3(x,y,z) ( (x & y) + (z & (x ^ y)) ) /* Rounds 40-59: majority */
- #define f4(x,y,z) (x ^ y ^ z) /* Rounds 60-79: XOR */
- /* The SHA Mysterious Constants */
- #define K1 0x5A827999L /* Rounds 0-19: sqrt(2) * 2^30 */
- #define K2 0x6ED9EBA1L /* Rounds 20-39: sqrt(3) * 2^30 */
- #define K3 0x8F1BBCDCL /* Rounds 40-59: sqrt(5) * 2^30 */
- #define K4 0xCA62C1D6L /* Rounds 60-79: sqrt(10) * 2^30 */
- #define ROTL(n,X) ( ( ( X ) << n ) | ( ( X ) >> ( 32 - n ) ) )
- #define subRound(a, b, c, d, e, f, k, data)
- ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
- static void SHATransform(__u32 digest[85], __u32 const data[16])
- {
- __u32 A, B, C, D, E; /* Local vars */
- __u32 TEMP;
- int i;
- #define W (digest + HASH_BUFFER_SIZE) /* Expanded data array */
- /*
- * Do the preliminary expansion of 16 to 80 words. Doing it
- * out-of-line line this is faster than doing it in-line on
- * register-starved machines like the x86, and not really any
- * slower on real processors.
- */
- memcpy(W, data, 16*sizeof(__u32));
- for (i = 0; i < 64; i++) {
- TEMP = W[i] ^ W[i+2] ^ W[i+8] ^ W[i+13];
- W[i+16] = ROTL(1, TEMP);
- }
- /* Set up first buffer and local data buffer */
- A = digest[ 0 ];
- B = digest[ 1 ];
- C = digest[ 2 ];
- D = digest[ 3 ];
- E = digest[ 4 ];
- /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
- #if SHA_CODE_SIZE == 0
- /*
- * Approximately 50% of the speed of the largest version, but
- * takes up 1/16 the space. Saves about 6k on an i386 kernel.
- */
- for (i = 0; i < 80; i++) {
- if (i < 40) {
- if (i < 20)
- TEMP = f1(B, C, D) + K1;
- else
- TEMP = f2(B, C, D) + K2;
- } else {
- if (i < 60)
- TEMP = f3(B, C, D) + K3;
- else
- TEMP = f4(B, C, D) + K4;
- }
- TEMP += ROTL(5, A) + E + W[i];
- E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
- }
- #elif SHA_CODE_SIZE == 1
- for (i = 0; i < 20; i++) {
- TEMP = f1(B, C, D) + K1 + ROTL(5, A) + E + W[i];
- E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
- }
- for (; i < 40; i++) {
- TEMP = f2(B, C, D) + K2 + ROTL(5, A) + E + W[i];
- E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
- }
- for (; i < 60; i++) {
- TEMP = f3(B, C, D) + K3 + ROTL(5, A) + E + W[i];
- E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
- }
- for (; i < 80; i++) {
- TEMP = f4(B, C, D) + K4 + ROTL(5, A) + E + W[i];
- E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
- }
- #elif SHA_CODE_SIZE == 2
- for (i = 0; i < 20; i += 5) {
- subRound( A, B, C, D, E, f1, K1, W[ i ] );
- subRound( E, A, B, C, D, f1, K1, W[ i+1 ] );
- subRound( D, E, A, B, C, f1, K1, W[ i+2 ] );
- subRound( C, D, E, A, B, f1, K1, W[ i+3 ] );
- subRound( B, C, D, E, A, f1, K1, W[ i+4 ] );
- }
- for (; i < 40; i += 5) {
- subRound( A, B, C, D, E, f2, K2, W[ i ] );
- subRound( E, A, B, C, D, f2, K2, W[ i+1 ] );
- subRound( D, E, A, B, C, f2, K2, W[ i+2 ] );
- subRound( C, D, E, A, B, f2, K2, W[ i+3 ] );
- subRound( B, C, D, E, A, f2, K2, W[ i+4 ] );
- }
- for (; i < 60; i += 5) {
- subRound( A, B, C, D, E, f3, K3, W[ i ] );
- subRound( E, A, B, C, D, f3, K3, W[ i+1 ] );
- subRound( D, E, A, B, C, f3, K3, W[ i+2 ] );
- subRound( C, D, E, A, B, f3, K3, W[ i+3 ] );
- subRound( B, C, D, E, A, f3, K3, W[ i+4 ] );
- }
- for (; i < 80; i += 5) {
- subRound( A, B, C, D, E, f4, K4, W[ i ] );
- subRound( E, A, B, C, D, f4, K4, W[ i+1 ] );
- subRound( D, E, A, B, C, f4, K4, W[ i+2 ] );
- subRound( C, D, E, A, B, f4, K4, W[ i+3 ] );
- subRound( B, C, D, E, A, f4, K4, W[ i+4 ] );
- }
- #elif SHA_CODE_SIZE == 3 /* Really large version */
- subRound( A, B, C, D, E, f1, K1, W[ 0 ] );
- subRound( E, A, B, C, D, f1, K1, W[ 1 ] );
- subRound( D, E, A, B, C, f1, K1, W[ 2 ] );
- subRound( C, D, E, A, B, f1, K1, W[ 3 ] );
- subRound( B, C, D, E, A, f1, K1, W[ 4 ] );
- subRound( A, B, C, D, E, f1, K1, W[ 5 ] );
- subRound( E, A, B, C, D, f1, K1, W[ 6 ] );
- subRound( D, E, A, B, C, f1, K1, W[ 7 ] );
- subRound( C, D, E, A, B, f1, K1, W[ 8 ] );
- subRound( B, C, D, E, A, f1, K1, W[ 9 ] );
- subRound( A, B, C, D, E, f1, K1, W[ 10 ] );
- subRound( E, A, B, C, D, f1, K1, W[ 11 ] );
- subRound( D, E, A, B, C, f1, K1, W[ 12 ] );
- subRound( C, D, E, A, B, f1, K1, W[ 13 ] );
- subRound( B, C, D, E, A, f1, K1, W[ 14 ] );
- subRound( A, B, C, D, E, f1, K1, W[ 15 ] );
- subRound( E, A, B, C, D, f1, K1, W[ 16 ] );
- subRound( D, E, A, B, C, f1, K1, W[ 17 ] );
- subRound( C, D, E, A, B, f1, K1, W[ 18 ] );
- subRound( B, C, D, E, A, f1, K1, W[ 19 ] );
- subRound( A, B, C, D, E, f2, K2, W[ 20 ] );
- subRound( E, A, B, C, D, f2, K2, W[ 21 ] );
- subRound( D, E, A, B, C, f2, K2, W[ 22 ] );
- subRound( C, D, E, A, B, f2, K2, W[ 23 ] );
- subRound( B, C, D, E, A, f2, K2, W[ 24 ] );
- subRound( A, B, C, D, E, f2, K2, W[ 25 ] );
- subRound( E, A, B, C, D, f2, K2, W[ 26 ] );
- subRound( D, E, A, B, C, f2, K2, W[ 27 ] );
- subRound( C, D, E, A, B, f2, K2, W[ 28 ] );
- subRound( B, C, D, E, A, f2, K2, W[ 29 ] );
- subRound( A, B, C, D, E, f2, K2, W[ 30 ] );
- subRound( E, A, B, C, D, f2, K2, W[ 31 ] );
- subRound( D, E, A, B, C, f2, K2, W[ 32 ] );
- subRound( C, D, E, A, B, f2, K2, W[ 33 ] );
- subRound( B, C, D, E, A, f2, K2, W[ 34 ] );
- subRound( A, B, C, D, E, f2, K2, W[ 35 ] );
- subRound( E, A, B, C, D, f2, K2, W[ 36 ] );
- subRound( D, E, A, B, C, f2, K2, W[ 37 ] );
- subRound( C, D, E, A, B, f2, K2, W[ 38 ] );
- subRound( B, C, D, E, A, f2, K2, W[ 39 ] );
-
- subRound( A, B, C, D, E, f3, K3, W[ 40 ] );
- subRound( E, A, B, C, D, f3, K3, W[ 41 ] );
- subRound( D, E, A, B, C, f3, K3, W[ 42 ] );
- subRound( C, D, E, A, B, f3, K3, W[ 43 ] );
- subRound( B, C, D, E, A, f3, K3, W[ 44 ] );
- subRound( A, B, C, D, E, f3, K3, W[ 45 ] );
- subRound( E, A, B, C, D, f3, K3, W[ 46 ] );
- subRound( D, E, A, B, C, f3, K3, W[ 47 ] );
- subRound( C, D, E, A, B, f3, K3, W[ 48 ] );
- subRound( B, C, D, E, A, f3, K3, W[ 49 ] );
- subRound( A, B, C, D, E, f3, K3, W[ 50 ] );
- subRound( E, A, B, C, D, f3, K3, W[ 51 ] );
- subRound( D, E, A, B, C, f3, K3, W[ 52 ] );
- subRound( C, D, E, A, B, f3, K3, W[ 53 ] );
- subRound( B, C, D, E, A, f3, K3, W[ 54 ] );
- subRound( A, B, C, D, E, f3, K3, W[ 55 ] );
- subRound( E, A, B, C, D, f3, K3, W[ 56 ] );
- subRound( D, E, A, B, C, f3, K3, W[ 57 ] );
- subRound( C, D, E, A, B, f3, K3, W[ 58 ] );
- subRound( B, C, D, E, A, f3, K3, W[ 59 ] );
- subRound( A, B, C, D, E, f4, K4, W[ 60 ] );
- subRound( E, A, B, C, D, f4, K4, W[ 61 ] );
- subRound( D, E, A, B, C, f4, K4, W[ 62 ] );
- subRound( C, D, E, A, B, f4, K4, W[ 63 ] );
- subRound( B, C, D, E, A, f4, K4, W[ 64 ] );
- subRound( A, B, C, D, E, f4, K4, W[ 65 ] );
- subRound( E, A, B, C, D, f4, K4, W[ 66 ] );
- subRound( D, E, A, B, C, f4, K4, W[ 67 ] );
- subRound( C, D, E, A, B, f4, K4, W[ 68 ] );
- subRound( B, C, D, E, A, f4, K4, W[ 69 ] );
- subRound( A, B, C, D, E, f4, K4, W[ 70 ] );
- subRound( E, A, B, C, D, f4, K4, W[ 71 ] );
- subRound( D, E, A, B, C, f4, K4, W[ 72 ] );
- subRound( C, D, E, A, B, f4, K4, W[ 73 ] );
- subRound( B, C, D, E, A, f4, K4, W[ 74 ] );
- subRound( A, B, C, D, E, f4, K4, W[ 75 ] );
- subRound( E, A, B, C, D, f4, K4, W[ 76 ] );
- subRound( D, E, A, B, C, f4, K4, W[ 77 ] );
- subRound( C, D, E, A, B, f4, K4, W[ 78 ] );
- subRound( B, C, D, E, A, f4, K4, W[ 79 ] );
- #else
- #error Illegal SHA_CODE_SIZE
- #endif
- /* Build message digest */
- digest[ 0 ] += A;
- digest[ 1 ] += B;
- digest[ 2 ] += C;
- digest[ 3 ] += D;
- digest[ 4 ] += E;
- /* W is wiped by the caller */
- #undef W
- }
- #undef ROTL
- #undef f1
- #undef f2
- #undef f3
- #undef f4
- #undef K1
- #undef K2
- #undef K3
- #undef K4
- #undef subRound
-
- #else /* !USE_SHA - Use MD5 */
- #define HASH_BUFFER_SIZE 4
- #define HASH_EXTRA_SIZE 0
- #define HASH_TRANSFORM MD5Transform
-
- /*
- * MD5 transform algorithm, taken from code written by Colin Plumb,
- * and put into the public domain
- */
- /* The four core functions - F1 is optimized somewhat */
- /* #define F1(x, y, z) (x & y | ~x & z) */
- #define F1(x, y, z) (z ^ (x & (y ^ z)))
- #define F2(x, y, z) F1(z, x, y)
- #define F3(x, y, z) (x ^ y ^ z)
- #define F4(x, y, z) (y ^ (x | ~z))
- /* This is the central step in the MD5 algorithm. */
- #define MD5STEP(f, w, x, y, z, data, s)
- ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
- /*
- * The core of the MD5 algorithm, this alters an existing MD5 hash to
- * reflect the addition of 16 longwords of new data. MD5Update blocks
- * the data and converts bytes into longwords for this routine.
- */
- static void MD5Transform(__u32 buf[HASH_BUFFER_SIZE], __u32 const in[16])
- {
- __u32 a, b, c, d;
- a = buf[0];
- b = buf[1];
- c = buf[2];
- d = buf[3];
- MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
- MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
- MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
- MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
- MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
- MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
- MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
- MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
- MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
- MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
- MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
- MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
- MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
- MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
- MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
- MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
- MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
- MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
- MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
- MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
- MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
- MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
- MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
- MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
- MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
- MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
- MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
- MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
- MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
- MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
- MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
- MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
- MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
- MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
- MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
- MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
- MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
- MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
- MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
- MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
- MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
- MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
- MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
- MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
- MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
- MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
- MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
- MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
- MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
- MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
- MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
- MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
- MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
- MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
- MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
- MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
- MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
- MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
- MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
- MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
- MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
- MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
- MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
- MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
- buf[0] += a;
- buf[1] += b;
- buf[2] += c;
- buf[3] += d;
- }
- #undef F1
- #undef F2
- #undef F3
- #undef F4
- #undef MD5STEP
- #endif /* !USE_SHA */
- /*********************************************************************
- *
- * Entropy extraction routines
- *
- *********************************************************************/
- #define EXTRACT_ENTROPY_USER 1
- #define EXTRACT_ENTROPY_SECONDARY 2
- #define TMP_BUF_SIZE (HASH_BUFFER_SIZE + HASH_EXTRA_SIZE)
- #define SEC_XFER_SIZE (TMP_BUF_SIZE*4)
- static ssize_t extract_entropy(struct entropy_store *r, void * buf,
- size_t nbytes, int flags);
- /*
- * This utility inline function is responsible for transfering entropy
- * from the primary pool to the secondary extraction pool. We pull
- * randomness under two conditions; one is if there isn't enough entropy
- * in the secondary pool. The other is after we have extracted 1024 bytes,
- * at which point we do a "catastrophic reseeding".
- */
- static inline void xfer_secondary_pool(struct entropy_store *r,
- size_t nbytes)
- {
- __u32 tmp[TMP_BUF_SIZE];
- if (r->entropy_count < nbytes * 8 &&
- r->entropy_count < r->poolinfo.POOLBITS) {
- int nwords = min_t(int,
- r->poolinfo.poolwords - r->entropy_count/32,
- sizeof(tmp) / 4);
- DEBUG_ENT("xfer %d from primary to %s (have %d, need %d)n",
- nwords * 32,
- r == sec_random_state ? "secondary" : "unknown",
- r->entropy_count, nbytes * 8);
- extract_entropy(random_state, tmp, nwords * 4, 0);
- add_entropy_words(r, tmp, nwords);
- credit_entropy_store(r, nwords * 32);
- }
- if (r->extract_count > 1024) {
- DEBUG_ENT("reseeding %s with %d from primaryn",
- r == sec_random_state ? "secondary" : "unknown",
- sizeof(tmp) * 8);
- extract_entropy(random_state, tmp, sizeof(tmp), 0);
- add_entropy_words(r, tmp, sizeof(tmp) / 4);
- r->extract_count = 0;
- }
- }
- /*
- * This function extracts randomness from the "entropy pool", and
- * returns it in a buffer. This function computes how many remaining
- * bits of entropy are left in the pool, but it does not restrict the
- * number of bytes that are actually obtained. If the EXTRACT_ENTROPY_USER
- * flag is given, then the buf pointer is assumed to be in user space.
- *
- * If the EXTRACT_ENTROPY_SECONDARY flag is given, then we are actually
- * extracting entropy from the secondary pool, and can refill from the
- * primary pool if needed.
- *
- * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
- */
- static ssize_t extract_entropy(struct entropy_store *r, void * buf,
- size_t nbytes, int flags)
- {
- ssize_t ret, i;
- __u32 tmp[TMP_BUF_SIZE];
- __u32 x;
- add_timer_randomness(&extract_timer_state, nbytes);
- /* Redundant, but just in case... */
- if (r->entropy_count > r->poolinfo.POOLBITS)
- r->entropy_count = r->poolinfo.POOLBITS;
- if (flags & EXTRACT_ENTROPY_SECONDARY)
- xfer_secondary_pool(r, nbytes);
- DEBUG_ENT("%s has %d bits, want %d bitsn",
- r == sec_random_state ? "secondary" :
- r == random_state ? "primary" : "unknown",
- r->entropy_count, nbytes * 8);
- if (r->entropy_count / 8 >= nbytes)
- r->entropy_count -= nbytes*8;
- else
- r->entropy_count = 0;
- if (r->entropy_count < random_write_wakeup_thresh)
- wake_up_interruptible(&random_write_wait);
- r->extract_count += nbytes;
-
- ret = 0;
- while (nbytes) {
- /*
- * Check if we need to break out or reschedule....
- */
- if ((flags & EXTRACT_ENTROPY_USER) && current->need_resched) {
- if (signal_pending(current)) {
- if (ret == 0)
- ret = -ERESTARTSYS;
- break;
- }
- schedule();
- }
- /* Hash the pool to get the output */
- tmp[0] = 0x67452301;
- tmp[1] = 0xefcdab89;
- tmp[2] = 0x98badcfe;
- tmp[3] = 0x10325476;
- #ifdef USE_SHA
- tmp[4] = 0xc3d2e1f0;
- #endif
- /*
- * As we hash the pool, we mix intermediate values of
- * the hash back into the pool. This eliminates
- * backtracking attacks (where the attacker knows
- * the state of the pool plus the current outputs, and
- * attempts to find previous ouputs), unless the hash
- * function can be inverted.
- */
- for (i = 0, x = 0; i < r->poolinfo.poolwords; i += 16, x+=2) {
- HASH_TRANSFORM(tmp, r->pool+i);
- add_entropy_words(r, &tmp[x%HASH_BUFFER_SIZE], 1);
- }
-
- /*
- * In case the hash function has some recognizable
- * output pattern, we fold it in half.
- */
- for (i = 0; i < HASH_BUFFER_SIZE/2; i++)
- tmp[i] ^= tmp[i + (HASH_BUFFER_SIZE+1)/2];
- #if HASH_BUFFER_SIZE & 1 /* There's a middle word to deal with */
- x = tmp[HASH_BUFFER_SIZE/2];
- x ^= (x >> 16); /* Fold it in half */
- ((__u16 *)tmp)[HASH_BUFFER_SIZE-1] = (__u16)x;
- #endif
-
- /* Copy data to destination buffer */
- i = min(nbytes, HASH_BUFFER_SIZE*sizeof(__u32)/2);
- if (flags & EXTRACT_ENTROPY_USER) {
- i -= copy_to_user(buf, (__u8 const *)tmp, i);
- if (!i) {
- ret = -EFAULT;
- break;
- }
- } else
- memcpy(buf, (__u8 const *)tmp, i);
- nbytes -= i;
- buf += i;
- ret += i;
- add_timer_randomness(&extract_timer_state, nbytes);
- }
- /* Wipe data just returned from memory */
- memset(tmp, 0, sizeof(tmp));
-
- return ret;
- }
- /*
- * This function is the exported kernel interface. It returns some
- * number of good random numbers, suitable for seeding TCP sequence
- * numbers, etc.
- */
- void get_random_bytes(void *buf, int nbytes)
- {
- if (sec_random_state)
- extract_entropy(sec_random_state, (char *) buf, nbytes,
- EXTRACT_ENTROPY_SECONDARY);
- else if (random_state)
- extract_entropy(random_state, (char *) buf, nbytes, 0);
- else
- printk(KERN_NOTICE "get_random_bytes called before "
- "random driver initializationn");
- }
- /*********************************************************************
- *
- * Functions to interface with Linux
- *
- *********************************************************************/
- /*
- * Initialize the random pool with standard stuff.
- *
- * NOTE: This is an OS-dependent function.
- */
- static void init_std_data(struct entropy_store *r)
- {
- struct timeval tv;
- __u32 words[2];
- char *p;
- int i;
- do_gettimeofday(&tv);
- words[0] = tv.tv_sec;
- words[1] = tv.tv_usec;
- add_entropy_words(r, words, 2);
- /*
- * This doesn't lock system.utsname. However, we are generating
- * entropy so a race with a name set here is fine.
- */
- p = (char *) &system_utsname;
- for (i = sizeof(system_utsname) / sizeof(words); i; i--) {
- memcpy(words, p, sizeof(words));
- add_entropy_words(r, words, sizeof(words)/4);
- p += sizeof(words);
- }
- }
- void __init rand_initialize(void)
- {
- int i;
- if (create_entropy_store(DEFAULT_POOL_SIZE, &random_state))
- return; /* Error, return */
- if (batch_entropy_init(BATCH_ENTROPY_SIZE, random_state))
- return; /* Error, return */
- if (create_entropy_store(SECONDARY_POOL_SIZE, &sec_random_state))
- return; /* Error, return */
- clear_entropy_store(random_state);
- clear_entropy_store(sec_random_state);
- init_std_data(random_state);
- #ifdef CONFIG_SYSCTL
- sysctl_init_random(random_state);
- #endif
- for (i = 0; i < NR_IRQS; i++)
- irq_timer_state[i] = NULL;
- for (i = 0; i < MAX_BLKDEV; i++)
- blkdev_timer_state[i] = NULL;
- memset(&keyboard_timer_state, 0, sizeof(struct timer_rand_state));
- memset(&mouse_timer_state, 0, sizeof(struct timer_rand_state));
- memset(&extract_timer_state, 0, sizeof(struct timer_rand_state));
- extract_timer_state.dont_count_entropy = 1;
- }
- void rand_initialize_irq(int irq)
- {
- struct timer_rand_state *state;
-
- if (irq >= NR_IRQS || irq_timer_state[irq])
- return;
- /*
- * If kmalloc returns null, we just won't use that entropy
- * source.
- */
- state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
- if (state) {
- memset(state, 0, sizeof(struct timer_rand_state));
- irq_timer_state[irq] = state;
- }
- }
- void rand_initialize_blkdev(int major, int mode)
- {
- struct timer_rand_state *state;
-
- if (major >= MAX_BLKDEV || blkdev_timer_state[major])
- return;
- /*
- * If kmalloc returns null, we just won't use that entropy
- * source.
- */
- state = kmalloc(sizeof(struct timer_rand_state), mode);
- if (state) {
- memset(state, 0, sizeof(struct timer_rand_state));
- blkdev_timer_state[major] = state;
- }
- }
- static ssize_t
- random_read(struct file * file, char * buf, size_t nbytes, loff_t *ppos)
- {
- DECLARE_WAITQUEUE(wait, current);
- ssize_t n, retval = 0, count = 0;
-
- if (nbytes == 0)
- return 0;
- add_wait_queue(&random_read_wait, &wait);
- while (nbytes > 0) {
- set_current_state(TASK_INTERRUPTIBLE);
-
- n = nbytes;
- if (n > SEC_XFER_SIZE)
- n = SEC_XFER_SIZE;
- if (n > random_state->entropy_count / 8)
- n = random_state->entropy_count / 8;
- if (n == 0) {
- if (file->f_flags & O_NONBLOCK) {
- retval = -EAGAIN;
- break;
- }
- if (signal_pending(current)) {
- retval = -ERESTARTSYS;
- break;
- }
- schedule();
- continue;
- }
- n = extract_entropy(sec_random_state, buf, n,
- EXTRACT_ENTROPY_USER |
- EXTRACT_ENTROPY_SECONDARY);
- if (n < 0) {
- retval = n;
- break;
- }
- count += n;
- buf += n;
- nbytes -= n;
- break; /* This break makes the device work */
- /* like a named pipe */
- }
- current->state = TASK_RUNNING;
- remove_wait_queue(&random_read_wait, &wait);
- /*
- * If we gave the user some bytes, update the access time.
- */
- if (count != 0) {
- UPDATE_ATIME(file->f_dentry->d_inode);
- }
-
- return (count ? count : retval);
- }
- static ssize_t
- urandom_read(struct file * file, char * buf,
- size_t nbytes, loff_t *ppos)
- {
- return extract_entropy(sec_random_state, buf, nbytes,
- EXTRACT_ENTROPY_USER |
- EXTRACT_ENTROPY_SECONDARY);
- }
- static unsigned int
- random_poll(struct file *file, poll_table * wait)
- {
- unsigned int mask;
- poll_wait(file, &random_read_wait, wait);
- poll_wait(file, &random_write_wait, wait);
- mask = 0;
- if (random_state->entropy_count >= random_read_wakeup_thresh)
- mask |= POLLIN | POLLRDNORM;
- if (random_state->entropy_count < random_write_wakeup_thresh)
- mask |= POLLOUT | POLLWRNORM;
- return mask;
- }
- static ssize_t
- random_write(struct file * file, const char * buffer,
- size_t count, loff_t *ppos)
- {
- int ret = 0;
- size_t bytes;
- __u32 buf[16];
- const char *p = buffer;
- size_t c = count;
- while (c > 0) {
- bytes = min(c, sizeof(buf));
- bytes -= copy_from_user(&buf, p, bytes);
- if (!bytes) {
- ret = -EFAULT;
- break;
- }
- c -= bytes;
- p += bytes;
- add_entropy_words(random_state, buf, (bytes + 3) / 4);
- }
- if (p == buffer) {
- return (ssize_t)ret;
- } else {
- file->f_dentry->d_inode->i_mtime = CURRENT_TIME;
- mark_inode_dirty(file->f_dentry->d_inode);
- return (ssize_t)(p - buffer);
- }
- }
- static int
- random_ioctl(struct inode * inode, struct file * file,
- unsigned int cmd, unsigned long arg)
- {
- int *p, size, ent_count;
- int retval;
-
- switch (cmd) {
- case RNDGETENTCNT:
- ent_count = random_state->entropy_count;
- if (put_user(ent_count, (int *) arg))
- return -EFAULT;
- return 0;
- case RNDADDTOENTCNT:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- if (get_user(ent_count, (int *) arg))
- return -EFAULT;
- credit_entropy_store(random_state, ent_count);
- /*
- * Wake up waiting processes if we have enough
- * entropy.
- */
- if (random_state->entropy_count >= random_read_wakeup_thresh)
- wake_up_interruptible(&random_read_wait);
- return 0;
- case RNDGETPOOL:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- p = (int *) arg;
- ent_count = random_state->entropy_count;
- if (put_user(ent_count, p++) ||
- get_user(size, p) ||
- put_user(random_state->poolinfo.poolwords, p++))
- return -EFAULT;
- if (size < 0)
- return -EINVAL;
- if (size > random_state->poolinfo.poolwords)
- size = random_state->poolinfo.poolwords;
- if (copy_to_user(p, random_state->pool, size * 4))
- return -EFAULT;
- return 0;
- case RNDADDENTROPY:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- p = (int *) arg;
- if (get_user(ent_count, p++))
- return -EFAULT;
- if (ent_count < 0)
- return -EINVAL;
- if (get_user(size, p++))
- return -EFAULT;
- retval = random_write(file, (const char *) p,
- size, &file->f_pos);
- if (retval < 0)
- return retval;
- credit_entropy_store(random_state, ent_count);
- /*
- * Wake up waiting processes if we have enough
- * entropy.
- */
- if (random_state->entropy_count >= random_read_wakeup_thresh)
- wake_up_interruptible(&random_read_wait);
- return 0;
- case RNDZAPENTCNT:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- random_state->entropy_count = 0;
- return 0;
- case RNDCLEARPOOL:
- /* Clear the entropy pool and associated counters. */
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- clear_entropy_store(random_state);
- init_std_data(random_state);
- return 0;
- default:
- return -EINVAL;
- }
- }
- struct file_operations random_fops = {
- read: random_read,
- write: random_write,
- poll: random_poll,
- ioctl: random_ioctl,
- };
- struct file_operations urandom_fops = {
- read: urandom_read,
- write: random_write,
- ioctl: random_ioctl,
- };
- /***************************************************************
- * Random UUID interface
- *
- * Used here for a Boot ID, but can be useful for other kernel
- * drivers.
- ***************************************************************/
- /*
- * Generate random UUID
- */
- void generate_random_uuid(unsigned char uuid_out[16])
- {
- get_random_bytes(uuid_out, 16);
- /* Set UUID version to 4 --- truely random generation */
- uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
- /* Set the UUID variant to DCE */
- uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
- }
- /********************************************************************
- *
- * Sysctl interface
- *
- ********************************************************************/
- #ifdef CONFIG_SYSCTL
- #include <linux/sysctl.h>
- static int sysctl_poolsize;
- static int min_read_thresh, max_read_thresh;
- static int min_write_thresh, max_write_thresh;
- static char sysctl_bootid[16];
- /*
- * This function handles a request from the user to change the pool size
- * of the primary entropy store.
- */
- static int change_poolsize(int poolsize)
- {
- struct entropy_store *new_store, *old_store;
- int ret;
-
- if ((ret = create_entropy_store(poolsize, &new_store)))
- return ret;
- add_entropy_words(new_store, random_state->pool,
- random_state->poolinfo.poolwords);
- credit_entropy_store(new_store, random_state->entropy_count);
- sysctl_init_random(new_store);
- old_store = random_state;
- random_state = batch_tqueue.data = new_store;
- free_entropy_store(old_store);
- return 0;
- }
- static int proc_do_poolsize(ctl_table *table, int write, struct file *filp,
- void *buffer, size_t *lenp)
- {
- int ret;
- sysctl_poolsize = random_state->poolinfo.POOLBYTES;
- ret = proc_dointvec(table, write, filp, buffer, lenp);
- if (ret || !write ||
- (sysctl_poolsize == random_state->poolinfo.POOLBYTES))
- return ret;
- return change_poolsize(sysctl_poolsize);
- }
- static int poolsize_strategy(ctl_table *table, int *name, int nlen,
- void *oldval, size_t *oldlenp,
- void *newval, size_t newlen, void **context)
- {
- int len;
-
- sysctl_poolsize = random_state->poolinfo.POOLBYTES;
- /*
- * We only handle the write case, since the read case gets
- * handled by the default handler (and we don't care if the
- * write case happens twice; it's harmless).
- */
- if (newval && newlen) {
- len = newlen;
- if (len > table->maxlen)
- len = table->maxlen;
- if (copy_from_user(table->data, newval, len))
- return -EFAULT;
- }
- if (sysctl_poolsize != random_state->poolinfo.POOLBYTES)
- return change_poolsize(sysctl_poolsize);
- return 0;
- }
- /*
- * These functions is used to return both the bootid UUID, and random
- * UUID. The difference is in whether table->data is NULL; if it is,
- * then a new UUID is generated and returned to the user.
- *
- * If the user accesses this via the proc interface, it will be returned
- * as an ASCII string in the standard UUID format. If accesses via the
- * sysctl system call, it is returned as 16 bytes of binary data.
- */
- static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
- void *buffer, size_t *lenp)
- {
- ctl_table fake_table;
- unsigned char buf[64], tmp_uuid[16], *uuid;
- uuid = table->data;
- if (!uuid) {
- uuid = tmp_uuid;
- uuid[8] = 0;
- }
- if (uuid[8] == 0)
- generate_random_uuid(uuid);
- sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
- "%02x%02x%02x%02x%02x%02x",
- uuid[0], uuid[1], uuid[2], uuid[3],
- uuid[4], uuid[5], uuid[6], uuid[7],
- uuid[8], uuid[9], uuid[10], uuid[11],
- uuid[12], uuid[13], uuid[14], uuid[15]);
- fake_table.data = buf;
- fake_table.maxlen = sizeof(buf);
- return proc_dostring(&fake_table, write, filp, buffer, lenp);
- }
- static int uuid_strategy(ctl_table *table, int *name, int nlen,
- void *oldval, size_t *oldlenp,
- void *newval, size_t newlen, void **context)
- {
- unsigned char tmp_uuid[16], *uuid;
- unsigned int len;
- if (!oldval || !oldlenp)
- return 1;
- uuid = table->data;
- if (!uuid) {
- uuid = tmp_uuid;
- uuid[8] = 0;
- }
- if (uuid[8] == 0)
- generate_random_uuid(uuid);
- if (get_user(len, oldlenp))
- return -EFAULT;
- if (len) {
- if (len > 16)
- len = 16;
- if (copy_to_user(oldval, uuid, len) ||
- put_user(len, oldlenp))
- return -EFAULT;
- }
- return 1;
- }
- ctl_table random_table[] = {
- {RANDOM_POOLSIZE, "poolsize",
- &sysctl_poolsize, sizeof(int), 0644, NULL,
- &proc_do_poolsize, &poolsize_strategy},
- {RANDOM_ENTROPY_COUNT, "entropy_avail",
- NULL, sizeof(int), 0444, NULL,
- &proc_dointvec},
- {RANDOM_READ_THRESH, "read_wakeup_threshold",
- &random_read_wakeup_thresh, sizeof(int), 0644, NULL,
- &proc_dointvec_minmax, &sysctl_intvec, 0,
- &min_read_thresh, &max_read_thresh},
- {RANDOM_WRITE_THRESH, "write_wakeup_threshold",
- &random_write_wakeup_thresh, sizeof(int), 0644, NULL,
- &proc_dointvec_minmax, &sysctl_intvec, 0,
- &min_write_thresh, &max_write_thresh},
- {RANDOM_BOOT_ID, "boot_id",
- &sysctl_bootid, 16, 0444, NULL,
- &proc_do_uuid, &uuid_strategy},
- {RANDOM_UUID, "uuid",
- NULL, 16, 0444, NULL,
- &proc_do_uuid, &uuid_strategy},
- {0}
- };
- static void sysctl_init_random(struct entropy_store *random_state)
- {
- min_read_thresh = 8;
- min_write_thresh = 0;
- max_read_thresh = max_write_thresh = random_state->poolinfo.POOLBITS;
- random_table[1].data = &random_state->entropy_count;
- }
- #endif /* CONFIG_SYSCTL */
- /********************************************************************
- *
- * Random funtions for networking
- *
- ********************************************************************/
- /*
- * TCP initial sequence number picking. This uses the random number
- * generator to pick an initial secret value. This value is hashed
- * along with the TCP endpoint information to provide a unique
- * starting point for each pair of TCP endpoints. This defeats
- * attacks which rely on guessing the initial TCP sequence number.
- * This algorithm was suggested by Steve Bellovin.
- *
- * Using a very strong hash was taking an appreciable amount of the total
- * TCP connection establishment time, so this is a weaker hash,
- * compensated for by changing the secret periodically.
- */
- /* F, G and H are basic MD4 functions: selection, majority, parity */
- #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
- #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
- #define H(x, y, z) ((x) ^ (y) ^ (z))
- /*
- * The generic round function. The application is so specific that
- * we don't bother protecting all the arguments with parens, as is generally
- * good macro practice, in favor of extra legibility.
- * Rotation is separate from addition to prevent recomputation
- */
- #define ROUND(f, a, b, c, d, x, s)
- (a += f(b, c, d) + x, a = (a << s) | (a >> (32-s)))
- #define K1 0
- #define K2 013240474631UL
- #define K3 015666365641UL
- /*
- * Basic cut-down MD4 transform. Returns only 32 bits of result.
- */
- static __u32 halfMD4Transform (__u32 const buf[4], __u32 const in[8])
- {
- __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
- /* Round 1 */
- ROUND(F, a, b, c, d, in[0] + K1, 3);
- ROUND(F, d, a, b, c, in[1] + K1, 7);
- ROUND(F, c, d, a, b, in[2] + K1, 11);
- ROUND(F, b, c, d, a, in[3] + K1, 19);
- ROUND(F, a, b, c, d, in[4] + K1, 3);
- ROUND(F, d, a, b, c, in[5] + K1, 7);
- ROUND(F, c, d, a, b, in[6] + K1, 11);
- ROUND(F, b, c, d, a, in[7] + K1, 19);
- /* Round 2 */
- ROUND(G, a, b, c, d, in[1] + K2, 3);
- ROUND(G, d, a, b, c, in[3] + K2, 5);
- ROUND(G, c, d, a, b, in[5] + K2, 9);
- ROUND(G, b, c, d, a, in[7] + K2, 13);
- ROUND(G, a, b, c, d, in[0] + K2, 3);
- ROUND(G, d, a, b, c, in[2] + K2, 5);
- ROUND(G, c, d, a, b, in[4] + K2, 9);
- ROUND(G, b, c, d, a, in[6] + K2, 13);
- /* Round 3 */
- ROUND(H, a, b, c, d, in[3] + K3, 3);
- ROUND(H, d, a, b, c, in[7] + K3, 9);
- ROUND(H, c, d, a, b, in[2] + K3, 11);
- ROUND(H, b, c, d, a, in[6] + K3, 15);
- ROUND(H, a, b, c, d, in[1] + K3, 3);
- ROUND(H, d, a, b, c, in[5] + K3, 9);
- ROUND(H, c, d, a, b, in[0] + K3, 11);
- ROUND(H, b, c, d, a, in[4] + K3, 15);
- return buf[1] + b; /* "most hashed" word */
- /* Alternative: return sum of all words? */
- }
- #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
- static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12])
- {
- __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
- /* Round 1 */
- ROUND(F, a, b, c, d, in[ 0] + K1, 3);
- ROUND(F, d, a, b, c, in[ 1] + K1, 7);
- ROUND(F, c, d, a, b, in[ 2] + K1, 11);
- ROUND(F, b, c, d, a, in[ 3] + K1, 19);
- ROUND(F, a, b, c, d, in[ 4] + K1, 3);
- ROUND(F, d, a, b, c, in[ 5] + K1, 7);
- ROUND(F, c, d, a, b, in[ 6] + K1, 11);
- ROUND(F, b, c, d, a, in[ 7] + K1, 19);
- ROUND(F, a, b, c, d, in[ 8] + K1, 3);
- ROUND(F, d, a, b, c, in[ 9] + K1, 7);
- ROUND(F, c, d, a, b, in[10] + K1, 11);
- ROUND(F, b, c, d, a, in[11] + K1, 19);
- /* Round 2 */
- ROUND(G, a, b, c, d, in[ 1] + K2, 3);
- ROUND(G, d, a, b, c, in[ 3] + K2, 5);
- ROUND(G, c, d, a, b, in[ 5] + K2, 9);
- ROUND(G, b, c, d, a, in[ 7] + K2, 13);
- ROUND(G, a, b, c, d, in[ 9] + K2, 3);
- ROUND(G, d, a, b, c, in[11] + K2, 5);
- ROUND(G, c, d, a, b, in[ 0] + K2, 9);
- ROUND(G, b, c, d, a, in[ 2] + K2, 13);
- ROUND(G, a, b, c, d, in[ 4] + K2, 3);
- ROUND(G, d, a, b, c, in[ 6] + K2, 5);
- ROUND(G, c, d, a, b, in[ 8] + K2, 9);
- ROUND(G, b, c, d, a, in[10] + K2, 13);
- /* Round 3 */
- ROUND(H, a, b, c, d, in[ 3] + K3, 3);
- ROUND(H, d, a, b, c, in[ 7] + K3, 9);
- ROUND(H, c, d, a, b, in[11] + K3, 11);
- ROUND(H, b, c, d, a, in[ 2] + K3, 15);
- ROUND(H, a, b, c, d, in[ 6] + K3, 3);
- ROUND(H, d, a, b, c, in[10] + K3, 9);
- ROUND(H, c, d, a, b, in[ 1] + K3, 11);
- ROUND(H, b, c, d, a, in[ 5] + K3, 15);
- ROUND(H, a, b, c, d, in[ 9] + K3, 3);
- ROUND(H, d, a, b, c, in[ 0] + K3, 9);
- ROUND(H, c, d, a, b, in[ 4] + K3, 11);
- ROUND(H, b, c, d, a, in[ 8] + K3, 15);
- return buf[1] + b; /* "most hashed" word */
- /* Alternative: return sum of all words? */
- }
- #endif
- #undef ROUND
- #undef F
- #undef G
- #undef H
- #undef K1
- #undef K2
- #undef K3
- /* This should not be decreased so low that ISNs wrap too fast. */
- #define REKEY_INTERVAL 300
- #define HASH_BITS 24
- #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
- __u32 secure_tcpv6_sequence_number(__u32 *saddr, __u32 *daddr,
- __u16 sport, __u16 dport)
- {
- static __u32 rekey_time;
- static __u32 count;
- static __u32 secret[12];
- struct timeval tv;
- __u32 seq;
- /* The procedure is the same as for IPv4, but addresses are longer. */
- do_gettimeofday(&tv); /* We need the usecs below... */
- if (!rekey_time || (tv.tv_sec - rekey_time) > REKEY_INTERVAL) {
- rekey_time = tv.tv_sec;
- /* First five words are overwritten below. */
- get_random_bytes(&secret[5], sizeof(secret)-5*4);
- count = (tv.tv_sec/REKEY_INTERVAL) << HASH_BITS;
- }
- memcpy(secret, saddr, 16);
- secret[4]=(sport << 16) + dport;
- seq = (twothirdsMD4Transform(daddr, secret) &
- ((1<<HASH_BITS)-1)) + count;
- seq += tv.tv_usec + tv.tv_sec*1000000;
- return seq;
- }
- __u32 secure_ipv6_id(__u32 *daddr)
- {
- static time_t rekey_time;
- static __u32 secret[12];
- time_t t;
- /*
- * Pick a random secret every REKEY_INTERVAL seconds.
- */
- t = CURRENT_TIME;
- if (!rekey_time || (t - rekey_time) > REKEY_INTERVAL) {
- rekey_time = t;
- /* First word is overwritten below. */
- get_random_bytes(secret, sizeof(secret));
- }
- return twothirdsMD4Transform(daddr, secret);
- }
- #endif
- __u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr,
- __u16 sport, __u16 dport)
- {
- static __u32 rekey_time;
- static __u32 count;
- static __u32 secret[12];
- struct timeval tv;
- __u32 seq;
- /*
- * Pick a random secret every REKEY_INTERVAL seconds.
- */
- do_gettimeofday(&tv); /* We need the usecs below... */
- if (!rekey_time || (tv.tv_sec - rekey_time) > REKEY_INTERVAL) {
- rekey_time = tv.tv_sec;
- /* First three words are overwritten below. */
- get_random_bytes(&secret[3], sizeof(secret)-12);
- count = (tv.tv_sec/REKEY_INTERVAL) << HASH_BITS;
- }
- /*
- * Pick a unique starting offset for each TCP connection endpoints
- * (saddr, daddr, sport, dport).
- * Note that the words are placed into the first words to be
- * mixed in with the halfMD4. This is because the starting
- * vector is also a random secret (at secret+8), and further
- * hashing fixed data into it isn't going to improve anything,
- * so we should get started with the variable data.
- */
- secret[0]=saddr;
- secret[1]=daddr;
- secret[2]=(sport << 16) + dport;
- seq = (halfMD4Transform(secret+8, secret) &
- ((1<<HASH_BITS)-1)) + count;
- /*
- * As close as possible to RFC 793, which
- * suggests using a 250 kHz clock.
- * Further reading shows this assumes 2 Mb/s networks.
- * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
- * That's funny, Linux has one built in! Use it!
- * (Networks are faster now - should this be increased?)
- */
- seq += tv.tv_usec + tv.tv_sec*1000000;
- #if 0
- printk("init_seq(%lx, %lx, %d, %d) = %dn",
- saddr, daddr, sport, dport, seq);
- #endif
- return seq;
- }
- /* The code below is shamelessly stolen from secure_tcp_sequence_number().
- * All blames to Andrey V. Savochkin <saw@msu.ru>.
- */
- __u32 secure_ip_id(__u32 daddr)
- {
- static time_t rekey_time;
- static __u32 secret[12];
- time_t t;
- /*
- * Pick a random secret every REKEY_INTERVAL seconds.
- */
- t = CURRENT_TIME;
- if (!rekey_time || (t - rekey_time) > REKEY_INTERVAL) {
- rekey_time = t;
- /* First word is overwritten below. */
- get_random_bytes(secret+1, sizeof(secret)-4);
- }
- /*
- * Pick a unique starting offset for each IP destination.
- * Note that the words are placed into the first words to be
- * mixed in with the halfMD4. This is because the starting
- * vector is also a random secret (at secret+8), and further
- * hashing fixed data into it isn't going to improve anything,
- * so we should get started with the variable data.
- */
- secret[0]=daddr;
- return halfMD4Transform(secret+8, secret);
- }
- #ifdef CONFIG_SYN_COOKIES
- /*
- * Secure SYN cookie computation. This is the algorithm worked out by
- * Dan Bernstein and Eric Schenk.
- *
- * For linux I implement the 1 minute counter by looking at the jiffies clock.
- * The count is passed in as a parameter, so this code doesn't much care.
- */
- #define COOKIEBITS 24 /* Upper bits store count */
- #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
- static int syncookie_init;
- static __u32 syncookie_secret[2][16-3+HASH_BUFFER_SIZE];
- __u32 secure_tcp_syn_cookie(__u32 saddr, __u32 daddr, __u16 sport,
- __u16 dport, __u32 sseq, __u32 count, __u32 data)
- {
- __u32 tmp[16 + HASH_BUFFER_SIZE + HASH_EXTRA_SIZE];
- __u32 seq;
- /*
- * Pick two random secrets the first time we need a cookie.
- */
- if (syncookie_init == 0) {
- get_random_bytes(syncookie_secret, sizeof(syncookie_secret));
- syncookie_init = 1;
- }
- /*
- * Compute the secure sequence number.
- * The output should be:
- * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
- * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
- * Where sseq is their sequence number and count increases every
- * minute by 1.
- * As an extra hack, we add a small "data" value that encodes the
- * MSS into the second hash value.
- */
- memcpy(tmp+3, syncookie_secret[0], sizeof(syncookie_secret[0]));
- tmp[0]=saddr;
- tmp[1]=daddr;
- tmp[2]=(sport << 16) + dport;
- HASH_TRANSFORM(tmp+16, tmp);
- seq = tmp[17] + sseq + (count << COOKIEBITS);
- memcpy(tmp+3, syncookie_secret[1], sizeof(syncookie_secret[1]));
- tmp[0]=saddr;
- tmp[1]=daddr;
- tmp[2]=(sport << 16) + dport;
- tmp[3] = count; /* minute counter */
- HASH_TRANSFORM(tmp+16, tmp);
- /* Add in the second hash and the data */
- return seq + ((tmp[17] + data) & COOKIEMASK);
- }
- /*
- * This retrieves the small "data" value from the syncookie.
- * If the syncookie is bad, the data returned will be out of
- * range. This must be checked by the caller.
- *
- * The count value used to generate the cookie must be within
- * "maxdiff" if the current (passed-in) "count". The return value
- * is (__u32)-1 if this test fails.
- */
- __u32 check_tcp_syn_cookie(__u32 cookie, __u32 saddr, __u32 daddr, __u16 sport,
- __u16 dport, __u32 sseq, __u32 count, __u32 maxdiff)
- {
- __u32 tmp[16 + HASH_BUFFER_SIZE + HASH_EXTRA_SIZE];
- __u32 diff;
- if (syncookie_init == 0)
- return (__u32)-1; /* Well, duh! */
- /* Strip away the layers from the cookie */
- memcpy(tmp+3, syncookie_secret[0], sizeof(syncookie_secret[0]));
- tmp[0]=saddr;
- tmp[1]=daddr;
- tmp[2]=(sport << 16) + dport;
- HASH_TRANSFORM(tmp+16, tmp);
- cookie -= tmp[17] + sseq;
- /* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
- diff = (count - (cookie >> COOKIEBITS)) & ((__u32)-1 >> COOKIEBITS);
- if (diff >= maxdiff)
- return (__u32)-1;
- memcpy(tmp+3, syncookie_secret[1], sizeof(syncookie_secret[1]));
- tmp[0] = saddr;
- tmp[1] = daddr;
- tmp[2] = (sport << 16) + dport;
- tmp[3] = count - diff; /* minute counter */
- HASH_TRANSFORM(tmp+16, tmp);
- return (cookie - tmp[17]) & COOKIEMASK; /* Leaving the data behind */
- }
- #endif
- EXPORT_SYMBOL(add_keyboard_randomness);
- EXPORT_SYMBOL(add_mouse_randomness);
- EXPORT_SYMBOL(add_interrupt_randomness);
- EXPORT_SYMBOL(add_blkdev_randomness);
- EXPORT_SYMBOL(batch_entropy_store);
- EXPORT_SYMBOL(generate_random_uuid);